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Overexpression of Wnt5a promoted 
the protective effect of mesenchymal stem cells 
on Lipopolysaccharide‑induced endothelial cell 
injury via activating PI3K/AKT signaling pathway
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Abstract 

Background  Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/
acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS 
treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects 
on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote 
the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury.

Methods  To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, 
apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using 
qPCR and determined the molecular mechanism using Western blot analysis.

Results  Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture 
of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis 
through the PI3K/AKT pathway.

Conclusions  Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury 
through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs 
in the transplantation therapy for ARDS.
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Introduction
ALI/ARDS is a critical syndrome with diffuse pulmonary 
inflammation and exudation, leading to acute hypoxemic 
respiratory failure [1]. The prevalence of ARDS among 
intensive care unit admissions in 2016 was 10.4%, with 
hospital mortality ranging from 34.9% to 46.1% [2]. Thus, 
developing new therapies is imperative to improve the 
prognosis of ARDS. The classic pathological change in 
ARDS is the alveolar epithelial-endothelial barrier injury 
[3]. Sepsis, which results in diffuse damage to the vascu-
lar endothelium due to systemic inflammation, occurs in 
almost 80% of patients with ARDS [4, 5]. Disruption of 
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endothelial junctions or endothelial cell death increases 
permeability to fluid and protein across the lung 
endothelium, resulting in edema in the lung interstitium 
[6]. Thus, endothelial cell injury is an important link in 
the pathogenesis of ARDS.

MSCs are extracted from bone marrow, fat and umbili-
cal cord, and are widely utilized in cell therapy for inflam-
matory autoimmune diseases and tissue damage repair 
[7]. Increasing studies suggest that MSCs has significant 
therapeutic potential for ALI/ARDS by modulating cru-
cial pathobiological pathways, such as anti-inflammation, 
alveolar-capillary barrier protection, surfactant produc-
tion and apoptosis [8]. Importantly, MSC therapy has 
been confirmed effective for ARDS, including in severe 
COVID-19 patients [9–13]. To overcome the defects of 
MSC therapy, strategies such as genetic modification and 
precondition have been used to optimize MSC therapy 
for ARDS [14]. Our previous study demonstrated that 
pretreatment with ghrelin enhances the therapeutic value 
of MSCs on LPS-induced endothelial cell injury, and this 
is partially attributed to upregulation of Homeobox B4 
(HOXB4) [15, 16]. Other than HOXB4, the transcriptome 
sequencing results also revealed a significant upregula-
tion of Wnt5a in MSCs pretreated with ghrelin [15].

Wnt5a, a secreted glycoprotein, is a member of the 
noncanonical Wnt family [17]. Wnt5a  is abundantly 
expressed in mouse limb mesenchyme and growth plate 
cartilage, and participates in MSCs differentiation [18, 
19]. Upregulating Wnt5a expression will induce the 
osteogenic and chondrogenic differentiation of MSCs 
via different mechanisms [20, 21]. Additionally, previous 
studies have shown that Wnt5a plays a key role in vas-
cular endothelium, Wnt5a deficiency was found to be 
associated with endothelial and vascular dysfunctions 
[22–25]. However, there is limited research on the role of 
Wnt5a in MSC therapy for ALI/ARDS. It remains unclear 
whether the protective effect of MSCs is partially medi-
ated by Wnt5a, and the underlying molecular mechanism 
warrants further investigation. Here, we discovered that 
overexpression of Wnt5a promoted the therapeutic effect 
of MSCs on LPS-induced endothelial cell injury through 
activation of PI3K/AKT signaling.

Materials and methods
Cell culture
C3H10T1/2 (ATCC, Manassas, VA) is a type of mouse 
embryonic MSCs and were cultured in Minimum Essen-
tial Medium Alpha (MEM-α), EA. hy926 endothelial cells 
were cultured in high glucose Dulbecco’s modified Eagle’s 
medium (DMEM). 10% fetal bovine serum (FBS) and 
1% penicillin–streptomycin were added to the medium. 
MSCVector (C3H10T1/2 cells transfected with empty vec-
tor), MSCWnt5a (C3H10T1/2 cells transfected with Wnt5a 

