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Abstract 

Background Recurring COVID-19 waves highlight the need for tools able to quantify transmission risk, and iden-
tify geographical areas at risk of outbreaks. Local outbreak risk depends on complex immunity patterns resulting 
from previous infections, vaccination, waning and immune escape, alongside other factors (population density, social 
contact patterns). Immunity patterns are spatially and demographically heterogeneous, and are challenging to cap-
ture in country-level forecast models.

Methods We used a spatiotemporal regression model to forecast subnational case and death counts and applied 
it to three EU countries as test cases: France, Czechia, and Italy. Cases in local regions arise from importations or local 
transmission. Our model produces age-stratified forecasts given age-stratified data, and links reported case counts 
to routinely collected covariates (e.g. test number, vaccine coverage). We assessed the predictive performance of our 
model up to four weeks ahead using proper scoring rules and compared it to the European COVID-19 Forecast Hub 
ensemble model. Using simulations, we evaluated the impact of variations in transmission on the forecasts. We devel-
oped an open-source RShiny App to visualise the forecasts and scenarios.

Results At a national level, the median relative difference between our median weekly case forecasts and the data 
up to four weeks ahead was 25% (IQR: 12–50%) over the prediction period. The accuracy decreased as the forecast 
horizon increased (on average 24% increase in the median ranked probability score per added week), while the accu-
racy of death forecasts was more stable. Beyond two weeks, the model generated a narrow range of likely transmis-
sion dynamics. The median national case forecasts showed similar accuracy to forecasts from the European COVID-
19 Forecast Hub ensemble model, but the prediction interval was narrower in our model. Generating forecasts 
under alternative transmission scenarios was therefore key to capturing the range of possible short-term transmission 
dynamics.

Discussion Our model captures changes in local COVID-19 outbreak dynamics, and enables quantification of short-
term transmission risk at a subnational level. The outputs of the model improve our ability to identify areas where out-
breaks are most likely, and are available to a wide range of public health professionals through the Shiny App we 
developed.
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Introduction
Local dynamics of COVID-19 depend on a combination 
of the level of immunity in a population, which in turn 
depends on previous incidence, vaccine uptake, and the 
immune escape properties of the currently circulating 
SARS-CoV-2 variants, and other factors such as popula-
tion density, social contact patterns, migration patterns 
and adherence to public health measures. Most countries 
in Europe have been affected by repeated COVID-19 
waves since March 2020, and have implemented exten-
sive vaccination campaigns in order to reduce the health 
impact of these waves. This led to high national levels of 
both natural and vaccine-induced immunity [1]. Before 
the emergence of the Delta and Omicron variants of con-
cern (VOCs), this immunity provided considerable and 
durable protection against severe outcomes (hospitali-
sation and death) and some transient protection against 
infection [2]. The emergence of new VOCs, and the 
extent of their immune escape, along with the waning of 
efficacy observed for a two-dose vaccine course, precipi-
tated the expansion and acceleration of “booster” vacci-
nation campaigns, further shifting the immune landscape 
of the population. Overall immunity to the Omicron 
BA.1 variant rose quickly after its emergence due to the 
unprecedentedly large wave of BA.1 cases that occurred 
throughout Europe in late 2021-early 2022, and vaccine 
booster campaigns. Since then, repeated emergence of 
Omicron subvariants with high levels of immune escape 
has led to multiple waves of infections, with lower case 
burden than the first BA.1 wave.

Currently, the overall level of immunity against infec-
tion is high compared to the early phase of the COVID-
19 pandemic. The immune landscape of the population 
is spatially heterogeneous due to considerable variation 
in infection histories (e.g. multiple reinfections with dif-
ferent variants) and differences in vaccine uptake and 
timing across the population. If overall immunity rises, 
this immune landscape should result in the risk of out-
breaks becoming more spatially and demographically 
heterogeneous, with the potential for distinct identifi-
able outbreaks. Therefore, there is interest from public 
health agencies in forecasting short-term incidence at a 
subnational level, and in different age groups, to antici-
pate large localised spikes in case numbers and local 
pressure on health care systems. Predicting such spikes 
in health care demand will become increasingly relevant 
as time moves forward if COVID-19 becomes more sea-
sonal and influenza-like in its dynamics. This project was 
developed in collaboration with the European Centre for 
Disease Prevention and Control (ECDC), with the objec-
tive of developing a statistical framework for forecasting 
local case and death incidence in a range of European 
countries, and visualisation tools to communicate the 

predictions. The forecasts and scenario analysis can then 
be used to optimise planning and allocation of resources.

