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Abstract 

Background:  Magnetic resonance imaging (MRI) is an effective auxiliary diagnostic method in clinical medicine, but 
it has always suffered from the problem of long acquisition time. Compressed sensing and parallel imaging are two 
common techniques to accelerate MRI reconstruction. Recently, deep learning provides a new direction for MRI, while 
most of them require a large number of data pairs for training. However, there are many scenarios where fully sam-
pled k-space data cannot be obtained, which will seriously hinder the application of supervised learning. Therefore, 
deep learning without fully sampled data is indispensable.

Main text:  In this review, we first introduce the forward model of MRI as a classic inverse problem, and briefly discuss 
the connection of traditional iterative methods to deep learning. Next, we will explain how to train reconstruction 
network without fully sampled data from the perspective of obtaining prior information.

Conclusion:  Although the reviewed methods are used for MRI reconstruction, they can also be extended to other 
areas where ground-truth is not available. Furthermore, we may anticipate that the combination of traditional meth-
ods and deep learning will produce better reconstruction results.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Magnetic resonance imaging (MRI) plays an important 
role in clinical medicine, and it can visualize human 
organs and tissues to help follow-up diagnosis. However, 
MRI has always faced the challenge of long scan time. 
Before the advent of deep learning, two common meth-
ods were used to accelerate MRI, one was compressed 
sensing (CS) utilizing image compressibility, and another 
was parallel imaging using redundant information 
between coils [1–3]. Although these methods have made 
certain achievements, it still faces the challenges of long 
iteration time and low acceleration rate.

Recently, deep learning has become a method for 
accelerating MRI. Compared with traditional methods, 
it not only improves the quality of reconstructed images 

but has the advantages of real-time imaging. The qual-
ity of images is measured comprehensively by the peak 
signal-to-noise ratio (PSNR) and mean structure simi-
larity index measure (MSSIM). Higher PSNR means less 
noise and Higher MSSIM entail better structure similar-
ity with the ground truth. Meanwhile, real-time imaging 
is important for some clinic applications, for example, 
deep learning can achieve real-time adaptive magnetic 
resonance imaging (MRI)-guided radiotherapy by achiev-
ing higher acceleration factors to reduce total delays 
[4] and provide a powerful diagnostic tool for dynamic 
assessment of wrist function [5]. However, most of them 
require a large amount of data to perform network learn-
ing in a supervised learning manner.

Traditional optimization methods and deep learning in 
a supervised manner have done a lot of work and related 
reviews can be found in [6, 7]. Due to physiological con-
straints such as organ motion or physical constraints 
such as signal decay, it is difficult, impractical and impos-
sible to obtain fully sampled data. Some researchers 
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try to utilize transfer learning to solve this problem [8], 
while they still require a small number of fully sampled 
data to adjust the pre-trained network. Hence, how to 
perform network learning and image reconstruction in 
the absence of fully sampled data is an active research 
topic. Here, the main related methods in deep learning-
based MRI reconstruction without fully sampled data are 
reviewed.

The remainder of this paper is organized as follows. 
First, we give a brief overview of the traditional recon-
struction model, meanwhile, some reconstruction algo-
rithms involved in the following review are roughly 
discussed. Then deep learning model for MRI recon-
struction is illustrated in a supervised manner. Next, 
we review how to train a reconstruction network with-
out fully sampled data from the perspective of obtaining 
prior information. Finally, we emphasize the necessity 
of deep learning reconstruction without fully sampled 
data and the current challenges and look forward to the 
future.