gene) and endothelial cells were cultivated under opti-
mal conditions at 37  °C with 5% CO2. Within a special-
ized co-culture system, MSCVector (1 × 105 cells/mL) and 
MSCWnt5a (1 × 105 cells/mL) were cultivated in the desig-
nated chamber, while endothelial cells (1 × 105 cells/mL) 
were cultured in separate 6-well plates (Fig. 1). In accord-
ance with our previous study, we stimulated endothelial 
cells with 150  μg/mL LPS (O127:B8, Sigma, USA) for 
24 hours [26]. The study was divided into four groups: 
control, LPS (150 μg/mL), LPS + MSCVector (150 μg/mL), 
and LPS + MSCWnt5a (150 μg/mL). We used the classical 
PI3K/AKT inhibitor, LY294002 (Absin, China), to verify 
the underlying mechanism. LY294002 was applied at a 
concentration of 10 μM, as reported in a previous study [15].

Flow cytometric assay
Flow cytometry was conducted to detect surface mol-
ecule expression of MSCs. MSCs were digested with 
Trypsin–EDTA solution and then centrifuged at 
1100 rpm for 4 min. The cells were then washed twice and 
resuspended with pre-cooled PBS containing 1% bovine 
serum albumin (PBA). Next, MSCs were incubated with 
the following surface marker antibodies: CD29, CD34, 
CD45, and Sca1 (all from Biolegend, USA) in PBA at 4 °C 
for 30  min without light. After incubation, the uncom-
bined antibodies were washed out and MSCs were ana-
lyzed using a CytoFLEX Flow Cytometer (BECHMAN 
COULTER, USA). The data were subsequently analyzed 
with FlowJo software (TreeStar Inc., Ashland, OR, USA).

Multilineage differentiation assay
Osteogenic and adipogenic differentiation medium 
were used to assess the differentiation potential of 
MSCs. MSCs were cultured in osteogenic differentia-
tion medium (QiDa, Shanghai, China) for two weeks to 
induce osteogenic differentiation, the medium was 
changed every other day, and the cells were stained with 

Fig. 1  The co-culture system was established to investigate 
protective effects of MSCs on endothelial cells
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Alizarin Red S (Solarbio, China) to detect the formation 
of calcium nodules. To induce adipogenic differentiation, 
MSCs were grown in adipogenic differentiation medium 
(QiDa, Shanghai, China) for 2–3  weeks, and Oil Red O 
(Solarbio, China) was used to detect lipids in differenti-
ated adipocytes.

Lentiviral production and transfection of MSCs
MSCs were transfected with lentiviral particles con-
taining the Wnt5a gene and empty vectors. The lenti-
viral system consisted of three vectors: the packaging 
plasmids psPAX2 (Addgene, USA), the envelope plas-
mids pMD2.G (Addgene, USA), and the expression 
vector pEGIP (Addgene, USA). To generate the Wnt5a 
expression vector, the cDNA encoding mouse Wnt5a 
(NM_009524.4) was amplified by RT-PCR using specific 
primers, digested with restriction enzymes, and sub-
cloned into the expression vector plasmid pEGIP. The 
recombinant lentivirus was produced by co-transfecting 
psPAX2, pMD2.G, and the expression vector contain-
ing Wnt5a or empty vector into HEK 293  T cells using 
calcium phosphate transfection. The supernatant con-
taining the virus was collected 48  h after transfection, 
centrifuged at 1,500 rpm for 5 min to remove debris, and 
then filtered through a 0.45 μm pore-size filter. For lenti-
viral transduction, MSCs were incubated with lentiviral 
solution and 10 μg/mL polybrene (Sigma-Aldrich, USA, 
H9268) in complete medium for 9  h. Subsequently, the 
culture medium was changed, and MSCs were selected 
in complete medium containing 1.6 μg/mL of puromycin 
(Genechem, China) for 72  h. Finally, the MSCWnt5a and 
MSCVector cell lines were obtained and expanded for sub-
sequent experiments.