There have been numerous attempts to model sub-
national incidence of COVID-19 over the course of the 
pandemic. These have tended to fall into two broad 
categories: mechanistic “spatial” susceptible-exposed-
infectious-recovered transmission models and statistical 
time series/spatiotemporal models. Most time series and 
transmission models have treated subnational regions 
as independent (fitted the model and made predictions 
separately for each region) without accounting for spati-
otemporal correlations in incidence between regions [3–
7], despite these being strong [8–10]. A limited number 
of transmission models have instead treated subnational 
regions as connected sub-populations via a metapopula-
tion approach, and used geographical distance or mobil-
ity/commuting data to parametrise connectivity between 
regions [11–16]. These models become increasingly 
complex and hence slow to generate predictions as the 
number of affected regions increases, and have there-
fore received limited use for real-time forecasting during 
the pandemic. Time series models and spatiotemporal 
statistical models, on the other hand, have been used 
extensively and successfully to forecast future incidence 
at national and subnational levels [6, 7, 17]. In the latter 
category, we focus on Endemic-Epidemic models, a flex-
ible class of spatiotemporal statistical models that can be 
used to link changes in incidence to recent case numbers 
and the effect of various different covariates, on which 
the framework used in this paper is based. Endemic-
Epidemic models have already been employed during 
the pandemic to understand and forecast spatiotemporal 
spread of COVID-19 at a subnational level [18–21] and 
at a national level in Africa [22], and to assess the impact 
of non-pharmaceutical interventions (NPIs), includ-
ing lockdowns and border closures [23–26] (see [27] for 
a review). Their superiority to time series models that 
assume independence between regions has been demon-
strated on data from northern Italy [28]. However, they 
have not, as yet, been applied to forecast subnational 
incidence across multiple countries.

In this paper, we present a flexible modelling frame-
work to capture subnational, age-stratified case dynam-
ics of COVID-19, alongside a publicly available RShiny 
App to visualise the results and forecasts generated. The 
framework is used to predict subnational incidence of 
COVID-19 cases and deaths from routinely collected, 
publicly available surveillance data, and forecast the 
impact of changes in transmission on short-term dynam-
ics (e.g. due to changes in behaviour or transmissibility). 
The framework can be run with an age-stratified model if 
local, age-stratified data is available. Public health profes-
sionals can use the RShiny App to visualise the forecasts 
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of reported cases and deaths, and the predicted incidence 
under different scenarios, to get a full picture of the antic-
ipated short-term burden of COVID-19 in local areas. 
We apply the framework to forecast cases and deaths at 
a NUTS-3 (Nomenclature of Territorial Units for Statis-
tics 3) level in France, Czechia and Italy as test cases, and 
evaluate its ability to predict subnational incidence up to 
four weeks ahead.

Methods
Spatiotemporal modelling framework for reported cases
We model subnational COVID-19 case counts using the 
Endemic-Epidemic spatiotemporal modelling frame-
work [29], as implemented in the surveillance R package 
[30]. Endemic-Epidemic models provide a flexible frame-
work for relating current incidence of cases to recent 
case incidence and to imported cases, accounting for the 
influence of other factors (i.e. covariates) on these rela-
tionships. They decompose local incidence in region i at 
time t into three components:

– An autoregressive component that quantifies the 
number of new infections expected from cases 
reported in region i at previous time steps.

– A neighbourhood component that quantifies the 
number of new infections expected from cases 
reported in regions around region i in previous time 
steps, which depends on the connectivity (or the 
human mobility) between regions.

– An endemic component that quantifies the back-
ground number of new infections occurring in region 
i at time t , independent of the current level of trans-
mission, representing importations from regions out-
side those included in the study (or cases that could 
not be linked to the mechanistic components).

Endemic-Epidemic models are able to integrate multi-
ple data sources from disease surveillance activity to link 
case incidence and various covariates. Each component 
is independently impacted by each covariate. Since we 
introduce various covariates and controls in our model, 
we merge the autoregressive and neighbourhood compo-
nent into an epidemic component to reduce the number 
of parameters estimated, and avoid identifiability and 
convergence issues.

Early versions of the Endemic-Epidemic models only 
included dependence of current cases on cases in the 
previous time step, but they have since been extended to 
account for distributed lags via the hhh4addon R package 
[31–33]. This allows for a more faithful representation of 
the impact of recent incidence on current case number, 
for instance by aligning the lag distribution to the serial 
interval of the pathogen.

The link between indicators of immunity and risk of 
SARS-CoV-2 infection is complex and unstable, due to 
waning of vaccine and infection-induced immunity, and 
emergence of variants able to escape immunity. The flex-
ibility of the Endemic-Epidemic framework therefore 
makes it well suited to capture local dynamics of COVID-
19 cases, while fully mechanistic frameworks may be too 
complex to parametrise. Depending on data availability, 
the model can be stratified by age.

Non‑age‑stratified model
The total number of cases (over all age groups) in region 
i at time t , Yit , conditional on the number of cases in the 
same region and neighbouring regions in the previous p 
time steps, is modelled as negative binomial:

with conditional mean µit and dis-
persion parameter ψi such that 
Var Yit Yi,t−1, . . . , Yi, t−p = µit + ψi µ

2
it.

