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Abstract

Background: Automated language analysis of radiology reports using natural language processing (NLP) can
provide valuable information on patients'health and disease. With its rapid development, NLP studies should have
transparent methodology to allow comparison of approaches and reproducibility. This systematic review aims to sum-
marise the characteristics and reporting quality of studies applying NLP to radiology reports.

Methods: We searched Google Scholar for studies published in English that applied NLP to radiology reports of any
imaging modality between January 2015 and October 2019. At least two reviewers independently performed screen-
ing and completed data extraction. We specified 15 criteria relating to data source, datasets, ground truth, outcomes,
and reproducibility for quality assessment. The primary NLP performance measures were precision, recall and F1 score.

Results: Of the 4,836 records retrieved, we included 164 studies that used NLP on radiology reports. The commonest
clinical applications of NLP were disease information or classification (28%) and diagnostic surveillance (27.4%). Most
studies used English radiology reports (86%). Reports from mixed imaging modalities were used in 28% of the studies.
Oncology (24%) was the most frequent disease area. Most studies had dataset size > 200 (85.4%) but the proportion of
studies that described their annotated, training, validation, and test set were 67.1%, 63.4%, 45.7%, and 67.7% respec-
tively. About half of the studies reported precision (48.8%) and recall (53.7%). Few studies reported external validation
performed (10.8%), data availability (8.5%) and code availability (9.1%). There was no pattern of performance associ-
ated with the overall reporting quality.

Conclusions: There is a range of potential clinical applications for NLP of radiology reports in health services and
research. However, we found suboptimal reporting quality that precludes comparison, reproducibility, and replication.
Our results support the need for development of reporting standards specific to clinical NLP studies.
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Background

Medical imaging reports, written by radiologists, contain

rich data about patients’ health and disease which are
*Correspondence: emma.davidson@ed.ac.uk inel di d health dmi
"Emma M. Davidson and Michael T. C. Poon: Joint first authors %‘lot rPUtlne y captured In structure ealthcare admin-
'Beatrice Alex and William Whiteley: Joint senior authors istrative datasets. Ready access to these data would be
! Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s of great benefit for research and health-care quality

Building, Little France, Edinburgh EH16 4TJ, Scotland, UK . t ticularly t . the health of 1
Full list of author information is available at the end of the article lmprovement, particufarly to examine the hea ol large

©The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.



http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-021-00671-8&domain=pdf

Davidson et al. BMC Med Imaging (2021) 21:142

populations. However, this resource is currently underu-
tilised because manual extraction of data from free-text
imaging reports is time-consuming. Natural language
processing (NLP) is an automated technique used to ana-
lyse language (often in free-text) and convert it to a struc-
tured format that is easier to use; thus, NLP provides the
means to retrieve granular information from imaging
reports [1], by-passing the need for manual extraction,
and simplifies research with these data.

Systematic review of the clinical NLP literature is
important to identify promising developments, poten-
tial harms, and to help avoid duplication of effort; how-
ever, research synthesis in this area is complicated by a
lack of consistency in study methods and reporting [2].
There are no clear reporting guidelines for clinical NLP
studies, perhaps because NLP is used in so many differ-
ent study designs. Methods and reporting guidance for
clinical trials using machine learning (ML) [3-5] have
recently been published, and extended guidelines are also
being developed for the reporting of predictive ML mod-
els [6, 7]. Structured reporting protocols have also been
suggested for NLP in clinical outcomes research [8] and
also codes of practice for the use of Artificial Intelligence
(AI) in radiology [9]. However, publications which have
evaluated the reporting standards of ML studies [6] and
its sub-field, deep learning (DL) [10], in clinical settings
have shown low reporting standards which make this
research difficult to interpret, replicate, or synthesise.
Whether clinical NLP in general has better reporting is
unclear from existing reviews [11].

