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Abstract 

Background:  Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. 
Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), 
have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The pur‑
pose of our study was to compare the objective and subjective image quality of DLR and IR on pediatric abdomen 
and chest CT images.

Methods:  This retrospective study included pediatric body CT images from February 2020 to October 2020, per‑
formed on 51 patients (34 boys and 17 girls; age 1–18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest 
CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical 
iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high 
strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. 
Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale 
(superior, average, suboptimal, and unacceptable). A phantom scan was performed including the dose range of the 
clinical images used in our study, and the noise power spectrum (NPS) was calculated. Quantitative and qualitative 
parameters were compared using repeated-measures analysis of variance (ANOVA) with Bonferroni correction and 
Wilcoxon signed-rank tests.

Results:  DLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When 
compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), 
contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 
105.8%, and 53.1% respectively. The subjective assessment of overall image quality and the noise was also better on 
DLR images (p < 0.001). However, there was no significant difference in artifacts between reconstruction methods. 
From NPS analysis, DLR methods showed a pattern of reducing the magnitude of noise while maintaining the texture.

Conclusion:  Compared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. 
However, artifacts were not improved by DLR, regardless of strength.
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Background
The need for pediatric computed tomography (CT) 
examinations is constantly increasing despite the "as low 
as reasonably achievable" principle and concerns of radi-
ation hazards for children. Pediatric body CT, including 
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in emergency rooms and in tumor patients, is an impor-
tant imaging test in children. With the development of 
technology, efforts to reduce the radiation dose have con-
tinued steadily, with the development and use of iterative 
reconstruction (IR) as a typical example.

Over the past decade, the IR algorithm has been used 
to produce high-resolution images by decreasing image 
noise through the use of computational processing, 
resulting in better image quality with lower radiation 
dose compared with single reconstructed filtered back 
projection (FBP) in adults [1, 2] and children [3–6]. The 
recently developed adaptive statistical iterative recon-
struction-V (ASIR-V) technique provides a short recon-
struction time with better image quality and lowers 
radiation dose than other IR algorithms [7, 8]. However, 
ASIR-V still does not overcome excessive image smooth-
ing and unnatural image appearance. Hybrid IR images 
that blend IR with FBP can be used to decrease this tex-
ture problem, although a trade-off between image noise 
and image texture occurs [9].

Recently, image denoising algorithms using artificial 
neural networks, termed deep learning reconstruc-
tion (DLR), have been applied to CT image reconstruc-
tion to overcome the drawbacks of IR while achieving 
good image quality [10–15]. However, there have been 
a limited number of studies evaluating this technique in 
a small number of children and the technique was only 
evaluated in abdomen CT images [16–18]. The purpose 
of our study was to compare the objective and subjective 
image quality of DLR and IR on pediatric abdomen and 
chest CT images.

Methods
This was a retrospective study approved by the institu-
tional review board at our institution, and the need for 
informed consent was waived.

Study population
We included all consecutive pediatric patients who 
underwent chest or abdomen CT at our institution 
between February 2020 and October 2020 with the same 
CT system (Revolution CT; GE Healthcare), which has 
a routine protocol including DLR. We retrospectively 
reviewed 51 patients. There were 34 boys and 17 girls 
with a mean age of 11.5 ± 4.6  years (range 1–18  years). 
Non-enhanced chest CT (n = 16), contrast-enhanced 
chest CT (n = 12), and contrast-enhanced abdomen CT 
(n = 23) images were included. Height and weight were 
recorded at the time of CT examination and BMI was 
calculated. Body weight group was divided as < 20  kg, 
20–60 kg, and > 60 kg.

Phantom study
In general, signal to noise (SNR) and contrast to noise 
ratio (CNR) are used to measure the amount of noise 
(magnitude) in images. However, the standard deviation 
(SD) used in the SNR and CNR calculations has different 
values depending on the region of interest (ROI) posi-
tion in the human body image with a non-homogeneous 
medium, and SNR and CNR only evaluate the noise mag-
nitude. Noise power spectrum (NPS) is a method that 
can evaluate the magnitude and texture of image noise 
in the spatial frequency domain [19] and it can overcome 
the drawbacks of SD measurement in SNR and CNR cal-
culation. For NPS analysis, we scanned the uniformity 
module of the Catphan 500 phantom (Catphan 500, The 
Phantom Laboratory, NY, USA), and performed three 
scans including the dose level of the patient image used 
in this study. We directly implemented a 3D-based NPS 
based on the method presented by the American Asso-
ciation of Physicists in Medicine (AAPM) [20], and used 
Matlab (Version R2017a, The MathWorks, Inc., MA, 
USA) for this calculation.