The mean is given by

where Y ′
j,t−1 =

∑p
d=1[ud]Yj,t−d is the transmission poten-

tial from recent cases in region j , with [ud] the normal-
ised lag weight for cases d days ago. We set p = 20 days 
and use a custom composite serial interval distribution 
for ud that accounts for missing infection generations 
[34], with a mean and standard deviation for the first 
infection generation of 5 days and 1.5 days respectively, 
based on the estimated serial interval for SARS-CoV-2 
for pre-Omicron variants [35–37], and 80% of the com-
posite serial interval assumed to reflect direct transmis-
sion (without missing infections) (Supplementary Fig. 1). 
The predictors for the epidemic (combined autoregres-
sive and neighbourhood) and endemic components, ϕit 
and νit , determine the number of cases stemming from 
each component and are assumed to depend on log-lin-
ear component-specific predictors:

The predictors are independently impacted by differ-
ent covariates, z(ϕ)it  and z(ν)it  , i.e. a covariate may be asso-
ciated with fewer imported cases (endemic component 
νit ), but have little impact on the spread of the virus in 
and between the regions (epidemic component ϕit ). The 
association between the covariates and the local number 
of cases expected is quantified by regression coefficients, 

(1)Yit |(Y i,t−1, . . . ,Yi,t−p) ∼ NegBin(µit ,ψi)

(2)µit = ϕit
∑

j

[

wji

]

Y ′
j,t−1 + νit

log(ϕit) = α(ϕ) + β(ϕ)T z
(ϕ)
it

log(νit) = α(ν) + β(ν)T z
(ν)
it
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β(ϕ),β(ν) , estimated through a maximum-likelihood 
approach. The weights wji in the neighbourhood compo-
nent quantify the degree of connectivity between region 
i and surrounding regions j . We use a power-law model 
for the neighbourhood weights:

where oji is the adjacency order between regions i and j 
and ρ is a decay parameter to be estimated. The adjacency 
order is defined as the minimum number of borders that 
must be crossed to get from i to j : the adjacency degree 
is equal to 1 between neighbours, 2 between neighbours 
of neighbours, and so on. The maximum adjacency 
order we consider is 5. We normalise the weights, such 
that 

∑I
i=1

[

wji

]

= 1 , with I the number of regions in the 
country.

Age‑stratified model
For countries in which age-stratified subnational case 
count data is available, we implement an age-stratified 
version of the model above using modified code from 
the hhh4contacts R package [38, 39]. For this model, the 
number of cases in age group a in region i at time t , Yait , 
conditional on the numbers of cases in the previous p 
time steps in the same and other age groups in region 
i and the surrounding regions is modelled as negative 
binomial:

with conditional mean

whereY ′
b,j,t−1 =

∑p
d=1[ud]Yb,j,t−d

and overdispersion parameter ψi > 0 such that 
Var(Y ait |(Yt−1, . . . , Yt−p)) = µait + ψiµ

2
ait , where 

Yt−1 = {Ya,i,t−1}a=1, ... ,na,i=1, ... ,ni with na age groups and 
ni regions, and cba is the mean number of daily contacts 
in age group a of an individual in age group b . We stratify 
the population into na = 9 age groups (0–9, 10–19,…, 
70–79, 80+ years). We use age-structured contact matri-
ces from country-specific pre-pandemic contact surveys 
for cba where available, e.g. for France [40], and synthetic 
contact matrices estimated from contact survey and 
demographic data for countries in which no nationally 
representative contact surveys have been conducted, e.g. 
for Czechia [41]. We used age-stratified intercepts in the 
epidemic component.

wji = (oji + 1)−ρ for j such that oji ≤ 5
0 otherwise

(3)Yait |(Yt−1, . . . , Yt−p) ∼ NegBin(µait ,ψi)

(4)µait = ϕait
∑

j

∑

b

cba[wji]Y
′
b,j,t−1 + νait

Covariates
We incorporate various covariates in z(ϕ)it  and z(ν)it  in the 
log-linear predictors for ϕit and νit . The full model equa-
tions are given in the Supplementary Material (see Model 
equation for each country and Supplementary Table  1). 
The covariates were picked based on potentially hav-
ing had an effect on transmission and importation risk, 
or having an effect in future. We compare the forecasts 
obtained with the full model with covariates against a 
baseline model without covariates in the Supplement.

We included the same set of covariates in the endemic com-
ponent in the age-stratified and non-age-stratified models:

– population: the total population of region i
– urban/rural status: binary covariates for whether the 

NUTS-3 region  i is classified as urban, intermediate 
urban, intermediate rural or rural.

– seasonality: sinusoidal terms with annual periodicity 
to account for seasonal effects on importations. The 
amplitude and offset of the seasonality function are 
estimated by the model.

– number of cases in the WHO European region over 
the last month.

These covariates cover the impact of demographic 
characteristics and transmission in neighbouring coun-
tries on the background number of cases in each region 
(and age group in the age-stratified version of the model). 
The covariate specifications of the epidemic component 
depend on the availability of age-stratified data as follows:

– population:

 – age-stratified: two covariates:

 –total population of region i
–proportion of the population of age group a in 

region i.