Scratch wound healing assay
1 × 105 endothelial cells were seeded in each well of 
6-well plates and cultured until they reached conflu-
ence. Scratches were created along the ruler using ster-
ile pipette tips (200 μL), and the wells were washed 
with PBS for three times to remove the detached cells. 
Subsequently, 1  mL DMEM without FBS was supplied 
and endothelial cells were cultured for 24  h in differ-
ent systems based on the grouping. The scratches were 
photographed at 0 and 24 h, and the scratch areas were 
quantified using ImageJ software to evaluate the migra-
tory capacity of endothelial cells in various groups. 
Wound healing percentage (%) = [(0  h scratch area) 
– (24  h scratch area)] / (0  h scratch area) × 100%. (0  h 
scratch area: the scratch area when the scratch was cre-
ated; 24 h scratch area: the scratch area when endothelial 
cells were cultured for 24 h after the scratch was created).

Cell proliferation assay
The Cell-Light EdUApollo567 In  Vitro Kit (Ribobio, 
China) was utilized to assess the cell proliferation capac-
ity of endothelial cells. 2 × 104 endothelial cells were 
seeded in 24-well plates and cultured under various 
conditions based on the experimental groups. Follow-
ing a 24h incubation, the culture medium was aspirated, 
and the endothelial cells were washed twice with PBS. 
The endothelial cells were treated with EDU medium 
for 2 h, followed by fixation in 4% paraformaldehyde for 
30 min and incubation in a 2 mg/ml Glycine solution for 
5  min to neutralize any residual aldehyde groups. Next, 
endothelial cells were incubated with 0.5% Triton X-100 
to enhance the permeability of the cell membrane, and 
then treated with Apollo® staining reaction solution for 
30 min in the absence of light. Next, the staining solution 
was removed by washing the cells three times with 0.5% 
Triton X-100. Subsequently, the cells were incubated 
with Hoechst 33,342 reaction solution for 30 min in the 
absence of light and washed away with PBS. All proce-
dures were conducted at room temperature. Finally, the 
cells were maintained in a moist environment with PBS, 
and the fluorescence pictures of the endothelial cells were 
taken using a fluorescent microscope. The number of 
EdU-positive cells and DAPI-positive cells was quantified 
using ImageJ software. The cell proliferation ability was 
determined by calculating the percentage of EdU-posi-
tive cells.

Apoptosis assay
Endothelial cell apoptosis levels were assessed by employ-
ing the Annexin V-FITC/PI Apoptosis Kit (Elabscience, 
China). The culture medium and endothelial cells were 
collected and centrifuged at 300 × g for 5 min. The cells 
were then washed twice with PBS and resuspended in 
500  μl 1 × Annexin V Binding Buffer at a concentration 
of 2 × 106 cells/ml. Afterwards, 2.5 μl of Annexin V-FITC 
Reagent and 2.5  μl of PI Reagent were added. The cells 
were then incubated in the dark at room temperature for 
20  min. Finally, the proportions of Annexin V and PI-
positive cells were analyzed using flow cytometry within 1 h.

Tube formation assay
200  μl Matrigel (Corning, USA) was plated in the wells 
of 24-well plate, then the plate was placed at 4  °C over-
night to make the Matrigel evenly distributed. 2 × 104 
endothelial cells was seeded on the Matrigel. Follow-
ing a 4-h culture, the medium was replaced with fresh 
high-glucose DMEM to eliminate any unattached cellular 
debris. Subsequently, 10 μl of Calcein AM fluorescent dye 
(KeyGen, China) was added 10 min before fluorescence 
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microscopy observation to improve the visibility of cell 
frame on Matrigel. Subsequently, images were captured 
using a fluorescence microscope. The angiogenesis ability 
of endothelial cells was quantified by counting branching 
points in the randomly selected fields from each group 
using ImageJ software.

Real‑time RT‑PCR
Total RNA was extracted from MSCs using Trizol rea-
gent (Invitrogen, USA) following the manufacturer’s 
protocol. The concentration of the RNA was assessed by 
the A260/A280 ratio, the ratio between 1.8 and 2.0 was 
considered acceptable. Subsequently, 1  μg of RNA was 
reverse transcribed into cDNA using the cDNA Synthesis 
SuperMix (NovoProtein, China). Quantitative Real-time 
PCR (qPCR) was conducted on an ABI PRISM 7500 Fast 
Detection System (Applied Biosystems, Carlsbad, CA, 
USA) using the SYBR qPCR Mix (NovoProtein, China) 
following the standard protocol. Each sample was ana-
lyzed in triplicate for the expression of GAPDH, Wnt5a, 
VEGF, Ang-1, FGF-10, HGF and TGF-β1. The PCR 
primer sequences are listed below (Table 1):

