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Abstract 

Background:  For the encoding part of U-Net3+,the ability of brain tumor feature extraction is insufficient, as a result, 
the features can not be fused well during up-sampling, and the accuracy of segmentation will reduce.

Methods:  In this study, we put forward an improved U-Net3+ segmentation network based on stage residual. In 
the encoder part, the encoder based on the stage residual structure is used to solve the vanishing gradient prob-
lem caused by the increasing in network depth, and enhances the feature extraction ability of the encoder which is 
instrumental in full feature fusion when up-sampling in the network. What’s more, we replaced batch normalization 
(BN) layer with filter response normalization (FRN) layer to eliminate batch size impact on the network. Based on the 
improved U-Net3+ two-dimensional (2D) model with stage residual, IResUnet3+ three-dimensional (3D) model is 
constructed. We propose appropriate methods to deal with 3D data, which achieve accurate segmentation of the 3D 
network.

Results:  The experimental results showed that: the sensitivity of WT, TC, and ET increased by 1.34%, 4.6%, and 8.44%, 
respectively. And the Dice coefficients of ET and WT were further increased by 3.43% and 1.03%, respectively. To facili-
tate further research, source code can be found at: https://​github.​com/​YuOnl​yLook​One/​IResU​net3P​lus.

Conclusion:  The improved network has a significant improvement in the segmentation task of the brain tumor 
BraTS2018 dataset, compared with the classical networks u-net, v-net, resunet and u-net3+, the proposed network 
has smaller parameters and significantly improved accuracy.
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Background
The precise segmentation of brain tumor regions is an 
essential basis for clinicians to formulate surgical plans, 
radiotherapy plans, and pathological examinations. The 
research of automatic and accurate brain tumor seg-
mentation based on deep learning has made important 
progress [1, 2]. The improved model based on a fully con-
volutional network (FCN) [3] and U-Net [4] benchmark 
network is one of the important research directions. 

Those improved networks usually have encoder-decoder 
structure and skip connection structure.

In the multimodal brain tumor segmentation chal-
lenge held by Medical Image Computing and Computer-
Assisted Intervention Society (MICCAI), most of the 
participants used U-Net as the benchmark model for 
model improvement [5–7]. Jiang et al. [5] added a VAE-
based image reconstruction branch to the U-Net bench-
mark network, i.e., a variable auto-encoding branch was 
added to the decoder structure as a conditional con-
straint for segmentation. For the limited dataset, it can 
play a guiding and regularizing effect on the encoder and 
won the first place on BraTS18. Zhou et al. [6] improved 
the decoder part and skip connection based on U-Net. 
They designed architecture with nested and dense skip 
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connections and spliced four U-Net networks of differ-
ent depths together through multiple skip connections. 
These skip connections include short and long connec-
tions. Short connections enable the gradient to propa-
gate back from the deep decoder to the lower decoder. 
The long connection is retained because it connects the 
original feature map of the same scale. The intermedi-
ate aggregation feature maps and final aggregation fea-
ture maps are connected to restore the information loss 
caused by down-sampling. The up-sampling uses trans-
posed convolution and finally optimizes the sum of the 
losses of the four output layers.

Huang et  al. [7] believed that U-Net++ was not 
enough to obtain information from multiple scales. They 
proposed a new network U-Net3+ (or U-Net+++). 
U-Net3+ uses full-scale skip connections to com-
bine high-level and low-level semantics from different 
scales to improve segmentation accuracy, and its net-
work parameters are less than U-Net and U-Net++. 
The research showed that the encoder part of U-Net3+ 
is the same as the original U-Net and U-Net++. Each 
encoder consists of two convolutional layers with a con-
volution kernel size of 3. Those basic networks can fur-
ther improve performance. The encoder part can extract 
the abstract features of the input image. The abstrac-
tion degree of features is various under different scales. 
Higher abstraction degree of features is crutial to the 
following network. For up-sampling, when the semantic 
information of the encoder part is combined by skip con-
nection. If the encoder part can provide more semantic 
information, the segmentation accuracy can be signifi-
cantly improved.