– non age-stratified: one covariate: the total population 
of region i.

– testing:

 – age-stratified: two covariates:

–  proportion of the population in the country 
tested in the last 2 weeks.

– if local age stratified testing data is avail-
able: proportion of population of age group 
a in region i (if local testing data is avail-
able, national otherwise) tested in the last two 
weeks. Otherwise, proportion of population 
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of age group a in the country tested in the last 
two weeks.

– non age-stratified: one covariate: the proportion 
of the population in the country tested in the last 2 
weeks.

– vaccination coverage: the proportion of the popula-
tion in region i who received their second dose in 
the last 120 days, or who have received three or more 
doses (for each age group in the age-stratified model)

– cumulative incidence: the cumulative incidence of 
cases between the start of the fitting period and a 
month ago in region i (for each age group in the age-
stratified model)

– recent incidence: the cumulative incidence of cases in 
the past month in region i (for each age group in the 
age-stratified model)

– variant: two binary indicator variables for whether 
the proportion of sequenced cases that were Delta or 
an Omicron variant was higher than 30% (in all three 
countries, the Delta covariate is equal to one in late 
2021, and the Omicron covariate is equal to one from 
January 2022 onwards).

– day-of-the-week: indicator variables to account for 
day-of-the-week reporting effects in the numbers of 
cases.

– urban/rural status: binary covariates for whether the 
NUTS-3 region i is classified as urban, intermediate 
urban, intermediate rural or rural.

– seasonality: sinusoidal terms with annual periodicity 
to account for seasonal effects on local transmission. 
The amplitude and offset of the seasonality function 
are estimated by the model.

The covariates above cover the impact of local immu-
nity (due to vaccine or previous infection), testing pat-
terns, variants and seasonality on the risks of reported 
cases. We included covariates that quantify the associa-
tion between number of tests and incidence so that the 
model may capture changes in surveillance and reporting 
patterns, whereby drops in testing can be associated with 
changes in the number of new cases. For instance, in age 
groups with a lower proportion of hospitalised cases (e.g. 
younger age groups) the reporting rate may vary greatly 
if only severe cases are tested and reported. The covari-
ates quantifying the association between infection or vac-
cine-acquired immunity and transmission risk depend on 
various thresholds (e.g. recent incidence corresponds to 
cases reported in the last month; second vaccine doses 
are only taken into account for the last 120 days). These 
thresholds can easily be changed in the code to gener-
ate sensitivity analyses, or to adapt to the characteristics 

of new variants or vaccines. Other covariates that were 
considered for inclusion in the model were popula-
tion mobility indices (such as the Google mobility index 
[42]) and binary covariates for various NPIs (such as the 
Oxford Stringency Index [43]), but these were found 
either to lead to parameter identifiability issues or not to 
improve predictive performance, and their data sources 
have been discontinued.

Model fitting
To make forecasts of future cases and deaths, we fit the 
model to case data reported between September 2020 
and the latest reported date for each country (currently 
end of April 2023) to estimate the regression coefficients 
β(ϕ)and β(ν) . The model is fit separately for each country. 
We do this via maximum-likelihood estimation, as imple-
mented in the surveillance and hhh4addon R packages.

Case forecasts
We use the parameter estimates from the model fitting 
to generate four-week-ahead forecasts of daily case 
numbers in each region and age group by simulating 
the model forward 28 days with projected values of the 
covariates. We used the latest value of the covariates 
describing vaccine coverage and testing, and the mean 
value over the past 30 days for the number of cases 
in the rest of Europe in the past month. We run 100 
simulations for each country to account for stochastic-
ity (from the negative binomial draws for the number 
of cases) and parameter uncertainty (from model fit-
ting). We do this by drawing ten sets of parameter val-
ues using the parameter covariance matrix estimated 
from the model fitting, and running ten simulations 
for each parameter set. We output the median, 2.5th, 
25th, 75th, and 97.5th percentiles of the resulting pre-
dicted distribution for each date and region (and age 
group for the age-stratified model) for visualisation in 
the RShiny app.

Death forecasts
We use simple linear regression models to gener-
ate four-week-ahead forecasts of weekly numbers of 
reported deaths. To do so, we estimate the Case Fatal-
ity Rate (CFR), and combine it with the recent number 
of reported cases to forecast the number of deaths, We 
first aggregate the number of reported cases and deaths 
by week, and compute a proxy for the age-stratified CFR 
assuming a three-week delay between weekly reported 
cases and reported deaths [44–46]. Specifically, we com-
pute the CFR for age group ai in region i at week w as:

CFRaiw = Daiw/Na,i,w−3
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where Naiw and Daiw are the numbers of cases and 
deaths in age group a , in NUTS-1/NUTS-2 region i , in 
week w . The death forecast model was implemented at 
a NUTS-1/NUTS-2 geographical scale since death data 
was not always available at a NUTS-3 level.