In this systematic review, we examine the quality of
reporting of studies that apply clinical NLP to imaging
reports. We chose imaging reports because they are rela-
tively accessible and of small size, with a restricted vocab-
ulary [12], which makes them suitable for NLP. We aimed
to establish the current state of reporting of studies that
apply NLP to imaging reports and to identify NLP-spe-
cific criteria to assist future reporting. An accompany-
ing informatics paper has been written which provides
a more detailed overview of the NLP methods used and
their clinical applications [13].

Methods

We published our review protocol (https://doi.org/10.
17504/protocols.io.bmwhk7b6) [14] and this report
follows the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) [15] guideline.

Search strategy

We designed an automated search of Google Scholar with
"Publish or Perish’ software [16] to identify articles pub-
lished between January 2015 and October 2019, building
on an existing review by Pons et al. [11] which included
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literature published up to October 2014 (details of the
automated search can be found in Additional file 1). Our
search was executed on 27th November 2019 and our
search terms were: ("radiology” OR "radiologist") AND
("natural language” OR "text mining" OR "information
extraction" OR "document classification” OR "word2vec")
NOT patent. We also used a snowballing method to con-
duct a citation search using a list of publications that cite
the Pons et al. review [11] and the articles cited in Pons’
review [11]. The results of these two search approaches
were combined [13].

Study selection

We first ran an automated screening of papers to remove
any duplicates and irrelevant publications. The criteria
used to filter out irrelevant publications were: language is
not English; the word ’patent’ is found in the title or URL;
year of publication before 2015, as our review aimed to
update a previous review by Pons et al. (2016); the words
review’ or ‘overview’ found in the title, or ’this review’
found in the abstract; image keywords found in the title
or abstract with no NLP terminology in the abstract; and
finding either no radiology keywords or no NLP termi-
nology in the title or abstract (more details can be found
in Additional file 1).

Four reviewers (three NLP researchers [DD, AG, HD]
and one epidemiologist [MTCP]) then screened all titles
and abstracts for potentially eligible studies. All papers
that two or more reviewers approved for inclusion pro-
gressed to full paper review, and papers only selected by
one reviewer for inclusion were discussed by these four
reviewers to achieve agreement on inclusion or exclu-
sion. Lastly, eight reviewers (six NLP researchers [AG,
HD, VS, AC, BA, HW] and two epidemiologists [ED
and MP]) carried out the full paper screening according
to the inclusion and exclusion criteria specified below
and resolved any uncertainties by group discussion. All
papers were double reviewed by an NLP researcher.

Inclusion and exclusion criteria

We included studies that applied NLP to radiology
reports of any imaging modality. Our exclusion crite-
ria were: (1) wrong publication type e.g. case reports,
reviews, conference abstracts, comments, or editorials;
(2) research not using radiology reports (e.g. using lab
reports or clinical notes); (3) research using radiology
images only (not using NLP methods); (4) not reporting
any NLP results; (5) not available in full text; (6) dupli-
cates; (7) articles written in a language other than Eng-
lish; (8) published before 2015; and (9) patents. The last
four criteria should have been pre-filtered out by the
automatic screening but we maintained these criteria to
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be consistent and exclude any papers that the filtering
had missed.

Data extraction

The key data extracted were: year of publication, primary
clinical application and primary technical objective, study
period, language of radiology reports, anatomical region,
imaging modality, disease area, size of data set, anno-
tated set size, training set size, validation set size, test set
size, external validation performed, domain expert used,
number of annotators, inter-annotator agreement, NLP
technique(s) used, best reported results (recall, precision
and F1 score), availability of data set, and availability of
code.

Data categorisation

We categorised the primary clinical application of each
study. ‘Clinical application’ was the reported health-
related purpose of the study. We iteratively developed
a classification to represent the literature in our review,
extending an existing categorisation [11], which ulti-
mately included the categories of diagnostic surveillance,
disease information and classification, language discov-
ery and knowledge structure, quality and compliance,
cohort and epidemiology, and technical NLP (Table 1).