Gal et al. [8] improved the encoder part based on U-Net 
combined with the residual structure (Residual Block). 
Zhang et  al. [9] used the residual structure for encoder 
and decoder. Simon et al. [10] used Dense Block for refer-
ence to improve the network structure. The experiments 
of the above-mentioned improved model showed that 
the original encoder structure does not absolutely extract 
features. By combining residual or dense connection 
structures, the ability to extract semantic information 
during down-sampling can be improved.

Compared with the two-dimensional (2D) medical 
image segmentation method, the three-dimensional 
(3D) segmentation model can make fully use of the 3D 
sequence-structure information of medical images to ful-
fill the 3D segmentation task of the lesion [11, 12].

Recently, 3D brain tumor segmentation based on deep 
learning has performed well [12]. However, the 3D seg-
mentation model still has problems, such as high-com-
putational cost and slow inference process speed. For 
instance, the 3D V-Net parameters has reached 40 M.

Because of the insufficient feature extraction ability 
of the encoder part based on U-Net3+, which results in 
inadequate feature fusion during network up-sampling, 
reducing the segmentation accuracy, this study proposes 
an improved U-Net3+ segmentation network based on 
stage residual and presents its 2D and 3D segmentation 
models.

First, this study proposes an improved U-Net3+ seg-
mentation network based on stage residual called IResU-
net3+. It uses FRN instead of BN to normalize the data 
after convolution operation; thereby, eliminating the 
impact of batch size.

Second, from the perspective of the lightweight of the 
segmentation model, this study develops the IResUnet3+ 
3D model from a 3D perspective based on the proposed 
IResUnet3+ 2D model. At the cost of a smaller number 
of parameters, it achieves a better segmentation effect 
than the 2D model. Compared with the 3DV-Net model 
with 40 M parameters, the same segmentation effect can 
be achieved.

Methods
The dataset
The dataset used in this study is BraTs2018. There are 285 
and 66 cases for training and validation set, respectively.

Proposed model architecture
This study develops 2D and 3D segmentation models of 
an improved U-Net3+ segmentation architecture based 
on stage residual, as shown in Figs. 1 and 6, respectively. 
The main contributions of this paper are as follows:

1.	 In the encoder part, an encoder based on the stage 
residual structure is proposed. This structure reduces 
the vanishing gradient problem caused by the 
increase in network depth. Besides, it improves the 
feature extraction ability of U-Net3+ during down-
sampling and provides abundant semantic informa-
tion for up-sampling.

2.	 The normalization layer is replaced with FRN [13] 
instead of BN [14], eliminating the impact on the 
batch size. The performance can surpass BN when 
the batch size is large. The network uses an improved 
version of the ReLU activation function, TLU, which 
can have certain learning capabilities.

3.	 Based on the stage residual structure Unet3+ 2D 
model, we reconstructed the IResUnet3+ 3D model 
and used block processing to process the 3D data to 
achieve the 3D network segmentation. The proposed 
model achieves a segmentation effect similar to the 
3D V-Net model with 40 M parameters at the cost of 
extremely small parameters.
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The experimental results showed that the proposed 
network model improves the segmentation accuracy of 
small areas, and the edge segmentation of tumors is more 
smooth and accurate.

Data preprocessing
Figure  2 illustrates our data preprocessing. The 
BraTS2018 contains four modalities as follows: 
T1-weighted images, T2-weighted images, fluid-attenu-
ated inversion recovery (FLAIR), and contrast-enhanced 
T1-weighted images (T1C). Since there is contrast differ-
ence between each modes, and we use standardization to 
solve this problem. The corresponding ground truth has 
three labels: edema area (ED), enhanced tumor area (ET), 
and non-enhancing tumor (NET). The above labels are 
divided into three different segmentation nested regions: 
whole tumor (WT), tumor core (TC), enhancing tumor 
(ET). Then, merge the channels of the four modalities 
and the three-segmented regions. After cutting out the 
redundant background, a making patch is performed to 
adapt to the 2D network segmentation. Finally, save it 
as.npy file.