We then calculate ∆CFRaiwx , the change in CFR, and 
∆Naiwx , the change in the number of cases, between the 
prediction date and the forecast horizon:

where x is the forecast horizon (1, 2, or 3 weeks). We 
implement a linear regression model for each forecast 
horizon and age group, with ∆CFR as outcome, and ∆N  
as explanatory variable, again using a three-week delay:

We then use the estimates of αax and βax to predict 
∆CFR between the last week of reported case data ( wpred ) 
and the forecast dates ( wpred + 1 , wpred + 2 , wpred + 3 ), 
and calculate the predicted CFR as:

(using a sample of 10 values of ∆CFRaiwx , computed 
from the mean estimate and the prediction interval of 
the linear regression). Finally, we draw the number of 
new weekly deaths each week using a binomial distribu-
tion, from the estimated CFR, and the number of cases 
reported three weeks before:

We draw 500 forecasts for Da,i,wpred+x in total (50 per 
value of CFRa,i,wpred+x ). Given the three-week delay 
between cases and deaths, one-, two-, and three-week-
ahead death forecasts are generated using already 
reported case data. In contrast, four-week-ahead death 
forecasts require one-week-ahead case forecasts. We 
estimate the change in CFR using the regression param-
eters from the three-week-ahead forecasts and the four-
week change in number of cases in the one-week-ahead 
case forecasts

Scenario simulations
To explore the impact of variations in transmission inten-
sity or implementation of non-pharmaceutical inter-
ventions (NPIs), we generate 28-day forecasts under 
combinations of the following scenarios, by changing the 

∆CFRaiwx = CFRaiw − CFRa,i,w−x

∆Naiwx = Naiw − Na,i,w−x

∆CFRaiwx = αax + βax∆Na,i,w−3,x

CFRa,i,wpred+x = CFRaiwpred
+∆CFRaiwpredx

Da,i,wpred+x ∼ Binomial(Na,i,wpred+x−3,CFRa,i,wpred+x)

∆CFRaiw4 = αa3 + βa3∆Na,i,w+1,4

values of the epidemic predictor ϕait , or the endemic pre-
dictor νait:

– Moderate (20%) or large (40%) increase in transmis-
sion intensity ( ϕait ), due to inherent properties of the 
pathogen (i.e. emergence of a new, more transmissi-
ble variant), or to changes in behaviour.

– Moderate (20%) or large (40%) decrease in transmis-
sion intensity ( ϕait ), due to changes in human behav-
iour or NPIs. Furthermore, for countries where an 
age-stratified model was implemented, this decrease 
can be targeted at a certain age group (children and 
teenagers below 20 years old, adults between 20 and 
60 years old, or older inhabitants), and implemented 
one week after the current date.

– Removal of all importations, for instance due to bor-
der closure (i.e. νait = 0).

All scenarios affect every region in the same way (i.e. 
we do not consider local NPIs). We generate 100 simula-
tions under each scenario.

Data
Several publicly available data sources are used to imple-
ment the model and are summarised in Table  1. Since 
compilation of COVID-19 surveillance reports in cen-
tralised databases was interrupted in early 2022 in many 
countries, the majority of the data, including the case and 
death data, is imported from country-specific sources.

Case and death data
Local case data at a NUTS-3 level was used in all coun-
tries (age-stratified in France and Czechia). For Czechia, 
death data at NUTS-3 level was used, but for Italy and 
France, death data was only available at NUTS-1/
NUTS-2 level. Numbers of deaths were taken to be 
those reported in the national databases for each coun-
try, regardless of potential differences in how COVID-19 
deaths were defined between countries.

Covariate data
Where available, daily age-stratified (for the age-strat-
ified model) vaccination data at NUTS-3 regional level 
is used, though most sources provide weekly data, and a 
two-week delay for protection from each dose to develop 
is assumed. Publicly available testing data varies con-
siderably in spatial resolution (for some countries only 
national data is available) and age stratification (for some 
countries only total data is available), so age-stratified 
national testing data is used as a default and subnational 
data used when available. Age-stratified regional popula-
tion data is drawn from a different source for each coun-
try (Table 1). Data on the proportion of different variants 
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among sequenced cases is drawn from the ECDC variant 
database [47]. The urban-rural status of each NUTS-3 
region is taken from the Eurostat database (database 
labelled “urban-rural remoteness”) [48]. Daily numbers 
of cases in the rest of Europe are taken from the World 
Health Organisation database of daily numbers of cases 
and deaths in different countries [49].