Scanning technique and radiation dose measurements
All patients were examined using a 256-slice CT (Revo-
lution CT; GE Healthcare). Peak kilovoltage (kVp) was 
divided in to three groups by weight: 100 kVp for > 40 kg, 
80 kVp for 15–40  kg, and 70 kVp for < 15  kg. An auto-
matic dose modulation technique (Smart mA; GE 
Healthcare) was used with a range of 50–200 mAs. The 
noise index was 33 for abdomen CT and 22 for chest 
CT. Other parameters used to generate images were 
as follows: gantry rotation time, 0.35  s; coverage speed, 
226.79 mm/s; pitch, 0.992:1; and slice thickness, 2.5 mm.

Weight-based IV contrast injection was used with set-
tings of 1.5–2.0 ml/kg with a maximum of 100 ml, using 
300  mg iodine/ml concentration intravenous contrast 
iobitridol (Xenetix; Laboratoires Guerbet). The contrast 
was injected through an upper extremity peripheral 
intravenous line, followed by a saline chaser of 0.5 ml/kg. 
Injection speed was adjusted for a total injection time of 
15 s or less. For contrast-enhanced abdomen CT, a fixed 
time interval of 60  s after contrast injection for portal 
phase without bolus tracking was used. For contrast-
enhanced chest CT, a circular ROI was placed at the 
main pulmonary artery and the CT scan began 4 s after 
the threshold attenuation of 100 Hounsfield units (HU) 
was reached.

Four axial reconstructions were generated for each 
patient with a 2.5  mm slice thickness and 2.5  mm slice 
interval according to the standard algorithm: 50% ASIR-
V, 100% ASIR-V, medium- and high-strength DLR (True-
Fidelity; GE Healthcare). We set the blending factors to 



Page 3 of 11Yoon et al. BMC Med Imaging          (2021) 21:146 	

50% and 100% according to previous experience [3, 4]. 
DLR provides three selectable reconstruction strength 
levels (low, medium, and high) to control the amount of 
noise reduction with a standard reconstruction kernel. 
We chose medium and high based on our preliminary 
experience. TrueFidelity is the first clinically available 
deep learning-based CT reconstruction technique which 
is based on deep neural network trained with low-dose 
raw CT projection data. The ground truth data used to 
train the algorithm were filtered back projection CT 
images resulting from ideal data acquisition conditions, 
both from phantoms and patients in a clinical setting. 
The output is a reconstructed image that appears as if 
it had been reconstructed from high-dose raw CT data. 
However, the details about the network architecture and 
the training process are not publicly available [21].

The CT dose index volume (CTDIvol, mGy) and dose-
length product (DLP, mGy × cm) of all patients were 
recorded in both CT examinations. CTDIvol was con-
verted to size-specific dose estimates (SSDE) based 
on the American Association of Physicists in Medi-
cine Report 204 [22]. Patient-specific dimensions were 

obtained from axial CT images at the carina on chest CT 
and at the main portal vein on abdomen CT. We used the 
sum of anteroposterior and lateral dimensions to deter-
mine patient effective diameter and conversion factors. 
The following equation was used to calculate the effective 
dose (ED, mSv): ED = DLP × WT (tissue-weighting factor; 
variable according to kVp, organ, and age [23]). Tissue-
weighting factors of less than 80 kVp are unknown, so a 
tissue-weighting factor of 80 kVp was adopted for 70 kVp 
studies.