Encoder based on stage residual
To solve the network vanishing gradient problem, 
researchers often use the residual structure proposed 
by He et  al. [15] to train deep networks. However, this 
structure causes some other problems, for example, the 

number of ReLU on the main path of the residual struc-
ture is proportional to the network’s depth. But the infor-
mation flow with negative weight will be cleared after 
the ReLU activation function. This feature makes the 
information flow much affected in the propagation pro-
cess. To solve such problems, He et al. [16] proposed the 
pre-activation structure. The principle is to put the ReLU 
away from the main path. Although the above problem 
is solved, it causes new problems. Due to the non-linear 
nature of the activation function, the network can’t learn 
the non-linear relationship in the data. If there is no non-
linear activation function in the residual structure, it will 
result in the lack of nonlinearity between different resid-
ual blocks, which also increases the difficulty of learn-
ing the network. The main path of the standard residual 
and pre-activated structures is not normalized. Thus, the 
entire signal (the added signal) is not completely normal-
ized, increasing the difficulty of network convergence.

Based on this result, Ionut et al. [17] proposed a stage 
residual structure. As shown in Fig. 3, the principle is to 
divide the network into different stages. Each stage con-
sists of a start residual block, several middle residual 
blocks (any number can be used), and an end residual 
block. Thus, no matter how the network depth changes, 
if the number of stages remains the same, the number of 
ReLU on the main path will not change. This allows the 
signal to reduce many bad effects caused by ReLU when 
passing through the multi-layer network. It also obtains 

Fig. 1  Improved U-Net3+ with stage residual (IResUnet3+) 2D model
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the non-linear benefits of ReLU. After the end of the 
residual block, the entire signal is normalized, accelerat-
ing the network convergence.

Based on the structural advantages of the stage resid-
ual, this study combines it with the encoder to improve 
the feature extraction ability during down-sampling. The 
improved encoder consists of a start residual block, sev-
eral middle residual blocks, and an end residual block. 
The number of middle residual blocks is set to 0 to ensure 
that the number of 3 × 3 convolutions is consistent with 
that in the benchmark network.

Full‑scale skip connection
In addition to improving the encoder part, skip connec-
tions are the focus of attention, such as U-Net++ [6] 
designed architecture with nested and dense skip con-
nections based on U-Net. However, Huang et  al. [7] 
believe that U-Net++ does not have enough informa-
tion from multiple scales; thus, they proposed U-Net3+. 
It uses full-scale skip connections to combine high-level 
and low-level semantics from different scales to provide 
richer information for up-sampling.

Figure 4 explains how to structure the X3
De feature map. 

Similar to U-Net, directly receive feature maps X3
En from 

the same scale encoder layer. But the difference is that 
there is more than one skip connection above. Among 
them, the above two skip connections perform pooling 
down-sampling of the lower-level encoder layers X1

En and 
X2
En through different max pooling operations to trans-

mit the low-level semantic information. Another reason 
for pooling down-sampling is to unify the resolution of 

Fig. 2  Flow chart of preprocess program

Fig. 3  Stage residual structure
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the feature map. It can be seen from the Fig. 4, X1
En has 

to reduce the resolution four times and X2
En has to reduce 

the resolution two times. The next two skip connections 
use bilinear interpolation to up-sample X4

En and X5
En in 

the decoder to enlarge the resolution of the feature map. 
It can be seen from the figure, X5

En(X
5
De ) has to enlarge 

the resolution four times and X4
En has to enlarge the res-

olution two times. After unifying the size of the feature 
maps, it is necessary to unify the number of channels. 
After convolution through 3 × 3 convolution with 64 
channels, it will be concatenated together along the chan-
nel dimension, and then the feature fusion is performed. 
After fusion, a new feature map with 320 channels is gen-
erated. Finally, X3

De can be obtained by Conv-BN-ReLU.