Western blot assay
Endothelial cells were lysed with RIPA buffer (Beyotime, 
China), protease and phosphatase inhibitors were also 
added. The lysates were then centrifuged at 12,000  rpm 
and 4  °C for 10  min. The protein supernatant was col-
lected and quantified using a BCA Protein Assay Kit 
(Beyotime, China). The protein extracts were separated 
by SDS-PAGE and transferred to PVDF membranes. 

The proteins were then blocked with 5% skimmed milk 
for 2 h at 25 °C. Subsequently, the proteins were reacted 
with the following primary antibodies for 18  h at 4  °C: 
anti-GAPDH (1:1000, Cat# 5174S, Cell Signaling Tech-
nology), anti-AKT (1:1000, Cat# 4691S, Cell Signaling 
Technology, Danvers, MA USA), anti-phospho-AKT 
(1:1000, Cat# 4060S, Cell Signaling Technology), anti-
BAX (1:1000, Cat# 5023S, Cell Signaling Technology), 
and anti-Bcl-2 (1:1000, Cat# 4223S, Cell Signaling Tech-
nology). After incubation with horseradish peroxidase-
conjugated secondary antibodies (1:3000, Cat# 7074S, 
Cell Signaling Technology) for 1 h at room temperature, 
the bands were visualized using the Image Quant LAS 
4000 system.

Statistical analysis
Statistical analyses were conducted using GraphPad 
Prism8 software (GraphPad Software Inc, USA). All the 
results were expressed as mean ± SD. Student’s t-test was 
conducted for the two experimental groups, while one-
way ANOVA and Bartlett’s test (corrected) were used for 
multiple comparisons. P < 0.05 was deemed statistically 
significant.

Results
Characterization of MSCs
Flow cytometry was employed to identify the surface 
markers of MSCs, and the results were analyzed with 
FlowJo software. The findings indicated that MSCs 
expressed CD29 and Sca1, which are markers of stem 
cells, while they did not express CD34 and CD45, which 
are markers associated with endothelial cells or hemat-
opoietic cells (Fig. 2a). Additionally, MSCs were cultured 
in conditioned medium to assess their multilineage dif-
ferentiation potential in  vitro. The findings showed that 
Osteogenic and adipogenic differentiation of MSCs could 
be detected via Alizarin Red S and Oil Red O (Fig. 2b).

Successful overexpression of Wnt5a in MSCs
MSCs were transfected with lentiviruses carrying Wnt5a 
or a control vector, and the overexpression of Wnt5a in 
MSCs was confirmed at the transcriptional and trans-
lational levels. The RT-qPCR analysis confirmed a sig-
nificantly higher transcription level of Wnt5a in MSCs 
overexpressing Wnt5a compared to MSCs carrying 
the control vector (Fig.  3a). Furthermore, Western blot 
analysis demonstrated upregulated protein expression of 
Wnt5a in MSCs overexpressing Wnt5a (Fig. 3b and c).

Overexpression of Wnt5a in MSCs promotes the expression 
of protective cellular factors for endothelial cell
We analyzed the expression of key cellular factors associ-
ated with the protective role of MSCWnt5a. The RT-qPCR 

Table 1  Quantitative PCR primers sequences

Abbreviations: GAPDH glyceraldehyde-3-phosphate dehydrogenase, Wnt5a 
Wingless-related integration site family member 5a, VEGF vascular endothelial-
derived growth factor, Ang-1 angiotensin-1, FGF-10 fibroblast growth factor-10, 
HGF hepatocyte growth factor, TGF-β1 transforming growth factor-beta1