Traditional methods for MRI reconstruction
Reconstruction model
Reconstructing a high-quality image from under-sam-
pling data is a typical inverse problem. A multi-coil imag-
ing model can be expressed as follows,

where x ∈ C
N is the image to be reconstructed, y ∈ C

M 
is the noisy measured data (M < N ) , η is the noise, and A 
denotes a measurement operator consisting of a sampling 
matrix U ∈ R

M×N , Fourier transform operator F and 
the sensitivity map matrix Si for the ith coil. A common 
reconstruction model is to add a regularization term to 
constrain its solution space,

where ||y − Ax||22 ensures consistency with the meas-
ured data, ℜ(x) is a regularization item, and � is a trade-
off between the data consistency and the regularization 
terms. In most cases, the difference lies in whether it is 
single-channel reconstruction or multi-channel [1–3] 
reconstruction. Meanwhile, multiple regularization items 
can be chosen such as 2D wavelet [9], total variation 
(TV) [10], dictionary [11], 3D wavelet [12], 3D k-t sparse, 
3D low-rank (k-t SLR) [13]. Some methods are often used 
to iteratively solve the above optimization problems [6].

Sparsity or low-rankness constraints are often used as 
priors to reduce the artefacts of the reconstruction image 
when the acceleration rate is high. Lustig et  al. [14, 15] 
firstly applied compressed sensing to MRI reconstruction 

(1)y = Ax + η with Ai=UFSi,

(2)arg min
x

1

2
||y − Ax||22 + �ℜ(x),

and achieved reliable results. Afterwards, researchers 
found that the key to MRI reconstruction based on com-
pressed sensing lies in the design of the sparse domain, 
which mainly includes pre-constructed [9, 14–18] or 
adaptive [12, 19–21] basis and dictionary [11, 22, 23]. 
Besides, low-rankness methods are mainly used for 
dynamic and high-dimensional imaging by exploring the 
relationship between multiple images [24]. The struc-
tured low-rankness of k-space is discovered and used 
for reconstruction [25]. Meanwhile, the low-rankness of 
the structured matrix is used to jointly reconstruct the 
image with other aspects, including transform-domain 
weighted k-space [26–29] and slowly varying image 
phases [30, 31]. Although good achievements have been 
achieved, traditional optimization reconstruction meth-
ods complete iterations with more time.

Optimization algorithm
Practical and effective optimization algorithms are essen-
tial. A large number of algorithms have been studied to 
solve various optimization problems. Deep learning net-
works and optimization iterative reconstruction algo-
rithms still have a certain connection, thus some of them 
will be reviewed. Here, we only briefly introduce the 
algorithms that will be involved in the review, including 
variable-splitting with the quadratic penalty (VSQP) [32], 
proximal gradient descent (PGD) [33], iterative shrink-
age-thresholding algorithm (ISTA) [34], alternate direc-
tions method of multipliers (ADMM) [35].

VSQP
We use variable-splitting with the quadratic penalty 
(VSQP) for Eq. (2), the formulation is as follow,

where zi is the auxiliary intermediate variable, xi is the 
image to be reconstructed in the ith iteration, and µ
,proxℜ(·) is the secondary penalty parameter and prox-
imity operator respectively. In a deep network, this algo-
rithm can be unrolled for a fixed number of iterations 
as network architecture, Eq.  (3) is mainly related to the 
choice of priors, and can be interpreted as a denoising 
operation [50], which is executed in the manner of a neu-
ral network. Equation (4) depends on the selection of the 
forward model and corresponds to the data-consistency 
(DC) layer in the network, which is usually solved by

(3)
zi = arg min

z
µ||xi−1 − z||22 +ℜ(z)

= proxℜ(x
i−1),

(4)xi = arg min
x

1

2
||y − Ax||22 + µ||x − zi||22,
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where ·H denotes conjugate transpose, Eq.  (5) can be 
updated by using a conjugate gradient (CG) [36] to avoid 
the matrix inversion process and cope with multi-coil 
reconstruction scenarios.

PGD
In VSQP, if the following formula is used to update xi 
instead of Eq. (4), the proximal gradient descent (PGD) is 
formulated as.

where ρ is a gradient descent step size. Since the simplest 
gradient descent is used to update, it often requires more 
iterations to achieve better results.