FRN
The experimental comparison showed that in each stage, 
no matter U-Net, U-NET++, or U-Net3+, batch nor-
malize is used to normalize the data passing through 
the convolution layer, which makes the whole network 
limited by the batch size N [14]. When the batch size N 
is small, the network effect will be very poor. Although 
group normalization proposed by He is not affected by 
the batch size, it has not been widely used [18]. Besides, 
it is not easy to compete with BN when the batch size 
is large. FRN breaks the influence of batch size and sur-
passes BN when batch size is large [13].

Figure 5 illustrates the calculation process of FRN. The 
input data X refers to the data of a characteristic graph 
(H, W); thus, it has nothing to do with the N represent-
ing the batch size. Its calculation process is slightly dif-
ferent from other normalization layers [14, 21]. It omits 
the operation of subtracting the mean value and changes 

the variance to the mean value of the quadratic norm of 
v2 . Similarly, scaling and panning are required after nor-
malization. Where ∈ is a small constant to prevent the 
denominator from being zero. Besides, FRN does not 
perform any subtraction of the average value, so it may 
lead to the result far from zero after normalization. When 
FRN is activated by ReLU after normalization, many 0 or 
1 values may be generated, which is detrimental to model 
training and performance. To solve this problem, we 
use threshold ReLU to eliminate the bias phenomenon, 
namely TLU, as shown below:

The parameter τ is learnable. Saurabh et al. [13] found 
that TLU is very important to improve the performance 
after FRN normalization.

Loss function
In medical image segmentation, data imbalance is a very 
common problem. In general, the number of lesion vox-
els in most datasets is much lower than that of non-lesion 
voxels, the same is true for brain tumor datasets, and the 

(1)Z = max(y, τ ) = Relu(y− τ )+ τ

Fig. 4  How to construct decoder with Full-Scale skip connection (as an example)

Fig. 5  Calculation process of FRN (N is the batch size, C is channel 
number, H, W is characteristic graph size)
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area of brain tumor is much smaller than that of the brain 
region. To solve this problem, Fausto et al. [11] proposed 
a loss function based on the Dice coefficient, which sig-
nificantly alleviates this imbalance phenomenon and 
makes the network learn effectively. But for small target 
segmentation, once it is not detected, Dice loss fluctuates 
violently. Thus, this study selects the mixed loss function 
of the combination of cross-entropy loss and generalized 
Dice loss and gives them corresponding weights. The for-
mula is shown below.

The parameters of loss function are α = 0.5 and β = 1.0.

3D model based on IResUnet3+
In the front part, a 2D neural network is used to seg-
ment brain tumor magnetic resonance imaging (MRI). 
Although the proposed IResUnet3+ network has been 
significantly improved, there are still some false alarms 
in the normal tissue areas around the brain tumor, i.e., 
many outliers are predicted in the surrounding areas. 
This is because the MRI sequence is originally 3D data, 
but it is sliced in the preprocessing of the 2D network, 
which causes the patch data to lose much spatial infor-
mation, leading to insufficient network learning. Thus, 

(2)Lall = αLbce + βLdice

this study develops the IResUnet3+ 3D model to discuss 
the effect of 3D model brain tumor segmentation based 
on the proposed IResUnet3+ 2D model. The struc-
ture of the proposed IResUnet3+ 3D model is the same 
as that of the 2D model, except that 3D convolution is 
used instead of 2D convolution, and FRN and TLU are 
improved to adapt to the 3D input data. The major differ-
ence from the 2D model is the data preprocessing part; it 
will be explained in detail in subsection 3.1. The IResU-
net3+ 3D model diagram is shown in Fig. 6 below.

3D data preprocessing
Due to the limited experimental resources and condi-
tions, it is not possible to directly input the complete 
3D data into the network. To achieve the 3D network 
segmentation, the 3D data is divided into blocks. Differ-
ent from the making patch of the 2D network, the block 
data is still 3D data. As shown in the Fig.  7, The pre-
process method is divided into five steps: First, manu-
ally add five black slices to meet the requirements of the 
block method. Add three black slices to the front of the 
four modal images (155, 240, 240) and the correspond-
ing mask (155, 240, 240). Then, add two to the back, and 
finally, all become (160, 240, 240). After normalization 
and crop, block processing is conducted. Figure 8 shows 

Fig. 6  Improved U-Net3+ with stage residual (IResUnet3+) 3D model
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one of the making block methods A, the cropped image 
and label size are both (160,160,160), the block size set is 
(32,160,160), the moving step is 32, this means five blocks 
of (32,160,160) size are divided from the Z-axis direction. 