Genes Sequence

GAPDH Fwd:5′-ACT​CTT​CCA​CCT​TCG​ATG​C-3′
Rev:5′-CCG​TAT​TCA​TTG​TCA​TAC​CAGG-3′

Wnt5a Fwd:5′-CAA​GGG​CTC​CTA​TGA​GAG​C-3′
Rev:5′-GCC​AGG​TTG​TAT​ACT​GTC​CT-3′

VEGF Fwd:5′-CTG​CTG​TAA​CGA​TGA​AGC​CCTG-3′
Rev:5′-GCT​GTA​GGA​AGC​TCA​TCT​CTCC-3′

Ang-1 Fwd:5′-AAC​CGA​GCC​TAC​TCA​CAG​TACG-3′
Rev:5′-GCA​TCC​TTC​GTG​CTG​AAA​TCGG-3′

FGF-10 Fwd:5′-ATC​ACC​TCC​AAG​GAG​ATG​TCCG-3′
Rev:5′-CGG​CAA​CAA​CTC​CGA​TTT​CCAC-3′

HGF Fwd:5′-GTC​CTG​AAG​GCT​CAG​ACT​TGGT-3′
Rev:5′-CCA​GCC​GTA​AAT​ACT​GCA​AGTGG-3′

TGF-β1 Fwd:5′-TGA​TAC​GCC​TGA​GTG​GCT​GTCT-3′
Rev:5′-CAC​AAG​AGC​AGT​GAG​CGC​TGAA-3′
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array demonstrated that overexpression of Wnt5a upreg-
ulated the expression of protective factors, including 
pro-angiogenic factors VEGF [27]  and Ang-1 [28], as 
well as anti-inflammatory factors FGF-10 [29] and HGF 
[30]. Additionally, Wnt5a overexpression decreased the 
expression of the pro-apoptotic cytokine TGF-β1 [31]
(Fig. 4).

MSCWnt5a co‑culture promotes endothelial cell migration 
in vitro
We performed scratch wound healing assay to investi-
gate whether MSCWnt5a could promote endothelial cell 
migration. The results demonstrated that LPS stimu-
lation decreased the migration ability of endothelial 
cells (P < 0.01). However, the migration of endothelial 

Fig. 2  Characterization of MSCs. a MSCs were positive for CD29 and Sca1, but negative for CD34 and CD45. Unlabeled cells were used for negative 
control. The blue histogram represented the negative control, and the red histogram represented the expression of the surface marker. b 
Osteogenic differentiation capacity of MSCs in Osteogenic differentiation medium (middle) and adipogenic differentiation capacity of MSCs 
in adipogenic differentiation medium (right). Three independent replicates were performed

Fig. 3  Validation of MSCWnt5a. a Determination of Wnt5a mRNA transcriptions by quantitative PCR (qPCR). b, c Determination of Wnt5a protein 
expressions via Western blot analysis. Results are expressed as mean ± SD, n = 3. **P < 0.01, ****P < 0.0001
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cells was significantly increased when co-cultured 
with different groups of MSCs. Endothelial cells in the 
MSCWnt5a co-culture group (P < 0.01) migrated farther 
compared to that in the MSCVector co-culture group 
(P < 0.01) (Fig. 5a and b). Therefore, MSCWnt5a was more 
effective than MSCVector in promoting in vitro endothe-
lial monolayer wound closure.

MSCWnt5a co‑culture promotes the tube formation ability 
of endothelial cells
We next performed a tube formation assay to investigate 
whether MSCWnt5a could promote the angiogenesis of 
endothelial cells. Figure 5c and d showed that the poten-
tial for new blood vessel formation by endothelial cells 
was significantly weaker on the Matrigel in the LPS group 
compared to the control group (P < 0.0001). In contrast, 

Fig. 4  Effects of Wnt5a overexpression on the transcription of protective cytokines in MSCs. The cytokine transcription levels were measured three 
days after transfection by qPCR analysis. Results are expressed as mean ± SD, n = 3. *P < 0.05, **P < 0.01

Fig. 5  Co-culturing with MSCWnt5a enhances the migration and angiogenesis of endothelial cells. a The representative scratch images 
of endothelial cells at 0 h and 24 h are presented. b Wound healing percentage of endothelial cells with different treatment was shown. c The tube 
formation assay was conducted to detect endothelial cell angiogenesis, and Calcein AM fluorescent dye was used to make the tubular structure 
more visible. d Quantitative analysis found that co-culturing with MSCWnt5a significantly enhanced endothelial cells angiogenesis compared 
to the MSCVector co-culture group and LPS group. Results are expressed as mean ± SD, n = 3. **P < 0.01, ****P < 0.0001 compared to control group, 
####P < 0.0001 compared to LPS group
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coculturing with either group of MSCs significantly pro-
moted the development of tubular structures. Further-
more, the tube formation ability of endothelial cells was 
significantly stronger in the MSCWnt5a co-culture group 
compared to the MSCVector co-culture group. The pheno-
type results were consistent with the upregulation of pro-
angiogenic factors in MSCWnt5a.