ISTA
As discussed above, both VSQP and PGD use a network 
to directly learn the approximation mapping for Eq.  (3). 
Here, an iterative shrinkage-thresholding algorithm 
(ISTA) is used to guide the completion of Eq.  (3). As 
well known, ISTA comes from solving l1 norm problems; 
however, magnetic resonance images tend to be sparse 
in a certain domain rather than self-sparse, hence there 
is no simple closed-form solution. To explain in more 
detail, we use the following substitution in Eq. (2).

we can get the final solution by alternately iterating the 
following sub-problem and equation Eq. (6).

where � represents a tight frame, Ŵκ(x) denotes shrink-
age operator such that

when ISTA meets deep learning, a nonlinear transform 
operator �(x) is used here instead of � and �̃(xi−1) is 
an inverse operator of �(xi−1) , meanwhile, �̃(xi−1) and 
�(xi−1) are implemented with a neural network respec-
tively, κ is a new parameter that includes ρ . More details 
can be acquired in [37]. Moreover, when tight frame 
sparsity is enforced, Liu et  al.[17] proposed a  projected 
iterative soft-thresholding algorithm (pFISTA) to address 
the problem that ISTA can not be directly applied to 
MRI reconstruction, meanwhile, Zhang et al. [38]proved 
the convergence of pFISTA applied to parallel imaging. 
Subsequently, Lu et al. [39] constructed pFISTA-SENSE-
ResNet network based on pFISTA and achieved better 

(5)(AHA + µI)xi = (AHy + µzi),

(6)xi = zi + ρAT (y − Azi),

(7)ℜ(x) = �||�x||1,

(8)
zi = �

Hproxρℜ(�xi−1)

= �̃(xi−1)Ŵκℜ(�(x
i−1)),

(9)Ŵκ(x) = sign(x) ·max{|x| − κ , 0},

results  compared with traditional parallel imaging in 
terms of MSSIM and PSNR.

ADMM
For formula Eq.  (2), we can make the following Aug-
mented Lagrangian function by utilizing a new variable

where u and ν denote Lagrangian multiplier and penalty 
parameter, respectively. Equation  (10) can be solved by 
three alternate iteration sub-problems. For simplicity, we 
do the following substitutions:

then the alternate iteration subproblem is as follows:

Alternate directions method of multipliers (ADMM) 
can be combined with TV [40] and dictionary learning 
[11] to complete MRI reconstruction together. When 
the ADMM algorithm is expanded into a network, dif-
ferent network versions can be constructed according to 
the learning situation of the network, for instance, image 
transformation has been replaced by the network for 
ADMM-net-I [41], ADMM-net-II [41] also learns data 
consistency except for image transformation.

Deep learning with fully sampled k‑space data
In the past few years, deep learning has achieved out-
standing performance in the medical field, including 
biological magnetic resonance spectroscopy [42–46] and 
accelerated MRI [36, 39, 47–52]. MRI reconstruction 
based on deep learning can be roughly divided into two 
categories, data-driven and model-driven. The former 
uses the redundant information in the original input to 
learn the potential mapping relationship from input to 
output, including learning the mapping from zero-filed 
to artefact-free images [47] and the interpolation rules of 
k-space [49, 50].

For the sake of allowing the network to exploit the 
information of the imaging system, the researchers 
proposed physical model-driven deep learning meth-
ods [36, 39, 51, 52]. The network uses a fixed num-
ber of iterations to unroll the traditional optimization 
iterative algorithm, which not only achieves better 
reconstruction results but makes the network more 