Quantitative image analysis
Quantitative analysis of axial images was performed by a 
board-certified radiologist with 9 years of experience. The 
mean attenuation (HU) and SD were measured by manu-
ally placing the round ROI (8–10  mm in diameter) using 
a picture archiving and communication system (PACS) 
workstation (Centricity Radiology RA1000; GE Health-
care) in the mediastinal/soft-tissue window setting (win-
dow level, 50 HU; window width, 350 HU). On chest CT 
images, ROIs were placed in lung and paraspinal muscles at 
the level of the carina. On abdomen CT images, ROIs were 

Table 1  Quantitative image analysis of pediatric CT with different reconstruction techniques in comparison with 50% ASIR-V

The p-values < 0.05 were marked as bold

Values are presented as the mean ± standard deviation

ASIR-V 50, 50% adaptive statistical iterative reconstruction-V

ASIR-V 100 100% ASIR-V, DLR-M medium strength deep learning reconstruction, DLR-H, high strength DLR, CNR contrast to noise ratio, SNR signal to noise ratio. Image 
noise is based on standard deviation of paraspinal muscle attenuation

Parameters ASIR-V 50 ASIR-V 100 DLR-M DLR-H

Chest CT without contrast enhancement (n = 16)

Attenuation (HU) lung − 795.9 ± 91.1 − 796.2 ± 94.2 0.872 − 797.6 ± 94.3 0.872 − 796.7 ± 93.9 0.872

paraspinal muscle 56.1 ± 11.1 54.6 ± 12.1 0.552 56.3 ± 10.7 0.552 54.9 ± 9.8 0.552

Noise 21.8 ± 3.7 15.6 ± 10.9 0.159 20.2 ± 3.8 0.455 14.6 ± 2.5  < 0.001
CNR Lung 11.4 ± 3.7 22.9 ± 6.9  < 0.001 25.8 ± 13.3  < 0.001 28.4 ± 11.4  < 0.001
SNR Lung 10.7 ± 3.5 21.4 ± 6.4  < 0.001 24.1 ± 12.5  < 0.001 26.6 ± 10.8  < 0.001
Chest CT with contrast enhancement (n = 12)

Attenuation (HU) Lung − 718.9 ± 139.4 − 718.7 ± 144.0 0.989 − 720.5 ± 145.4 0.989 − 719.1 ± 142.8 0.989

Paraspinal muscle 65.0 ± 8.5 64.6 ± 5.8 0.425 64.3 ± 5.2 0.425 62.6 ± 6.8 0.425

Noise 24.5 ± 6.1 12.6 ± 3.8  < 0.001 21.3 ± 4.9 0.172 14.8 ± 4.7  < 0.001
CNR Lung 10.4 ± 4.0 17.8 ± 8.1 0.010 20.0 ± 6.9 0.001 21.4 ± 8.6  < 0.001
SNR Lung 9.6 ± 3.7 16.4 ± 7.6 0.011 18.4 ± 6.6 0.001 19.8 ± 8.1  < 0.001
Abdomen CT with contrast enhancement (n = 23)

Attenuation (HU) Liver 131.4 ± 28.4 131.7 ± 28.7 0.369 125.9 ± 39.1 0.369 132.6 ± 28.6 0.369

Aorta 185.7 ± 45.2 184.9 ± 45.9 1.000 185.3 ± 45.1 0.227 187.6 ± 45.4 0.085

Paraspinal muscle 71.2 ± 8.4 71.3 ± 6.6 1.000 72.7 ± 6.0 0.535 71.1 ± 6.2 1.000

Noise 19.9 ± 3.7 11.1 ± 3.6  < 0.001 16.3 ± 3.1 0.002 12.2 ± 2.4  < 0.001
CNR Liver 3.2 ± 1.7 5.3 ± 3.0  < 0.001 3.2 ± 2.4 1.000 4.9 ± 2.5  < 0.001

Aorta 5.3 ± 2.2 9.5 ± 4.3  < 0.001 5.8 ± 1.9 0.012 8.0 ± 2.9  < 0.001
SNR Liver 6.8 ± 2.1 11.5 ± 3.9  < 0.001 7.6 ± 2.7 0.583 10.7 ± 2.9  < 0.001

Aorta 8.5 ± 2.4 15.6 ± 5.1  < 0.001 9.7 ± 2.0 0.002 13.0 ± 3.2  < 0.001



Page 4 of 11Yoon et al. BMC Med Imaging          (2021) 21:146 

placed in liver, aorta, and paraspinal muscles at the level 
of the main portal vein on axial images. To obtain reliable 
measurements for the areas, each ROI was positioned to 
encompass the homogeneous portion and did not include 
surrounding structures or vessels. Image noise was defined 
as the SD of the pixel values obtained from the paraspinal 
muscle. Both contrast- and signal-to-noise ratios (CNR and 
SNR) were defined as CNR = |HUobject − HUmuscle|/SDnoise 
and SNR = HUobject/SDnoise [24]. Also, we calculated the 
NPS peak (HU2  mm2) and NPS average spatial frequency 
(mm−1) from each NPS curve measured using phantom. 
The NPS peak shows the magnitude of the noise, and the 
NPS average shows the texture of the noise.