MSCWnt5a Co‑culture promotes the proliferation 
and attenuates the apoptosis of endothelial cells
MSC therapy has proliferative and anti-apoptotic effects. 
we performed EdU cell proliferation assay and Annexin 
V-FITC/PI Apoptosis assay to explore the proliferative 
and anti-apoptotic efficiency of MSCWnt5a on endothelial 
cells. The results of the EdU assay (Fig. 6a and b) showed 

Fig. 6  Co-culturing with MSCWnt5a enhanced proliferation and reduced apoptosis of endothelial cells. a The EdU assay was conducted 
to measure the proliferation of endothelial cells. The blue color labeled nucleus and red labeled actively proliferating cells. b Quantitative 
analysis was performed by counting the ratio of actively proliferating cells. The proportion of proliferation-active cells with various treatment 
was shown. c The Annexin V-FITC/PI assay was performed to detect endothelial cell apoptosis. d Quantitative analysis was conducted by summing 
up the percentages of early apoptotic cells (Q1-LR) and late apoptotic cells (Q1-UR). The proportion of apoptotic cells with various treatment 
was shown. Results are expressed as mean ± SD, n = 3. ****P < 0.0001 compared to control group, ###P < 0.001, ####P < 0.0001 compared to LPS group



Page 8 of 13Guo et al. BMC Infectious Diseases          (2024) 24:335 

a significant reduction in the proliferation capacity of 
endothelial cells after LPS treatment compared to the 
control group (P < 0.0001). Similarly, co-culturing with 
MSCs rescued the proliferation capacity of endothelial 
cells. Furthermore, MSCWnt5a co-culturing significantly 
enhanced the proliferation ability of endothelial cells 
after LPS-induced injury compared to the MSCVector 
co-culture group (P < 0.0001). As shown in the apop-
tosis assay (Fig.  6c and d), LPS stimulation significantly 
increased the apoptosis rate of endothelial cells compared 
to the control group (P < 0.0001). However, co-culturing 
with MSCVector and MSCWnt5a significantly alleviated 
the apoptosis level of endothelial cells. Endothelial cells 
in the MSCWnt5a co-culture group exhibited a more sig-
nificant reduction in the apoptosis rate compared to the 
MSCVector co-culture group (P < 0.01).

MSCWnt5a co‑culture protects endothelial cells by activating 
the pi3k/akt signaling pathway
It was reported that Wnt5a promoted the migration and 
proliferation of cancer cells by activating the PI3K/AKT 
signaling [32–34]. Therefore, we tried to determine if 
MSCWnt5a protected endothelial cells through the PI3K/
AKT signaling pathway. In order to investigate the pro-
tective mechanism of MSCWnt5a on endothelial cells, we 
performed western blot assay to determine the expres-
sion of phosphorylated AKT, VE-cadherin, Bcl-2 and 
BAX (Fig.  7a). AKT protein phosphorylation was sig-
nificantly reduced in the LPS group compared to the 
control group, suggesting that LPS-induced endothe-
lial cell injury is linked to PI3K/AKT signaling inhibi-
tion. Furthermore, VE-cadherin and BCL-2 expression 
were significantly decreased in the LPS group, whereas 
the expression of BAX was up-regulated. In compari-
son to the LPS group, the expression of phosphoryl-
ated AKT, VE-cadherin and BCL-2 in endothelial cells 
were higher in both the MSCVector co-culture group and 
the MSCWnt5a co-culture group, while the expression of 
BAX was decreased. Moreover, the changes in these pro-
teins were more pronounced in the MSCWnt5a co-culture 
group compared to the MSCVector co-culture group, sug-
gesting that MSCWnt5a had stronger protective effects on 
endothelial cells than MSCVector (Fig. 7b-e). Next, we used 
LY294002 to block the PI3K/AKT signaling in endothe-
lial cells. The effects of MSCWnt5a co-culture on AKT 
protein phosphorylation and VE-cadherin expression 
were attenuated (Fig.  7f-h). These results indicated that 
MSCWnt5a co-culture activates the PI3K/AKT signaling in 
endothelial cells.