(10)
max
u

min
x,v

1

2
||y − Ax||22 +ℜ(v)+

ν

2
||x − v + u||22,

(11)
fν(x, v,u) =

1

2
||y − Ax||22 +ℜ(v)+

ν

2
||x − v + u||22,

(12)





x ← min
x

fν(x, v,u)

v ← min
v

fν(x, v,u)

u ← u + x − v

.
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interpretable. When there are a large number of train-
ing sample pairs, the supervised reconstruction can be 
expressed as follows,

where xiref  is the reference image of ith subject, L(·, ·) is 
the loss function between the network output image and 
the reference image, and N is the number of fully sam-
pled datasets in the training database. Let f (yi,Ai, θ) 
denotes output image of network for under-sampled 
k-space data yi and measurement operator Ai of ith sub-
ject, where the network is parameterized by θ . Equa-
tion  (13) can be implemented using stochastic gradient 
descent (SGD) [53], whose basic form is

where ρk is the gradient descent size. According to actual 
needs, it can change with the number of iterations, or 
be a constant. Due to the slow convergence of the basic 
SGD, researchers use other variants of SGD to speed up 
the convergence of the algorithm and avoid convergence 
to the saddle point [54–56]. Furthermore, unrolled net-
work based on the traditional optimization algorithm is 
often used to improve the interpretability of the network 
and reconstruction quality [36, 39, 57, 58]. A comprehen-
sive review of model-driven MRI deep learning recon-
struction can be found in [7].

(13)arg min
θ

1

N

N∑

i=1

L(xiref , f (y
i,Ai, θ)),

(14)θk+1 = θk − ρk 1

N

N∑

i=1

∇L(xiref , f (y
i,Ai, θ)),

Deep learning without fully sampled k‑space data
As discussed above, a network in a supervised manner 
can learn maps to complement the missing informa-
tion in the input from fully sampled data. However, for 
the scenario without fully sampled data, it is difficult to 
find the optimal solution from infinite latent solutions 
without other information. For traditional optimization 
algorithms, the regularization term is usually manually 
pre-defined to obtain the optimal solution by compress-
ing the solution space. Hence, how to better discover 
effective prior information is very important for deep 
learning without fully sampled k-space data, the flow-
chart is shown in Fig. 1.

Next, we will show the MRI reconstruction process in 
a deep learning manner from the perspective of a prior 
acquisition.

Deep image prior
The experiment in [59] showed that only a generation 
network can still achieve good results in the absence of 
any other reference data, which illustrate that the con-
volutional neural network can replace the regularization 
term in Eq. (2) by capturing the low-level image implicit 
prior.

Yazdanpanah et  al. [60] and Senouf et  al. [61] apply 
this idea to MRI reconstruction, only use the zero-
filled image as the input of the network, and then itera-
tively update the network parameters to approximate 
the k-space of the output image to the under-sampled 
k-space data. This idea was further extended to dynamic 
MRI by Jin et  al. [62]. However, there are also obvious 
shortcomings,  since  it required well-designed network 

Fig. 1  Flowchart of deep learning for MRI reconstruction with fully sampled data (a) and without fully sampled data (b). The difference between 
(a) and (b) is that (a) can train the network in a supervised manner. The network takes undersampled data and other prior as inputs and update 
parameters by backpropagation algorithms such as SGD and its variation. In reconstructing phase, the trained network can reconstruct high-quality 
images from the input
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architectures and was easy to overfit to noise with the 
iteration gradually approaches the target as the optimi-
zation function is based on lossy data. Hence the regu-
larization term was introduced to alleviate this situation 
[63]. Meanwhile, many works illustrate that unroll net-
work based on the physical model can improve the inter-
pretability of the network and reconstruction quality, 
and some of these traditional algorithms are briefly intro-
duced in "Traditional methods for MRI reconstruction" 
section.

A. Wang et  al. [64] proposed to combine a VQSP-
based iterative network (as depicted in Fig.  2) with the 
high robustness of the classic iterative algorithm. The 
loss function adds a regularization term based on [60] as 
follows,

where Iθ (yi) is an output of the network, the ℜ(·) is pre-
defined such as TV. Although the addition of the ℜ(·) can 
ameliorate the situation in [60] that is easy to overfit to 
noise, it will encourage the solution to approach the char-
acteristics of the pre-defined regularization term. The 
experimental performance revealed that the model in 
[64] was more robust than the supervised learning with-
out using the above loss function, and had a better recon-
struction utility compared with the classical method 
using the same loss function.