Qualitative image analysis
CT images were independently reviewed by two board-
certified pediatric radiologists with 17 and 9  years of 

experience who were blinded to the clinical findings and 
the CT reconstruction methods. Images were displayed 
on the PACS in random order and two radiologists inde-
pendently recorded their opinions on overall image qual-
ity, noise, and motion or beam hardening artifacts. A 
four-point scale was used: 4 was superior, 3 was average, 
2 was suboptimal, and 1 was unacceptable.

Statistical analysis
All statistical analyses were performed using MedCalc 
software (version 12.1.0; MedCalc Software). Patient 
demographic characteristics and dose descriptors 
(CTDIvol, DLP, SSDE, and ED) are summarized and pre-
sented as the mean and SD. Repeated measures ANOVA 
with pairwise comparisons and Bonferroni correction 
were performed to compare the reconstructions concern-
ing attenuation, noise, CNR, and SNR. Wilcoxon signed 

Fig. 1  Box-and-whisker plots of quantitative pediatric CT image analyses with different reconstruction techniques. When compared with 50% 
adaptive statistical iterative reconstruction-V (ASIR-V), high strength deep learning reconstruction (DLR-H) was associated with a noise reduction, 
b better contrast to noise ratio (CNR), and c better signal to noise ratio (SNR). ASIR-V 50 50% adaptive statistical iterative reconstruction-V, ASIR-V 100 
100% ASIR-V, DLR-M medium strength deep learning reconstruction, DLR-H high strength DLR, CE contrast-enhanced
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rank and Cohen kappa tests were performed to compare 
qualitative evaluation and to assess interobserver agree-
ment. Agreement between reviewers is expressed as κ val-
ues: κ values of 0–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, 
and greater than 0.81 indicated poor, fair, moderate, good, 
and excellent agreements, respectively. A p-value of less 
than 0.05 was considered statistically significant.

Results
The mean weight and BMI of the patients were 
44.3 ± 18.9  kg and 20.3 ± 5.1  kg/m2, respectively. Two 
patients had metallic hardware within the scanned field 
of view of the CT images. CTDIvol, DLP, SSDE, and ED of 
chest CT images were 1.3 ± 0.5 mGy (range, 0.6–2.5 mGy), 
49.0 ± 26.3  mGy × cm (range 16.5–112.9  mGy × cm), 
2.0 ± 0.6  mGy (range 1.2–3.1  mGy), and 2.2 ± 3.2  mSv 
(range 0.7–16.1  mSv), respectively. CTDIvol, DLP, SSDE, 
and ED of abdomen CT images were 1.5 ± 0.6  mGy 
(range, 0.4–3.2 mGy), 77.9 ± 35.0 mGy × cm (range 12.6–
147.7 mGy × cm), 2.5 ± 0.9 mGy (range, 0.8–4.7 mGy), and 
2.0 ± 0.7 mSv (range, 0.7–3.7 mSv), respectively.

Quantitative image assessment
The results of the quantitative image assessment are sum-
marized in Table 1 and Fig. 1. The mean attenuation val-
ues between reconstructions were equivalent.

When compared with 50% ASIR-V, high strength DLR 
was associated with noise reduction in non-contrast 
chest CT (33.0%), contrast-enhanced chest CT (39.6%), 
and contrast-enhanced abdomen CT (38.7%) with 
increases in CNR at 149.1%, 105.8%, and 53.1%, respec-
tively, and increases in SNR at 148.6%, 106.3%, and 57.4%, 
respectively (Fig. 2, Additional file 1: Fig. S1–S4).