Therefore, the data size input to the network is (BS, 4, 
160, 160, 32). And 4 are images of four modes.

Data preprocessing plays a decisive role in model train-
ing. Poor preprocessing may result in insufficient training 
or even failure. For the data preprocessing of 3D net-
works, the making block method is a step worth paying 
attention to. After experiments, although the above mak-
ing block method (Fig. 8) is simple, there is a lack of cor-
relation between blocks, making the network unable to 
fully learn the structural relationship between all blocks 
and blocks while training. The block at this moment is 
similar to the slice in the 2D network. Although it con-
tains more 3D structural information than the slice, there 
is still a lack of connection between the blocks. Besides, 
the network cannot learn the interconnection between 
structures. Thus, we explored another making block 
method, as shown in Fig.  9, and called it making block 
method B for distinction. Making block method B is also 
simple. The size of the block is not changed, but the mov-
ing step of the block is set to 8, i.e., a block of (32,160,160) 
size is taken for every eight movements in the Z-axis 
direction.

To compare the differences between the two mak-
ing block methods, method A and method B are used to 
process the data, and the V-Net network is trained under 
the same experimental conditions. At the same time, set 
the early stopping method to supervise the training pro-
cess. When the accuracy of the validation set does not 
improve after a certain number of epochs, the early stop-
ping method is triggered to end the training. Figure  10 
shows the comparison of the training process on the data 
obtained in the two methods. The Fig. 10 shows that the 
data obtained in method A lacks the mutual connection 
information between blocks so that the model cannot be 
fully trained. When the early stopping method is triggered, 
the model loss remains at a high level. The data obtained in 
method B enables the network to fully learn the 3Dl struc-
tural information of all data in the dataset, which is benefi-
cial to the convergence and accuracy of the network.

Fig. 7  Flow chart of 3D data preprocess program

Fig. 8  Method A to divide into blocks

Fig. 9  Method B to divide into blocks
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In summary, data preprocessing plays a pivotal role in 
model training. Compared to making block method A, 
making block method B allows the data in the dataset to 
be related to each other, allowing more structural infor-
mation to be captured during model training, which is 
conducive to network learning and training.

Experiment and analysis
Experimental environment
The dataset used in this study is BraTS2018. There are 
285 and 66 cases for training and validation set, respec-
tively. The operating environment: Win10, Intel Core 
i7-8700@ 3.20 GHz six-core CPU, memory 32 GB, graph-
ics card Nvidia GeForce GTX 1080Ti (11 GB/Gigabyte), 
Pytorch1.4.0, Python3.6. The Adam optimizer is used for 
gradient descent, the learning rate is 0.03, and the batch 
size is 2.

Analysis of feature extraction ability
In medical image segmentation, we expect to obtain 
a binary image that only contains the lesion location 
(a lesion location is positive number, and the rest is 
0). Therefore, our neural network model should have 
the ability to identify the lesion location, highlight the 
lesion location, and weaken the non-lesion location. 
And the feature extraction ability of the model is also 
reflected in the perception of the lesion location. In 2.2, 

we mentioned that the feature extraction ability of the 
improved encoder based on stage residual has been sig-
nificantly improved. Therefore, we show the output 
results of the proposed model’s encoder layer through 
the visual method and compare it with U-Net. As shown 
in Fig. 11, the U-Net model has a poor perception of the 
lesion location in the input image, and the model’s atten-
tion is scattered throughout the image instead of the 
lesion location. And the proposed model is very sensitive 
to the lesion location and can better identify and high-
light the lesion location and weaken the non-lesion loca-
tion. This also indicates that the feature extraction ability 
of the encoder is improved after adding the stage residual 
structure.