Calibration analysis
We evaluate the ability of the model to generate accurate 
(“well-calibrated”) and reliable case and death forecasts 
in each country by fitting the model up to a set of dates 
in a calibration period, generating 28-day-ahead forecasts 
from these dates using the model fits, and comparing 
these forecasts with the data. The forecasts are gener-
ated by re-fitting the model for each calibration date (i.e. 
we do not use the data posterior to the calibration date 
to generate the forecasts). We used weekly dates from 
29th October 2022 to 22nd April 2023 (i.e. 25 calibration 
dates), as the calibration period. A model is deemed well-
calibrated if it can identify its own uncertainty in making 
predictions, i.e. if the data points are evenly distributed 
across the prediction intervals generated by the model. 
Since the reliability of our forecasts is likely to depend 
on the prediction horizon, we compare the performance 
of the model for one-, two-, three-, and four-week-ahead 
forecasts, to determine how quickly the quality of the 
forecasts declines.

We use various metrics and figures to evaluate the cali-
bration. Firstly, we visually compare our weekly national-
level case and death forecasts, obtained by summing up 
the age-stratified and local forecasts, with the ensemble 
forecasts produced by the European COVID-19 Fore-
cast Hub, which serves as a benchmark of short-term 
forecasts of COVID-19 incidence. We also compare 
our national-level forecasts with the ensemble forecasts 
quantitatively via the weighted interval score (WIS) [31], 
a proper scoring rule (i.e. one that measures both calibra-
tion – how accurate the forecasts are – and sharpness 
– how precise the forecasts are) for quantile forecasts, 
and the squared error of the median. This comparison 
assesses whether the overall performance of our model is 
in line with other COVID-19 prediction models.

Secondly, we evaluate our local forecasts against those 
of a baseline model (chosen as the Endemic-Epidemic 
model without transmission between regions, covari-
ates or seasonality, i.e. the model in Eqs.  (1)- (4) but 
with wji = 1 when j = i and wji = 0 otherwise and 
log(ϕit) = α(ϕ) and log(νit) = α(ν) ), using proper scoring 
rules, namely the ranked probability score (RPS), Dawid-
Sebastiani score (DSS) and squared error score (SES) (see 
Supplementary Material for definitions). We also gener-
ate the predictive probability distribution of the local, 

age-stratified (if available) forecasts at each calibration 
date. We then use the Probability Integral Transform 
(PIT) histogram to assess the calibration of the model: in 
models with good calibration, the data should follow the 
predictive probability distribution, and the PIT histogram 
should be uniform. We computed a non-randomised yet 
uniform version of the PIT histogram, to correct for the 
use of discrete values, as described in Czado et al. [58].

Comparison of age‑stratified and non‑age‑stratified model
As age-stratified case and death data is only available for 
certain countries, we explore the impact of fitting the 
model to subnational total case counts for France and 
Czechia on the ability of the model to predict subna-
tional total numbers of cases and deaths. We do this by 
fitting the non-age-stratified equivalent of the age-strat-
ified model in Eqs.  (3)- (4) and (A1)-(A2) with the age-
stratified covariates removed, i.e. Equations  (1)- (2) and 
(A4) (see Supplementary Material), and re-running the 
calibration analysis of the predictive performance of the 
model described above.

RShiny application
All forecasts and predictors generated by the model are 
available in an R Shiny Application (https:// github. com/ 
EU- ECDC/ RShin yCovi dApp). The users can use the 
application to see the latest case and death forecasts of 
the model in each country, compare past forecasts to 
recent data points, generate different transmission and 
NPI scenarios, and observe the regions most at risk of 
transmission according to the model. The forecasts con-
tained in the application are updated weekly.

Results
Calibration analysis: assessing the performance 
of the model
Case forecasts calibration
Firstly, we compute weekly case forecasts across all 
regions and age groups, by summing up all local age 
stratified forecasts, across the calibration period (last six 
months of data). We then compare the one, two, three, 
and four-week ahead forecasts with the observed data, 
and the weekly forecasts from the European COVID-19 
Forecast Hub.

The comparison of the forecasts is shown in Fig.  1; 
Table 2. It demonstrates that our model was able to reli-
ably capture the dynamics observed in the data up to two 
weeks ahead. The magnitude of the peak of the different 
outbreaks is accurately estimated in all three countries, 
and the trend forecasted by our model corresponds to 
the data. Beyond a two-week forecast horizon, the differ-
ence between the forecasts and the data becomes starker, 
in particular during outbreaks (for instance around 

https://github.com/EU-ECDC/RShinyCovidApp
https://github.com/EU-ECDC/RShinyCovidApp
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Fig. 1 Comparison of one-, two-, three- and four-week-ahead national-level case forecasts (rows, top to bottom) for Italy, Czechia and France 
(columns, left to right) from our model (Endemic-Epidemic (EE) model) with ensemble forecasts from the European COVID-19 Forecast Hub 
(ensemble) and observed cases (data) for a calibration period from 29th October 2022 to 22nd April 2023. Dashed lines show median forecasts, 
shaded regions the 95% prediction interval (97.5th – 2.5th percentile) for the forecasts. The gaps in the European COVID-19 Forecast Hub forecasts 
correspond to periods in which no ensemble forecasts were produced. Prediction intervals for the EE model are calculated from 100 simulations 
of the model accounting for uncertainty in the fitted parameter values and stochastic variations. The weekly number of cases is shown using 
a logged axis