Medium strength DLR also showed decreased noise 
in abdomen CT, but no significant difference was found 
in noise in chest CT when compared with 50% ASIR-
V. Medium strength DLR showed better CNR and SNR 
in both non-contrast and contrast-enhanced chest CT; 
however, there was no significant difference in CNR and 
SNR in abdomen CT.

When compared with 100% ASIR-V, high strength 
DLR showed improved CNR in chest CT images without 
contrast enhancement by 24%. However, there was no 
significant improvement in CNR in both chest CT and 

Fig. 2  Abdomen CT images with contrast enhancement in a 15-year-old boy who had abdominal pain with a BMI of 19.9 kg/m2. a–d Axial 
contrast-enhanced CT images of the same anatomical location show image quality comparison between a standard 50% adaptive statistical 
iterative reconstruction-V (50% ASIR-V), b 100% ASIR-V, c medium-strength deep learning image reconstruction (DLR-M), and d high-strength deep 
learning image reconstruction (DLR-H). Contrast to noise ratio (CNR) in the liver was 2.18 in 50% ASIR-V, 2.84 in 100% ASIR-V, 3.03 in DLR-M, 3.88 in 
DLR-H
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abdomen CT images with contrast enhancement (Addi-
tional file 2: Table S1).

Figure  3 shows the NPS curves according to the 
clinical dose levels and image reconstruction meth-
ods, and the NPS peak and average spatial frequency 
for each NPS curve are summarized in Table  2. In all 
image reconstruction methods, as the dose increased (1 
to 5  mGy), the NPS peak decreased, and the decrease 
rate was similar to about 21%. At the same dose level, 
the NPS peaks of all reconstitution methods decreased 
in the order of 50% ASIR-V, DLR-M, 100% ASIR-V, 
and DLR-H. However, the peaks of 100% ASIR-V and 
DLR-M were almost similar. In all image reconstruction 
methods, the NPS average spatial frequency showed no 
significant difference according to the change in dose. 
However, DLR methods overall showed higher average 
spatial frequency values than ASIR-V, and in particular, 
the average spatial frequency of 100% ASIR-V showed 
the lowest average. Overall, the DLR methods showed a 
pattern of remarkably reducing the magnitude of noise 
while maintaining the texture.

We also analyzed the effects of body weight on 
noise reduction. In DLR group, the paraspinal muscle 
noise reduction was better in patients over 20 kg than 
in patients under 20  kg in both high strength group 
(noise: 16.9 in < 20 kg group vs. 13.3 in 20–60 kg group 
[p = 0.033] and 12.4 in > 60  kg group [p = 0.015]) and 
medium strength group (noise: 23.2 in < 20 kg group vs. 
18.2 in 20–60  kg group [p = 0.028] and 17.7 in > 60  kg 
group [p = 0.014]). However, the noise was not different 
according to the body weight group in ASIR-V images.

Qualitative image assessment
The results of the subjective image quality analyses are 
summarized in Table 3 and Fig. 4. The subjective assess-
ment of overall image quality and noise were also bet-
ter on DLR images both on medium and high strength 
compared to 50% ASIR-V (p < 0.001). The agreement was 
moderate for overall image quality and good for noise in 
high strength DLR (p < 0.001). However, there was poor 

Fig. 3  Noise power spectrum (NPS) results measured by a uniform 
phantom. a–c Each line represents the standard 50% adaptive 
statistical iterative reconstruction-V (50% ASIR-V, blue line), 100% 
ASIR-V (blue dotted line), medium-strength deep learning image 
reconstruction (DLR-M, red line), and high-strength deep learning 
image reconstruction (DLR-H, red dotted lines) at the dose level of 
a 1 mGy, b 3 mGy, and c 5 mGy. The NPS peaks of all reconstitution 
methods decreased in the order of 50% ASIR-V, DLR-M, 100% ASIR-V, 
and DLR-H
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agreement in both image quality and noise in medium 
strength DLR (p < 0.001). There was no significant dif-
ference in motion or beam hardening artifacts between 
reconstruction methods with an excellent interobserver 
agreement (κ = 0.944, p < 0.001) (Fig. 5).

Discussion
Our study found that DLR can improve the quantita-
tive and qualitative image quality in pediatric chest 
and abdomen CT relative to advanced IR technique, 
our standard 50% ASIR-V. High-strength DLR showed 
significant noise reduction with increased CNR and 
SNR. DLR also scored significantly better for image 
quality and noise subjectively. However, motion or 

beam hardening artifacts were not decreased with deep 
learning method, regardless of strength.