Experimental comparative analysis
On the same dataset, the proposed model is tested and 
compared with the existing mainstream models. 2D 
and 3D models are constructed to examine the differ-
ence in the performance of the 2D and 3D models under 
the task of brain tumor segmentation. The mainstream 
medical image segmentation models used for compari-
son are U-Net, U-Net++, U-Net3+, and ResUnet, with 
the experimental results shown in Figs.  12, 13, and 14, 
respectively. Among them, green area represents peri-
tumoral edema area(ED), yellow represents enhancing 

Fig. 10  Block data A and B in V-Net network training process
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Fig. 11  Feature extraction visualization

Fig. 12  Comparison of segmentation effect between 2 and 3D models

Fig. 13  Comparison of U-Net, U-Net++, and U-Net3+ segmentation results
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tumor area (ET), and red represents non-enhancing tum
or(NET).

Comparative analysis of 2D and 3D models
Comparing the 2D and 3D models of IResUnet3+ on the 
segmentation effect of brain tumors, the 2D model has 
a large area of misjudgment and additional judgments 
when predicting the 3D brain tumor data. This is because 
the input data of the 2D model is one picture by one. The 
network cannot learn the connection between pictures. 
The input data of the 3D network is a 3D block, which 
itself contains 3D structural information. Besides, we use 
making block method B. The network can further obtain 
the connection between blocks, and further help the net-
work to learn the 3D structural information of tumor 
lesions, improving the accuracy of brain tumor segmen-
tation and reducing misjudgment rate.

Ablation study
Comparing the segmentation effect of U-Net, U-Net++, 
and U-Net3+ models for brain tumors, we obtained that 
the classical network U-Net is based on its encoder-
decoder network structure, and skip connection can 
connect encoder-decoder layer to merge low-level and 
high-level features to better perform basic segmentation 
of tumor lesions. However, there are still many prob-
lems, such as misjudgments, additional judgments, and 
low accuracy. U-Net++ designs architecture with nested 
and dense skip connections based on U-Net. The four 
U-Net networks of different depths are spliced together 
through multiple skip connections, which help to fully 
integrate features at the same scale. However, it does 
not perform feature fusion between different scales, and 
there may be a problem with feature redundancy. Based 
on this, U-Net3+ is proposed. U-Net3+ proposes a full-
scale skip connection while retaining the simple architec-
ture of U-Net one-layer encoder-decoder. The features 
from different scales are merged through skip connec-
tion without feature redundancy. All feature information 

of different scales appears and is integrated. In contrast, 
U-Net3+ can achieve better results on segmentation 
tasks.

Comparing the segmentation effects of U-Net3+, 
FRN_U-Net3+, and IResUnet3+ models on brain 
tumors, we obtained that, as described in the previ-
ous section, U-Net3+ can segment brain tumors due 
to its full-scale skip connection. However, it needs fur-
ther improvements. First, the BN normalization method 
used in U-Net3+ will limit the network to the batch size. 
When the batch size is small, the network performance 
tends to be poor. Thus, we used the FRN normalization 
layer instead of BN to eliminate the batch size impact on 
the network. under the same batch size training, FRN_U-
Net3+ performs significantly better than U-Net3+. It is 
essential to eliminate the influence of batch size on the 
network. The traditional Conv-BN-ReLU operation is 
used in the U-Net3+ encoder part, which shows weak 
feature extraction ability. We used the improved encoder 
based on the stage residual to improve the feature extrac-
tion ability of the encoder part, which is helpful for the 
network to learn more feature information and condu-
cive to better feature fusion in the up-sampling.

Finally, all 2D and 3D model segmentation results are 
shown in Figs. 15 and 16, respectively.