Table 2 Median and 95% interval of weighted interval score (WIS) and squared error of the median of one-, two-, three- and four-
week-ahead national-level case forecasts for Czechia, France and Italy for our model (Endemic-Epidemic, EE) and European COVID-19 
Forecast Hub ensemble model (Ensemble) across all time points in the prediction period from 29th October 2022 to 22nd April 2023

Country Forecast 
horizon 
(weeks)

WIS, median (95% interval) Squared error of median, 
median (95% interval)

EE Ensemble EE Ensemble

Czechia 1 3.99 (0.438 − 21)e + 02 6.34 (1.80–103)e + 02 2.13 (0.0147 − 49.4)e + 05 14.00 (0.429–2980)e + 05

2 7.00 (0.347 − 38.70)e + 02 12.6 (2.20–320)e + 02 8.36 (0.0408 − 157)e + 05 52.3 (0.578-32700)e + 05

3 9.99 (0.897 − 48.30)e + 02 18.60 (3.80–744)e + 02 13.7 (0.291 − 244)e + 05 110 (0.01120-189000)e + 05

4 11.10 (1.18–52.70)e + 02 26.10 (5.24–1700)e + 02 14.7 (0.492 − 290)e + 05 168 (1.71-1030000)e + 05

France 1 9.76 (0.101–129)e + 03 10.2 (1.3–86.2)e + 03 1.04 (0.00006-176)e + 08 1.66 (0.0461 − 144)e + 08

2 14.5 (5.50–256)e + 03 11.8 (1.34–184)e + 03 2.89 (0.0095–683)e + 08 2.41 (0.0179–678)e + 08

3 23.1 (3.36–425)e + 03 16.5 (1.97–297)e + 03 5.99 (0.171–1880)e + 08 4.62 (0.0149–1550)e + 08

4 29.6 (2.1–570)e + 03 22.4 (3.26–353)e + 03 9.08 (0.076–340)e + 08 6.49 (0.0606–2480)e + 08

Italy 1 2.73 (0.258 − 40)e + 03 6.63 (1.12-60)e + 03 1.38 (0.0112–219)e + 07 5.02 (0.0239–625)e + 07

2 5.81 (1.36–50.8)e + 03 8.36 (1.64–95.7)e + 03 6.69 (0.674 − 342)e + 07 4.49 (0.173–1720)e + 07

3 9.34 (1.19–71.2)e + 03 11.8 (1.84–109)e + 03 11.9 (0.414–633)e + 07 20.8 (0.00727–2880)e + 07

4 10.5 (0.459 − 93.5)e + 03 15.2 (2.43–142)e + 03 20 (0.0119–1100)e + 07 28.7 (0.0548–5970)e + 07
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December 2022 in France), with changes in case numbers 
being captured with a bigger lag in the forecasts. Based 
on the squared error of the median, the median forecasts 
generated by the model are on par with the ensemble 
forecasts from the European COVID-19 Forecast Hub 
across all forecast horizons (Table  2). There are peri-
ods where our model outperforms the ensemble model 
(e.g. two-week ahead forecasts between November and 
December 2022 in Italy), and others where the ensem-
ble model outperforms ours (January-March 2023 in 
Czechia across all forecast horizons).

However, the dispersion of our forecasts is consider-
ably narrower than that of the ensemble forecasts, par-
ticularly for France. The data points are therefore more 
often outside the 95% prediction interval of our fore-
casts, despite the median forecasts being close to the 
data points, and the median and 95% interval of the 
weighted interval score is higher for France for our model 
than the ensemble model (Table  2). The narrow predic-
tion interval is a consequence of aggregating all local and 

age-stratified forecasts to get the national-level estimate 
rather than directly estimating the national number of 
new cases: since the dispersion of a sum of negative bino-
mial random variables is much smaller than that of each 
individual negative binomial random variable. This is also 
why the prediction interval is narrowest in France, where 
the number of groups is highest (846 groups = 94 regions 
times 9 age groups).

We now assess whether the dispersion of local esti-
mates is in line with the data (i.e. whether the predic-
tion intervals from the model include the observed data 
points). To do so, we compute the case PIT histogram 
for each country and forecast horizon (Fig.  2). We also 
generate PIT histograms stratified by broad age groups 
for France and Czechia (Supplementary Figs.  2 and 3). 
In one-week-ahead forecasts, we observe an inverse 
U-shaped histogram in Italy, indicating that the fore-
casts are slightly overdispersed. The performance of 
the age-stratified model varies in the different age 
groups. The model tends to overestimate the number 