Quality assessment

There are no reporting guidelines or risk of bias tools
available specifically for clinical NLP studies. To address
this issue, we specified 15 criteria which we considered
would need to be reported to enable assessment of risk
of bias and assist replication of these studies. We took
account of both existing guidelines for epidemiological
research [17] and also guidance emerging from the clini-
cal NLP community [3-9] when selecting these criteria,
and sought group consensus on items that were generic
measures of quality that would be readily applicable
across the broad selection of methods included under
clinical NLP. These criteria are described in detail in
Table 2 and fall under the five headings of: data source,
datasets, ground truth, outcomes, and reproducibility.
Our choice of criteria may not encompass everything
necessary to assess all NLP studies in radiology. For
example, there may be additional outcomes metrics that
need to be reported (other than precision and recall)
depending on the NLP tasks and clinical applications.
There also may be additional, more specific, measures
that would further assist reproduction and allow com-
parison of the performance of particular types of NLP,
such as hyperparameter selection for ML [18]. However,
as we included a broad remit of research, across ML, DL
and Rule Based systems, we were unable to include such
granular measures specific to any particular method.
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However, our criteria represent core considerations
identified to allow a consistent overview of the quality of
studies across the heterogeneous body of research com-
prising clinical NLP and could be further developed for
specific methods.

Assessment of performance

We did not summarise results quantitatively due to the
anticipated methodological heterogeneity. Our approach
was a narrative synthesis of studies and visual summari-
sation of NLP performance stratified by quality of report-
ing and clinical application categories. We categorised
studies into high and low reporting quality groups by
the median number of qualities achieved. For this analy-
sis, when a study reported precision and recall without
F1 score, we derived the corresponding F1 score for
summarisation.

Results

Study selection and characteristics

Our search identified 4,836 publications of which 274
were potentially eligible. After full eligibility assessment,
we included 164 studies that used NLP on radiology
reports (Fig. 1). Figure 2 presents the number of studies
identified by year and illustrates the breakdown of studies
by both clinical application category and NLP method.
The number of publications increased from 22 in 2015 to
55 in 2019 (up to October 2019). There were more stud-
ies using deep learning techniques more recently (Fig. 2).
Table 1 attributes the studies to their clinical application
categories and Table S1 (in Additional file 1) provides a
detailed description of the study characteristics.

The most common clinical applications of these NLP
studies were disease information or classification (28%)
and diagnostic surveillance (27.4%), followed by language
discovery and knowledge structure (16.5%), quality and
compliance (12.2%) and then research (9.8%). Of the
NLP methods used, rule-based alone (26%) and machine
learning alone (24%) were most frequently applied. Deep
learning methods alone were used in 16 studies (9.8%),
rising from 0 in 2015 to 14 papers (25%) in 2019. More
specifics of the NLP methods and clinical applications
can be found in our accompanying informatics paper
[13]. The majority (86%) of studies used English language
radiology reports, with the other languages reported
including Chinese, Spanish, German, French, Italian,
Portuguese, Polish and Hebrew. The imaging modali-
ties reported were mixed (28%), computerised tomog-
raphy (23%), magnetic resonance imaging (9.8%), X-ray
(4.9%), ultrasound (2.4%), mammography (3%), and other
types (15%). The most frequent disease area was oncol-
ogy (24%) and images of mixed anatomical regions were
most frequent (26.2%), followed by thorax (19.5%) and
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Table 2 Items used to assess the quality of reporting criteria in the current review

Quality heading

Quality criteria

Definition

Data source

Dataset criteria

Ground truth criteria

Outcome criteria

Reproducibility criteria

(1) Sampling
(2) Consistent imaging acquisition

(3) Dataset size
(4) Training dataset

(5) Test dataset
(6) Validation dataset

(7) Annotated dataset
(8) Domain expert for annotation

9) Number of annotators
Inter-annotator agreement
Precision

©)
(10)
an
(12) Recall

(13) External validation

(14) Availability of data
(15) Availability of NLP code

Reported details of the sampling strategy for radiology reports, including whether they are
from consecutive patients