(15)L(y, θ) =
1

N

N∑

i=1

[||AIθ (yi)− yi||
2
2 +ℜ(Iθ (yi))],

Self‑partition k‑space data
Yaman et al. [32] proposed to divide the measured under-
sampling space � into two disjoint subsets satisfying 
� = � ∪� to train VSQP -based unrolled reconstruc-
tion network, where � was used as the network input 
for training and � was used to calculate the loss func-
tion, which could be called self-supervised learning via 
data under-sampling (SSDU). The experimental results 
showed that at a certain moderately acceleration rate 
the mentioned method can achieve comparable perfor-
mance to supervised learning with fully sampled data 
and be better than traditional compressed sensing and 
parallel imaging. Since the under-sampled data needs to 
be divided, the information provided to the network for 
learning is further reduced, which will result in a poor 
network reconstruction performance at a high accelera-
tion time. Thereby, Yaman et al. [65] further proposed a 
multi-mask method increasing the use of under-sampled 
data to improve the quality of reconstruction at higher 
acceleration rates. Here, the under-sampling data was 
divided into multiple disjoint subsets � = �j ∪�j for 
j = 1, …, K denoting the number of partitions for each 
scan. We can visualize the process through Fig.  3. The 
result illustrated that the multi-mask method outper-
forms SSDU at high acceleration rates. Even so, since the 
essence that partition will decrease information to the 
network can not be changed, acceleration rates are still 
limited. Furthermore, Hosseini et  al. [66] tried to fine-
tune the pre-trained reconstruction network in a scan-
specific manner by using SSDU to reduce the risks of 
generalization to rare pathological conditions.

Fig. 2  Unrolled network frame for VSQP. Here, each block consists of a regularization R and a data consistency (DC), which correspond to Eq. (3) and 
Eq. (4) respectively in VSQP
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k‑space Information complement each other
The lack of fully sampled data motivates to study how to 
use the information available in lossy images [67]. The 
key problem that we can not use supervised learning for 
network training is that we do not have missing informa-
tion as a label in each sample.

Inspired by Noise2Noise (N2N) [67], the artefact-con-
taminated dataset obtained by sampling the same object 
multiple times will supplement the information missing 
in each sample, which enables the training of the imag-
ing priors. However, sampling multiple times for the 
same object violates the original intention of accelerating 
MRI reconstruction and not requiring fully sampled data, 
hence it has a little restriction on application scenarios.

Different body parts and regions of interest have 
unique complications, such as the liver that needs to 
hold the breath for imaging and cardiac that produce 
motion. Thereby, specific deep learning models need to 
be adapted for specific tasks [68, 69]. Gan et al. [70] use 
the middle adjacent layers having the most relevant brain 
regions in each object from open dataset OASIS-3 [71] to 
simulate multiple sampling of the same object. While the 
training data comes from the different breathing phases 
within the same slice of the liver in [72], which has obvi-
ous shortcomings for patients who do not have periodic 

breathing. Similarly, for organs such as cardiac that pro-
duce motion, Ke et al. [73] used a time-interleaved acqui-
sition scheme to build a series of fully encoded data as 
reference images for network training by merging the 
k-space of several adjacent frames along the time dimen-
sion. The remaining part will explain more details.

Gan et al. [70] proposed to train two networks simul-
taneously, one was used for reconstruction by utiliz-
ing information supplement between different samples, 
and another to register the image as the object may have 
moved in the actual scanning process. The experimen-
tal results showed that the method was superior to the 
unregistered Noise2Noise method and the traditional 
total variation (TV) method in terms of sharpness, con-
trast and de-artefacts.