Statistical analysis of segmentation results
We evaluated all models using the validation dataset pro-
vided by the BraTS2018 challenge. segmentation result of 
each architecture is evaluated as presented in Table 1. Box 
plots of all experimental models are displayed in Fig.  17. 
And the standard deviation and confidence interval of the 
scores of our proposed model are shown in Table 2. Note 
that all metrics are calculated through the BraTS2018 
online evaluation platform. And two commonly used med-
ical image segmentation evaluation indexes are used to 
evaluate the segmentation results: Dice coefficient (Dice), 
Sensitivity (SEN). Moreover, each index has segmenta-
tion results corresponding to three regions: whole tumor 

Fig. 14  Comparison of ablation experiment
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Fig. 15  Segmentation result of all 2D models
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(WT), tumor core (TC), enhancing tumor (ET).The for-
mula is shown in (5). Among them, TP is the number of 
pixels with correct foreground segmentation in pixel-level 
segmentation, FP is the number of pixels with background 
segmentation error in pixel-level segmentation, and FN is 
the foreground segmentation error in pixel-level segmenta-
tion. Among them, Dice is used to calculating the similar-
ity between prediction results and labels, and the greater 

the similarity of Dice, the higher the similarity. And SEN 
indicates the probability that the lesion will be correctly 
segmented

(3)
Dice =

2TP

2TP + FN + FP

SEN =
TP

TP + FN

Fig. 16  Segmentation result of all 3D models

Table 1  Segmentation effect of each model

Bold indicates that the value is the maximum value in the index

Model Type Params ET Dice WT Dice TC Dice SEN_ET SEN_WT SEN_TC

2DUnet [4] 39 M 72.34 86.22 73.77 77.80 85.81 71.47

2DUnet++ [6] 36 M 72.39 85.60 73.36 76.20 85.78 71.81

2DUnet3+ [7] 27 M 73.93 87.23 77.28 74.94 88.26 77.97

Swin transformer [19] 27 M 76.18 83.75 82.33 78.31 84.28 80.34

3DUnet [20] 4.1 M 67.12 87.37 73.52 65.35 89.01 80.62

3DVnet [11] 40 M 76.25 88.87 78.72 80.00 91.30 83.37
3DResUnet [9] 4.2 M 72.60 87.96 71.24 73.70 90.11 73.43

3DUnet +  +  6.8 M 67.12 85.81 67.66 63.91 88.38 75.99

3Dunet3 +  5 M 72.41 86.89 73.53 72.74 90.94 76.60

3D_FRN_Unet3+ 5 M 72.22 87.74 78.59 81.18 92.28 81.20

Ours 6.6 M 75.65 88.77 78.62 79.12 91.51 78.96
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We obtain the following from the table. First, com-
paring the segmentation effect of 2D and 3D models, 
we obtain that the 3D segmentation model has some 
problems, such as high-computational cost and a large 
amount of memory. Thus, we have to reduce the scale 
of the model to reduce its parameters (here, the convo-
lution channel number of each layer of the 3D model 
is [16,32,64,128,256], while that of the 2D model is 
[64,128,256,512,1024]; thus, reducing the scale of the 
3D model). However, it will decrease the learning abil-
ity of the model, and the final segmentation effect will 
be worse. The proposed model can maintain good learn-
ing ability and improve the segmentation effect under 
the same compression model scale. Second, comparing 
3DU-Net, 3DU-Net3+, 3D_FRN_Unet3+, and 3DIR-
esUnet3+, we obtain that the full-scale skip connection 
proposed by U-Net3+ can provide more information 
for up-sampling by combining high-level and low-level 
semantics from different scales; thus, improving the seg-
mentation accuracy. Due to the common BN normaliza-
tion layer used in U-Net3 + , the network is limited by 