There have been efforts to improve image quality of 
low dose CT imaging by decreasing noise and artifacts 
with various reconstruction methods [25–27]. Recently, 
the DLR algorithm has been developed for CT to 
remove image noise. The effect of DLR on image qual-
ity and its potential to lower patient radiation dose is 
being investigated. A phantom study demonstrated that 
DLR had superior noise, magnitude, noise texture, and 
spatial resolution [11]. Another study also showed that 
DLR improves the image quality through noise reduc-
tion and increased CNR without altering the image 
texture on abdomen CT [12]. They demonstrated that 
subjective diagnostic confidence was increased in all 
DLR images when compared with ASIR-V with a 30% 
blending factor, and the higher strength in DLR lowers 
the noise with increased sharpness [13]. The SNR and 
CNR values of high-strength DLR images were higher 
than those of ASIR-V with 80 or 100% blending factor. 
Similar results were also reported in studies with differ-
ent vendor systems and algorithms [10, 14, 15].

DLR has been introduced to pediatric patients in a few 
studies of abdomen CT [16–18]. Lim et al. [16] studied a 
5-year-old patient’s phantom and pediatric abdomen CT 
exams using a vendor-neutral DLR technique and dem-
onstrated similar image quality with a hybrid IR tech-
nique. Brady et al. [17] used contrast-enhanced abdomen 
CT with DLR algorithm showing improved object detect-
ability, reduced image noise, and high radiologist prefer-
ence when compared to conventional IR images. About a 
51% dose reduction using DLR was hypothesized based 
on mathematical extrapolation from this retrospective 
study. Lee et al. [18] used DLR with low iodine concen-
tration abdominal dual-energy CT and showed decreased 
noise in DLR images without difference in CNR, over-
all image quality, and diagnostic quality of lesions. The 
CTDIvol and total iodine administration were lower in 
dual energy CT with DLR. Both studies suggested that 
DLR has the potential to improve image quality and 
potentially reduce patient radiation dose. However, no 

Table 2  Peaks and average spatial frequency of noise power spectrum (NPS) curve

ASIR-V 50 50% adaptive statistical iterative reconstruction-V, ASIR-V 100 100% ASIR-V, DLR-M medium strength deep learning reconstruction, DLR-H high strength DLR

Reconstruction Dose (mGy) ASIR-V 50 ASIR-V 100 DLR-M DLR-H

NPS peak (HU2.mm2) 1 69.30 45.71 46.76 34.47

3 22.03 14.61 15.10 10.03

5 14.86 9.86 10.40 7.20

NPS average spatial frequency 
(mm−1)

1 0.27 0.19 0.30 0.28

3 0.29 0.19 0.32 0.31

5 0.28 0.19 0.32 0.31

Table 3  Distribution of subjective image scoring for different 
reconstruction techniques by two pediatric radiologists

Four-point scale: 4 superior, 3 average, 2 suboptimal, and 1 unacceptable

ASIR-V 50 50% adaptive statistical iterative reconstruction-V, ASIR-V 100 100% 
ASIR-V, DLR-M medium strength deep learning reconstruction, DLR-H high 
strength DLR

Parameter Reviewer 1 Reviewer 2 *Agreement (κ)

Overall image quality

(1/2/3/4)

 ASIR-V 50 0/47/4/0 0/47/4/0 0.728

 ASIR-V 100 0/4/47/0 0/0/51/0 0

 DLR-M 0/0/49/1 0/0/49/1 -0.02

 DLR-H 0/0/38/13 0/0/35/16 0.568

Noise

(1/2/3/4)

 ASIR-V 50 0/47/4/0 0/49/2/0 0.297

 ASIR-V 100 0/8/43/0 0/0/51/0 0

 DLR-M 0/1/48/1 0/0/51/0 0

 DLR-H 0/1/34/16 0/0/33/18 0.62

Artifact

(1/2/3/4)

 ASIR-V 50 0/11/40/0 0/12/39/0 0.944

 ASIR-V 100 0/11/40/0 0/12/39/0 0.944

 DLR-M 0/11/40/0 0/12/39/0 0.94

 DLR-H 0/11/40/0 0/12/39/0 0.944
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study has evaluated the role of DLR in pediatric chest CT 
and the effect of DLR on image artifacts.