Reported whether radiology reports were from images taken from one imaging machine
or more and, if more, whether these machines were of comparable specification

Reported their dataset size of >200

Reported training data set size—the part of the initial dataset used to develop an NLP
algorithm

Reported test data set size—part of the initial dataset used to evaluate an NLP algorithm

Reported validation data set size—a separate dataset used to evaluate the performance of
an NLP algorithm in a clinical setting (may be internal or external to the initial dataset)

Reported annotated data set size—data which has been marked-up by humans for
ground truth

Reported use of a domain expert for annotation—annotation carried out by a radiologist
or specialist clinician

Reported the number of annotators

Reported the agreement between annotators (if more than one annotator used)
Reported precision (positive predictive value)

Reported recall (sensitivity)

Reported whether the NLP algorithm is tested on external data from another setting (a
separate healthcare system, hospital or institution)

Reported whether their data set is available for use (preferably with link provided in paper)
Reported whether their NLP code is available for use (preferably with link provided in

paper)

head and neck (15.2%). The size of the datasets varied
greatly between studies; eleven studies did not give data
sizes; and others studies reported numbers of sentences,
patients, or mixed data sources rather than numbers of
reports. With these caveats, the median dataset size was
3,032 (IQR 875, 70 000).

Reporting quality of included studies
Reporting of the pre-specified criteria varied across the
included studies and years of publication (Fig. 3a, b). The
median number of qualities achieved was 5. Consistent
image acquisition was the most incompletely reported
aspect of studies: 11 (6.7%) studies included informa-
tion on the number and type of imaging machines used
and just eight of the 11 studies specified that images
were of consistent quality where various sites and imag-
ing machines were used. Other criteria where incomplete
reporting was particularly evident were reporting the
results of external validation, only 15/139 (10.8%) studies;
reporting of study data to make it available for external
use, 14 (8.5%) studies; and the reporting of study code to
make it available for external use, 15 (9.1%) studies.

The method for imaging reports sampling was also
incompletely reported: 71 (43.3%) studies specified
their sampling strategy, and only 33 (46.5%) of these

studies sampled imaging reports consecutively. Most
studies reported the size of their overall data set (93.3%)
and 85.4% had a dataset size exceeding 200. However,
the split of datasets in each study for training, valida-
tion, and test sets was reported only moderately well
(63.4%, 45.7%, and 67.7% respectively). Annotated data-
sets were reported for 110 (67.1%) of the studies. Just
under half of the studies (47.6%) reported the annota-
tor expertise and 70 (42.7%) confirmed it was a domain
expert. The number of annotators was specified in 91
(55.5%) studies and the inter-annotator agreement was
reported for 67 (60.9%) of the 110 studies that used
annotated data sets. We found that 80 (48.8%) and 88
(53.7%) studies, respectively, reported the performance
metrics of precision and recall for their applications.
There was no apparent improvement in reporting on
visual inspection (Fig. 3b).

Study performance

In looking at study performance we also examined the
71 (43%) studies reporting F1 score. In studies report-
ing at least one of the performance measures (preci-
sion, recall and F1 score), there was no clear pattern
of performance associated with quality of reporting or
with stratification by clinical application (Fig. 4).
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Discussion

We conducted a systematic review of the quality
of reporting of studies of NLP in radiology reports
between 2015 and 2019. This review chronologically
updated an existing review by Pons et al., although the
focus of their review was on the clinical applications of
NLP tools, NLP methods, and their performance, and
did not assess quality of reporting. We found increased
research output in the time period of our review,
retrieving 164 relevant publications compared with 67
for the preceding review which searched for all pub-
lications indexed up to October, 2014. In our review,
as anticipated, the use of deep learning methods had
increased, but we found that rule-based and tradi-
tional machine classifiers were still widely used. The

main clinical applications reported in papers remained
broadly similar between the reviews, although we found
more papers that did not specify any health-related
purpose and we categorised these as: ‘“Technical NLP’
and ‘Disease information and classification. Pons et al.
reported that many NLP tools remained at a ‘proof-of-
concept’ stage and our study determined that this prob-
lem persists in the body of literature we retrieved.