the batch size. Thus, we use the FRN normalization layer 
instead of BN to solve the problem of the network lim-
ited by the batch size, so that the network can be fully 
trained, and the segmentation accuracy is improved. The 
Dice coefficients of ET and TC increased by 0.85% and 
5.06%, respectively. The sensitivity of WT, TC, and ET 
increased by 1.34%, 4.6%, and 8.44%, respectively. The 
encoder is improved based on the stage residuals, which 
solves the problem of insufficient feature extraction abil-
ity of U-Net3+ encoder at the cost of adding a small 
number of parameters, and provides more semantic 
information for up-sampling to further improve the seg-
mentation accuracy. The Dice coefficients of ET and WT 
were further increased by 3.43% and 1.03%, respectively. 
Moreover, the standard deviation of Dice-ET, Dice-WT 
and Dice-TC indexes of the model is 0.24757, 0.07148, 
0.20138, the median value is 0.84598, 0.91022, 0.86591, 
and the 75quantile is 0.75632, 0.8663, 0.71147. Compar-
ing 3D IResUet3+ with 3D V-Net, we obtained that the 
proposed model can achieve the segmentation effect 
similar to the 3D V-Net model with 40  M parameters 

Fig. 17  Box plot of all experimental models

Table 2  The standard deviation and confidence interval of our proposed model

Dice_ET Dice_WT Dice_TC Sen_ET Sen_WT Sens_TC

SD 0.24757 0.07148 0.20138 0.22927 0.08815 0.22575

Median 0.84598 0.91022 0.86591 0.85295 0.93605 0.86607

25 quantile 0.75632 0.8663 0.71147 0.73508 0.89561 0.71026

75 quantile 0.88787 0.93284 0.91945 0.94034 0.96758 0.95347
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with minimal parameters. Thus, the IResUnet3+ model 
is lightweight and effective in brain tumor segmentation.

The statistical analysis experiment is shown in Fig. 17. 
Under the same experimental conditions, we have sta-
tistically analyzed the ET-Dice index in the experimen-
tal results. The analysis methods of other indexes are 
the same and are not displayed one by one. The models 
used are: 2DU-Net, 2DU-Net++, 2DU-Net3+, 3DU-
Net, 3DU-Net++, 3DResUnet, 3DV-Net, 3DU-Net3+, 
3DFRN_U-Net3+ And our proposed model 3DIResU-
net3+. By observing the Box diagram, it can be found 
that with the gradual improvement of 3DUnet3+, we 
gradually add FRN module and stage residual module 
to obtain 3DFRN_UNet3+ and 3DIResUnet3+ mod-
els, the average value of the Box diagram drawn by them 
increases gradually, so the generalization accuracy of the 
model also increases gradually, which is consistent with 
the experimental data in Table 1.

The HD distance results of all models are shown in the 
following Table  3. It can be seen from the Table  3 that 
the Hausdorff distances of ET, WT and TC of 2DUnet 
are 11.02, 25.71 and 17.65, and our proposed model has 
improved by 2.7, 12.63 and 2.46 compared with it. And 
compared with 3DUnet, Table  1 above shows that the 
Dice values of ET, WT and TC in our proposed model 
have increased by 8.53, 1.4 and 5.1 respectively. Table 3 
shows that HD-ET has increased by 19.96, but the val-
ues of HD-WT and HD-TC have decreased slightly. 
This shows that the index HD sensitive to the difference 
of location information will be slightly affected while 
increasing the value of dice.

Conclusions
Focus on the problem that the encoder of U-Net3+ 
has insufficient ability to extract features. In this study, 
an improved encoder structure based on stage residu-
als is proposed to improve the feature extraction ability 
in down-sampling. We used the FRN normalization layer 
to eliminate the impact of batch size on the network. The 
IResUnet3+ 3D model is constructed based on the stage 
residual structure Unet3+ 2D model. The 3D data is 

processed to achieve accurate segmentation of the 3D net-
work. The proposed IResUnet3+ 3D model achieves a seg-
mentation effect similar to that of the 3DV-Net model with 
40 M parameters at the cost of minimal parameters, which 
is lightweight and effective in brain tumor segmentation 
tasks. The experimental results showed that the improved 
network could significantly improve the segmentation 
accuracy of the brain tumor BraTS2018 dataset compared 
to the original U-Net3+ . The next step is to study the 3D 
segmentation and localization of brain tumor images and 
establish a prediction model combined with radiomics to 
improve the diagnosis, treatment, and prognosis of brain 
tumors.
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