Additionally, experiments have shown that convert-
ing advanced denoising devices into regularization items 
can achieve good results [63, 74, 75], regularization by 
denoising (RED) [74] and the plug-and-play-prior (PnP) 
[76] are two common skills. Meanwhile, the deep net-
work can be flexible to extract useful information from 
the data set compared with handcrafted prior. Hence Liu 
et al. [72] proposed to pre-train a de-artefact network as 
imaging prior through information complement between 
under-sampled data, the regularization function used 

Fig. 3  Image reconstruction with self-partition undersampled k-space data. Acquired undersampled k-space data � will be divided into two 
subsets satisfying � = �j ∪�j before training network, where j = 1, . . . , K denoting the number of partitions for each scan, � and � is used as 
input for training and to calculate the loss function separately. The network is unrolled based on the VSQP algorithm. This figure is reproduced 
following Fig. 1 in Ref. [65]
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the basic framework of RED, where the denoiser was 
replaced by the pre-train network Iθ (x) in the following 
form.

where τ is a regularization parameter. Bring Eq.  (16) 
into Eq.  (2), then iteratively update x by using the sim-
plest gradient descent algorithm for Eq.  (2). Due to the 
use of data fidelity information, compared to the results 
obtained directly through Iθ (x) , the proposed method 
reconstruction results on liver data were better and out-
performed traditional iterative algorithms, such as k-t 
SLR. Moreover, we can use more advanced traditional 

(16)ℜ(x) =
τ

2
xT (x − Iθ (x))

iterative algorithms to update x such as ADMM and so 
on.

In [73], Ke et  al. averaged all acquired frames to 
improve the signal-to-noise ratio (SNR) and relieve 
memory pressure. It should be noted that the merge 
operation only occurs in the training sample synthesis 
stage, and it is not required in the subsequent testing 
stage. Therefore, the reconstructed image will not result 
in a lower temporal resolution. Concretely, a network 
is established to learn the correlation between the coils 
instead of obtaining through ESPIRIT [77], the physi-
cal model-based ADMM-Net-III [41] was used as the 
reconstruction network. The method structure diagram 
is shown in Fig.  4. The experimental results showed 
that the reconstruction quality was better than conven-
tional reconstruction methods, such as k-t SLR [13], 
L + S [78], KLR [79], etc., and the reconstruction time 

Fig. 4  The structure diagram in [73]. In data preparation, the fully encoded k-space is obtained by k-space integration and averaging of multiple 
frames in a time-interleaved sampling manner, then which is undersampled with a designed sampling mask and performs some operations 
including inverse Fourier transform and coil combination to get input and output data pairs separately. The parallel neural network consists of coil 
reconstruction and coil combination, we can refer to [41] for more details about ADMM-Net-III. This figure is reproduced following Fig. 1 and Fig. 3 in 
Ref. [73]
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was shorter [73]. Nevertheless, as the breathing pattern 
is inconsistent with different people, the generalization 
ability of the model will be affected.

Assuming known probability distribution as prior
Generative Adversarial Networks (GAN) [80] has shown 
strong advantages in unsupervised learning and can esti-
mate the basic data distribution while obtaining higher 
image quality [81, 82]. In principle, the purpose of adver-
sarial training is to approximate, in terms of distances, 
the probability distribution of the label set. Hence, there 
is no need for the ground truth corresponding to the 
input. Nevertheless, the real probability distribution 
between the generated output and the input of the dis-
criminator will directly affect the utility of the final gen-
erator output as both of them approximating when the 
generator and discriminator obtaining equilibrium.

Cole et al. [83] proposed to build an ISTA-based GAN 
network for MRI reconstruction in the absence of fully 
sampled data. The network framework shown in Fig.  5 
is based on the assumption that the randomly under-
sampled k-space y′ has the approximate distribution as 
the initially obtained measured k-space y , where y′ is 
obtained by performing forward measurement operation 
including random undersampled mask on the output of 
the generator. Hence, since the distribution A is known, 
the true underlying distribution of x can be uniquely 
determined y′ [84].