The main focus of our work was on the reporting of
clinical NLP studies and we found that this was gener-
ally poor (meaning under half of the included studies
reported the criterion) for eight of our 15 pre-specified
criteria. In particular, the three reproducibility crite-
ria were met by only 15, 14 and 15 studies for exter-
nal validation, availability of data and availability of
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code respectively. Although this is an expanding field,
with a growth in publications, we found that reporting
remained inconsistent and incomplete between 2015
and 2019.

Most studies reported dataset size. However, we found
that more detailed information on data sampling was
often omitted and that had implications for assessing
bias in these studies. For example, not reporting whether
imaging reports were sampled from consecutive patients
and not detailing the demographics of study participants
affected determination of selection bias and impacted on
the generalisability of applications from one population

to another. The dangers of utilising data from unrepre-
sentative populations, particularly to train ML applica-
tions, has been stressed [19, 20] and considerations of
equity and how models may vary across different settings
have begun to be incorporated in existing guidance for
ML [2]. The split of datasets between training, test and
validation sets was also inadequately reported: 45.5%,
40.9% and 31.8% of studies published in 2015 reported
these criteria respectively. However, these dataset cri-
teria did appear to improve over time: 74.5%, 78.2% and
56.4% of studies published in 2019 reported these criteria
respectively. Assessment of information bias was difficult
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because of the lack of details about comparable imaging
machines and details of any annotation, including the
number of annotators and whether they were domain
experts.

Second, as recognised in ML [6] and DL [10] research,
most NLP algorithms were ‘private’ and had not been
replicated by their developers in other settings. It is
therefore uncertain whether these tools are transfer-
able between settings. External validation is difficult,
because obtaining and accessing suitable alternate data-
sets on which to test NLP tools is not easy. There are few
publicly available datasets and those which are avail-
able [21-24] may not be representative of the datasets
researchers want to use or the populations for whom
they are developing their tools. For example, clinical
datasets available from the United States may not trans-
late to another healthcare systems. External validation
of clinical NLP tools is important to establish whether
they can be adopted for more widespread use and clinical
implementation.

Thirdly, external validation can be facilitated by the
sharing of code and data to replicate research, but we
found code was not available from many studies [25].

There are multiple institutional factors, some particular
to healthcare data, which influence disclosure including
privacy considerations, inconsistency in decision-mak-
ing by regulatory bodies, liability concerns due to these
technologies being viewed akin to medical devices, and
lastly concerns over cybersecurity [26]. Additionally,
NLP researchers may not have work capacity to support
the use of their NLP systems when used externally. The
development of bodies to facilitate health data research,
such as Health Data Research UK (HDRUK) promises to
address many of these factors [27], but they may remain
a barrier for some time and, in the interim, encouraging
direct collaboration between clinical NLP researchers
working in similar areas may be the most efficient way
to expedite external validation. There have been active
steps taken by the NLP community towards improving
reproducibility for ML in particular, including the devel-
opment and implementation of reproducibility checklists
specific to ML, and this shift in practice may spread to
encompass other areas of the clinical NLP research com-
munity [28].