Further, we assessed if LY294002 blocked the protective 
effects of MSCWnt5a on endothelial cells. We stimulated 
endothelial cells with LPS and LY294002, the pro-migra-
tion and angiogenic effects of MSCWnt5a were attenuated 

by LY294002 (Fig.  8a-d). Meanwhile, LY294002 treat-
ment also partially reversed the anti-apoptotic effect 
of MSCWnt5a co-culture on endothelial cells (Fig.  8e-f ). 
In summary, the above results demonstrate that Wnt5a 
overexpression optimized the protective effects of MSCs 
against LPS-induced endothelial cell injury by activating 
the PI3K/AKT signaling pathway.

Discussion
Microvascular endothelial cells are crucial in maintaining 
pulmonary microcirculation. Accumulating researches 
have demonstrated the significant protective effects of 
MSCs for endothelial injury. Microvascular endothelial 
cell-derived Wnt5a is essential for angiogenesis, and its 
absence inhibits vascular structure formation [22]. We 
discovered that overexpression of Wnt5a promoted the 
therapeutic value of MSCs for endothelial injury through 
activation of the PI3K/AKT signaling. Therefore, it was 
considered a promising strategy to overexpress Wnt5a in 
MSCs for the treatment of endothelial injury.

In recent years, researchers have extensively stud-
ied the crucial role of Wnt5a in endothelial cell func-
tion. For instance, Wnt5a secreted by monocytes can 
bind and activate its receptor FZD5 in microvascular 
endothelial cells and induce angiogenesis [35]. Simi-
larly, interleukin-1β induces upregulation of Wnt5a 
in endothelial cells, leading to enhanced cell migra-
tion [36]. Additionally, Wnt5a increased endothelial 
cell proliferative activity and upregulated the expres-
sion of angiogenic genes MMP-1 and Tie-2 [23]. How-
ever, some studies have suggested contrary findings. 
For example, Wnt5a silencing significantly suppresses 
IL-4-induced endothelial barrier dysfunction [37], and 
the Wnt5a antagonist prevents the disruption of VE-
cadherin adherent junctions and protects the barrier 
function in cardiac endothelium [38]. The paradoxes 
may arise from variations in cell types, stimulus condi-
tions, and experimental approaches. Nevertheless, the 
aforementioned findings suggested the crucial role of 
Wnt5a in endothelial function. Studies have reported 
the protective effects of MSC-based therapies, par-
ticularly in alleviating vascular endothelial injury in 
sepsis and ALI [8, 39]. Furthermore, combining gene 
therapy and MSC therapy would further enhance the 
protective effects of MSCs on ALI/ARDS [40]. Moreo-
ver, activation of the Wnt5a/FZD5 signaling pathway 
promotes MSC proliferation, potentially improving 
the efficacy of MSC-based therapies [41]. In our study, 
MSCWnt5a demonstrated stronger promotion of pro-
liferation, migration, angiogenesis, and inhibition of 
apoptosis in endothelial cells compared to MSCVector. 
This further confirmed the protective value of Wnt5a 
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Fig. 7  MSCWnt5a co-culture activates the PI3K/AKT signaling in endothelial cells. a The expression of AKT/p-AKT, VE-cadherin and apoptosis-related 
proteins (BCL-2 and BAX) were evaluated by Western blotting. b-e Densitometric analysis of Western blots. GAPDH served as an internal reference. 
f Detecting the effect of LY294002 on MSCWnt5a co-culture induced changes in the PI3K/AKT pathway via Western blotting. g-h Densitometric 
analysis of Western blots. GAPDH served as an internal reference. Results are expressed as mean ± SD, n = 3. *P < 0.05, **P < 0.01, ***P < 0.001 
compared to control group. #P < 0.05, ##P < 0.01, ###P < 0.001, ####P < 0.0001 compared to LPS group