Meanwhile, Wasserstein distance is continuous and 
differentiable compared with Jensen-Shannon to serve 
as the measure of the distance between two probability 
distributions [85], and it is variation WGAN-GP which 

has proven to have the best convergence performance 
[86] was selected as the loss function of the network here. 
Ultimately, the experiment was carried out on dynamic 
contrast-enhanced (DCE) data and knee data, and the 
results showed that the reconstruction quality has com-
peted to supervised counterpart and better than CS.

Besides, experiments have proved that image style 
transfer tasks do not need ground-truth can be finished 
by unpaired training with only adversarial training [87], 
which is based on the assumption that there is a potential 
distribution relationship between unpaired samples and 
try to let the network learn this relationship. Hence, Lei 
et al. [88] suggested 2D images that are easier to obtain 
can be used as training labels for DCE images to train a 
PGD-based GAN network, Sim et  al. incorporate the 
cycle consistent generative adversarial network (cycle-
GAN) [87] and forward physics in MRI using optimal 
driven theory to complete unpaired samples training 
[89]. For this type of method, the degree of joint proba-
bility distribution between unpaired samples will directly 
affect the experimental results. Thereby, the experimental 
results can be predicted to be no better than CS because 
the unpaired samples are completely disjoint in [88].

In addition to the mentioned methods, there are other 
ways to solve the problem of network training without 
fully sampled images. For example, traditional parallel 
compressed sensing imaging can be used as the true label 
for network training [90], but the final reconstruction 
quality of the network will not be significantly better than 
traditional parallel compressed sensing [83].

Fig. 5  Unsupervised GAN learning system. The input and output of the generator is measurement complex-valued k-space data and 
two-dimensional image, then the output of generator performs forward measurement operation including a random undersampled mask to get 
simulation undersampled k-space data, finally, discriminator tries to distinguish between simulation data and measurement data. This figure is 
reproduced following Fig. 1 in Ref. [83]
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Conclusions
In summary, deep learning can complete related tasks 
by learning an implicit mapping relationship. Although 
the learning process cannot be explained in detail, 
many experimental results show that deep learning is 
effective and feasible. In normal conditions, the per-
formance of supervised learning is better than that of 
network learning without labels. But in many scenar-
ios, it is very difficult and infeasible to obtain labels, 
which seriously hinders the application of supervised 
learning, and also highlights the importance of deep 
learning without ground truth. Despite the reviewed 
methods are applied to MRI reconstruction, it can also 
be extended to other areas where it is difficult to obtain 
real data, such as dynamic positron emission tomogra-
phy (PET) [91] or computed tomography (CT) [92].

While deep learning shows strong learning capabili-
ties, it has also been criticized for its poor interpret-
ability. Accordingly, the theoretical research of deep 
learning has become a new hot research direction. 
Researchers try to analyze the effective network struc-
ture from different angles to guide the construction of 
new networks, such as differential equations [93] and 
matrix decomposition [94].

Nevertheless, exploring the effective prior informa-
tion in the lossy data and the inherent characteristics 
of the network is still a direction that needs to be stud-
ied. In addition, an appropriate sampling strategy for a 
specific body part is important for deep learning recon-
struction performance. Typically, fast coronary imaging 
usually uses the spiral under-sampling scheme [95] and 
some studies try to learn sampling strategy and recon-
struction at the same time through the network [96].

Fortunately, inspired by the unfolding network based 
on the physical model. As traditional iterative algo-
rithms and deep learning have their advantages, the 
former is computationally complex but has strong guid-
ance significance, and the latter has the advantages of 
real-time imaging and powerful learning capabilities. 
We may anticipate that the deeper integration of tradi-
tional methods and deep learning, which will not only 
guide the construction of networks to bring more inter-
pretability but  also more importantly, can obtain bet-
ter results. Additionally, information complementarity 
between multi-contrast images may be used as priors to 
participate in reconstruction.
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