Fourth, specifying a clinical application is important
to demonstrate that the tool has meaningful clinical
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relevance, and also because transferability of algorithms
to different clinical tasks is not assured. Volmer et al. [2],
recently proposed 20 questions concerning transparency,
reproducibility, ethics, and effectiveness (TREE) for ML
and Al research and their first question urges researchers
from the inception of a project to stipulate the relevance
of their work to healthcare and patients. This require-
ment is also born out in the CONSORT-AI reporting
guidelines [4]. For our review, we generated six clinical
application categories, extending Pons et al’s existing
framework [11] and disaggregating them into underlying
subcategories, and we discovered that many studies did

not specify a clinical application. Our study taxonomy
may be useful for other researchers wishing to identify
existing work to build on or to identify clinical areas with
gaps that remain unaddressed. In addition, our inclusion
of more disaggregated clinical application subcategories
(Table 1) could potentially facilitate future work to col-
late these applications within ‘like’ categories to examine
their performance in carrying out similar clinical tasks.
Lastly, we summarized the performance of all 164
studies and sought trends according to their qual-
ity of reporting and clinical application. However, no
clear associations emerged. This is likely due to the
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heterogeneity within clinical NLP studies and their con-
textual nature. The best performing methods for a clini-
cal NLP tool are likely determined by the intersection
of multiple factors including clinical application, type of
reports (including modality and indication), the specific
information required (including rarity of conditions),
the need for clinical input, the complexity of the NLP
task being carried out, and the performance parameters
required to be acceptable for clinical implementation and
minimisation of harm.

The implications of our findings for practice are that,
despite a large body of work and the potential advantages
of NLP in clinical settings, advancing these tools to the
stage of widespread implementation is hindered by poor
standards of reporting, particularly relating to external
validation and the sharing of NLP code and data. This
reflects the situation reported for the sub-fields of ML
and Al where systematic review identified that most
studies failed to use or adhere to any existing reporting
guidance [6, 10], and that data and code availability were
lacking [10]. However, a move has begun to pursue trans-
parency and replicability within AI, ML and DL research
[2], which all clinical NLP should follow, including initi-
ating the development of extended reporting guidelines
[3, 4, 7]. Where no extended guidelines exist, we recom-
mend that researchers follow guidelines specific to study
type [29] and also consider reporting the 15 NLP specific
criteria which we have sought in our review.

Our review was strengthened by the large number,
and wide variety, of studies identified. However, the het-
erogeneity of this literature was also a limitation in that
it precluded any meta-analysis of outcomes. Limita-
tions of our review also included having developed our
own quality assessment criteria, due to the lack of avail-
able tools in this field. We acknowledge that there may
be additional criteria that could assist quality assessment
either for specific types of NLP (such as hyperparameter
selection for ML) or more generally; for example, includ-
ing a description of computing infrastructure could also
assist assessment of reproducibility and could be readily
shared [18]. We also did not exclude any studies based on
poor quality. However, we feel that this approach is fitting
for a review where meta-analysis is not undertaken and
where we focus on demonstrating the breadth of work
and assessing reporting quality across the whole body of
work. Utilising an automated search in Google Scholar
may have impeded our search sensitivity, although it
has been shown to have very comprehensive coverage
[30]. Our clinical application categories were also devel-
oped through this review process and there was overlap
for some studies where decisions had to be made by the
reviewers as to their primary application. These decisions
were naturally subjective and studies could be reassigned,
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however decisions were discussed and agreed by at least
two reviewers.

Conclusions and recommendations

Our systematic review of the use of NLP on radiology
reports, for the period 2015-2019, found substantial
growth in research activity, but no clear improvement in
reporting of key data to allow reproducibility and repli-
cation. This impedes synthesis of this research field. In
this paper we provide an overview of the current land-
scape and offer developments in both the categorisation
of clinical applications for NLP on radiology reports and
suggested criteria for inclusion in quality assessment of
this research. This paper complements the limited guid-
ance which has been published to date in relation to Al in
radiology [9], clinical NLP [8], and ML within NLP [2-5]
and we hope that our criteria can contribute to develop-
ments for formally agreed standards specific to clinical
NLP.
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