Our study shows similar results in noise reduction 
and quality improvement. High strength DLR was asso-
ciated with noise reduction in non-contrast chest CT, 
contrast-enhanced chest CT, and contrast-enhanced 
abdomen CT with an increase in both CNR and SNR. 
The subjective assessment of overall image quality and 
noise were also better on DLR images both on medium 
and high strength DLR compared to 50% ASIR-V. Our 
study showed no significant difference in attenuation 
values of the organs in pediatric chest and abdomen. 
This result is comparable with a previous report with an 
adult population [12]. Therefore, we can use CT images 
with DLR for attenuation analyses such as emphysema 
index measurements.

Previous studies have focused on noise reduction and 
image quality improvement of DLR with little focus 
on artifacts. DLR scored better on artifacts than 30% 
ASIR-V images in a previous study [12]. Another study 
reported no DLR related image artifacts [14]. A prior 
study has reported more frequent distortion artifacts 

with DLR [28]. In our study, there was no significant 
difference in artifacts between reconstruction methods 
with excellent inter-observer agreement on artifacts. 
Mainly these artifacts were beam hardening artifacts 
from metal or dense contrast media in vessels. The 
motion and beam hardening artifact reduction were 
not significant by TrueFidelity in our study. This may be 
due to a lack of learning about these artifacts and may 
suggest that TrueFidelity is weak in this perspective. 
Future learning about these artifacts may be required 
for better image reconstruction. However, unlike pre-
vious study, there was no significant distortion arti-
facts in our study. Depending on the purpose and input 
data of the DLR technology, the role of DLR may vary. 
It would be better if DLR algorithm is developed as an 
open source so that it can be used in various equipment 
and undergo further development by other researchers.

Our study has limitations. First, the sample size of our 
retrospective study was small, and we could not evalu-
ate lesion detectability or diagnostic accuracy. Second, 
the data is from a designated vendor’s DLR algorithm. 
Since it was hard to get the projection data from the 

Fig. 4  Qualitative image analysis of chest and abdomen CT from different reconstruction techniques. The four-point scale was used as follows; 
superior (4), average (3), suboptimal (2), unacceptable (1). Deep learning reconstruction (DLR) showed better overall image quality and noise 
compared with 50% adaptive statistical iterative reconstruction-V (ASIR-V); however, artifacts were not different between different reconstruction 
techniques. ASIR-V 50 50% adaptive statistical iterative reconstruction-V, ASIR-V 100 100% ASIR-V, DLR-M medium strength deep learning 
reconstruction, DLR-H high strength DLR
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Fig. 5  Chest CT images with mediastinal window of a 1-year-old girl who had a cough. a–d Axial contrast-enhanced CT images with a standard 
50% adaptive statistical iterative reconstruction-V (50% ASIR-V), b 100% ASIR-V, c medium-strength deep learning image reconstruction (DLR-M), 
and d high-strength deep learning image reconstruction (DLR-H) show no difference in beam hardening artifacts due to dense contrast material 
in the superior vena cava (arrow) and motion artifacts in the bilateral ribs (arrow heads), resulting in lower reader scores for artifacts. Both readers 
thought the image was suboptimal. Contrast to noise ratio (CNR) of the lung was 4.8 in 50% ASIR-V, 12.0 in 100% ASIR-V, 13.0 in DLR-M, and 15.0 in 
DLR-H



Page 10 of 11Yoon et al. BMC Med Imaging          (2021) 21:146 

vendors directly, we could not compare other DLR, 
such as the image-domain-based method. Third, the 
number of patients with artifacts was not the majority 
of the patient population. Fourth, from the retrospec-
tive nature of our study, we could not compare images 
between FBP and DLR. Fifth, our study cannot sug-
gest an estimated radiation dose reduction using DLR. 
Additional prospective studies with more patients are 
needed.

Conclusions
Compared with 50% ASIR-V, DLR improved the CT 
evaluation of pediatric chest and abdomen images with 
significant noise reduction. However, motion or beam 
hardening artifacts were not decreased by DLR, regard-
less of strength.
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