Fig. 8  LY294002 abolished the protective effects of MSCWnt5a on endothelial cells. a The representative scratch images of endothelial cells 
at 0 h and 24 h are presented. b Wound healing percentage of endothelial cells with different treatment was shown. c The tube formation assay 
was conducted to detect endothelial cell angiogenesis, and Calcein AM fluorescent dye was used to make the tubular structure more visible. 
d Quantitative analysis of vascular brunching number with different treatment was counted. e Annexin V-FITC/PI was used to detect endothelial cell 
apoptosis. f Quantitative analysis was conducted by summing up the percentages of early apoptotic cells (Q1-LR) and late apoptotic cells (Q1-UR). 
The proportion of apoptotic cells with various treatment was shown. Results are expressed as mean ± SD, n = 3. ****P < 0.0001 compared to LPS 
group. ####P < 0.0001 compared to MSCWnt5a group

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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in endothelial function. As a result, the findings sug-
gested that Wnt5a overexpression could enhance the 
protective efficacy of MSCs against endothelial injury.

In the present study, we discovered that MSCWnt5a 
activates the PI3K/AKT signaling, and develops anti-
apoptotic, proliferative, and tubulogenic effects in 
LPS-stimulated endothelial cells. Our previous study 
demonstrated that ghrelin attenuates LPS-induced 
endothelial barrier disruption through the PI3K/AKT 
pathway [42]. PI3K/AKT activation also increases 
NO production, promotes the function of endothe-
lial cells [43, 44]. We observed that MSCWnt5a co-
cultured activates PI3K/AKT signaling in endothelial 
cells, promotes expression of Bcl-2 and inhibits BAX 
expression. The percentage of EdU-positive endothe-
lial cells increased, while the rate of apoptotic cells 
decreased. Disruption of VE-cadherin adherent junc-
tions increases endothelial permeability, with protein 
and inflammatory cells seeping out from small ves-
sels [45]. Additionally, we observed upregulation of 
VE-Cadherin in endothelial cells co-cultured with 
MSCWnt5a, suggesting a potential protective role in 
maintaining the endothelial barrier. Furthermore, we 
treated endothelial cells with the PI3K/AKT inhibitor 
LY294002 and observed that the effects of MSCWnt5a 
on AKT phosphorylation and VE-Cadherin upregula-
tion were abolished. This further validates the activa-
tion of PI3K/AKT signaling in MSCWnt5a therapy for 
endothelial injury.

MSC  therapy has been proven as a prospective 
method for treating ALI/ARDS.  However, reduced 
cell activity in an inflammatory environment and lim-
ited therapeutic effect are the main obstacles for this 
therapy. In this study, we genetically overexpressed 
Wnt5a in MSCs for the first time and demonstrated 
that MSCWnt5a enhances the therapeutic potential of 
MSCs on endothelial injury, thereby optimizing the 
use of MSCs in ALI/ARDS. However, the limitations of 
our research cannot be ignored. First, we used LPS to 
stimulate an endothelial cell line in vitro, but this may 
not fully mimic the effects of various pathogens (bac-
teria, viruses, fungi, or mycobacteria) that can damage 
the vascular endothelium and the pathophysiological 
environment to which endothelial cells are exposed [46, 
47]. Second, Wnt5a overexpression may alter the secre-
tion profile of other paracrine substances, as evidenced 
by changes in the transcription of cellular factors in 
MSCWnt5a. Further RNA sequencing is needed to inves-
tigate potential paracrine factors, other than Wnt5a, 
that contribute to the therapeutic effects of MSCWnt5a. 
Third, it is unclear whether Wnt5a activates the PI3K/
AKT pathway directly or indirectly, which requires fur-
ther exploration in future studies.

Conclusions
In summary, our study demonstrated that MSCWnt5a co-
culture promotes the proliferation, migration, angiogen-
esis and inhibits apoptosis of endothelial cells subjected 
to LPS stimulation. And MSCWnt5a  activates the PI3K/
AKT pathway in endothelial cells to develop the protec-
tive effects. Consequently, our findings have provided a 
novel theoretical foundation for the treatment of ALI/
ARDS. And we need to run clinical trials to further inves-
tigate whether MSCWnt5a-based cell therapy is a promis-
ing treatment strategy for ALI/ARDS.
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