Fig. 2 Probability integral transform histograms showing the calibration of the daily case forecasts from the model for Italy, Czechia and France 
(columns, left to right) for one-, two-, three- and four-week-ahead forecast horizons (rows, top to bottom) for 29th October 2022 to 22nd April 
2023. Uniform histograms indicate well-calibrated forecasts, while U- and inverse U-shaped histograms indicate underdispersed and overdispersed 
forecasts respectively. Red dashed lines at relative frequencies of 0.5 and 1.5 show reasonable bounds for calibration compared to desired relative 
frequency of 1 (blue dashed line)
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of cases in younger age groups (Supplementary Figs.  2 
and 3), while the histograms in age groups between 20 
and 80 years old were flat, indicating good calibration. 
The two-week ahead PIT histogram for Italy also shows 
very good performance, with little sign of bias, although 
the model tends to slightly overestimate the number 
of cases (few observations fall into the highest cat-
egories). Over longer time horizons, the PIT histogram 
becomes U-shaped, i.e. skewed towards extreme values, 
showing that the forecasts generated by the model are 
under-dispersed.

The histograms for Czechia and France are U-shaped, 
indicating that the model is overly confident (i.e. the 
prediction interval is too narrow). The overestimation 
of cases in younger age groups may be due to case inci-
dence being determined by the age-structured contact 
rates used in the model (derived from contact surveys), 
but cases in this age group may also be under-reported as 
they typically have milder symptoms, and so are harder 

to spot without active case finding campaigns. Forecasts 
past two weeks ahead are more strongly biased, and 
underdispersed, but better performance is still observed 
for Italy, where the model is not age-stratified. Similar 
underdispersion was observed in Czechia and France 
when a non-age-stratified model was implemented (Sup-
plementary Figs. 6 and 7).

We also generated local forecasts using a baseline 
model (with no transmission between regions, covariates, 
seasonality, or age-specific intercepts), and compared 
them to the forecasts from the full model (Supplemen-
tary Table  2). The addition of transmission between 
regions, covariates and seasonality to the model substan-
tially improved the predictive performance up to 2 weeks 
ahead for all countries, with an average 37% improvement 
across the three countries in the median RPS at a 2-week 
forecast horizon. This was especially true in Czechia and 
France, where the age-specific dynamics were hard to 
capture without covariates.

Fig. 3 Comparison of one-, two-, three- and four-week-ahead death forecasts (rows, top to bottom) for Italy, Czechia and France (columns, 
left to right) from our model (Endemic-Epidemic (EE) model) with ensemble forecasts from the European COVID-19 Forecast Hub (ensemble) 
and observed deaths (data) for a calibration period from 29th October 2022 to 22nd April 2023. The gaps in the European COVID-19 Forecasts Hub 
forecasts correspond to periods in which no ensemble forecasts were produced. Dashed lines show median forecasts, shaded regions the 95% 
prediction interval for the forecasts
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Death forecasts calibration
The death forecast comparison is shown in Fig. 3; Table 3. 
The performance of the model is not homogeneous 
across countries. The model performs better in Italy 
and Czechia, where the median estimate is closer to the 
observed data, and the 95% prediction interval includes 
the data more often than in France. In France, the model 
was not able to accurately capture the drop in number 
of deaths following the outbreak in December 2022. For 
most dates, the median estimate of the number of deaths 
is similar in our model and the European COVID-19 
Forecast Hub ensemble model (Fig.  3), and the median 
of the squared errors of the median predictions across all 
time points in the prediction period is similar (Table 3). 
The predictive accuracy and coverage of our model is 
closer to that of the ensemble model for the death fore-
casts than the case forecasts (the WIS is closer, Table 3), 
and the impact of forecast horizon on the performance 
is not as severe as for the case forecasts, for instance 
for Italy four-week-ahead forecasts are still in line with 
the number of reported deaths (Fig.  3). This is due to 
the larger prediction intervals generated with the death 
model relative to the number of deaths.

For Czechia and France, the PIT histograms gener-
ated for the local age-stratified weekly death forecasts 
follow much more uniform distributions than those 
for the case forecasts, for all forecast horizons (Fig. 4). 
Since the model was age stratified for both countries, 
the majority of weekly death counts in the data were 0, 
which was easier for the model to capture and forecast. 
In Italy, the prediction intervals tend to be too low, since 

few observed weekly death counts fall into the lower 
categories of the PIT histograms. Therefore, our model 
tends to underestimate the number of weekly deaths 
per region in Italy. The age-stratified PIT histograms 
in Czechia and France (Supplementary Figs.  4 and 5) 
are uniform for younger age groups (where almost all 
observations are 0), and follow an inverse U-shape 
in older age groups, indicating that the forecasts are 
slightly overdispersed.

Visualising the predictions in the R Shiny application
The RShiny app is designed to make four features acces-
sible to the user:

1) Forecasts:  Current and previous four-week ahead 
forecasts of the number of cases and deaths in each 
region (and age group when available).

2) Predictors: The risks of secondary transmission and 
importations estimated by the model

3) Scenarios: The impact of changes in transmis-
sion, be it due to more infectious variants, changes 
in behaviour, or NPIs on case and death forecasts. 
These changes in transmission represent the poten-
tial impact of new variants and/or control measures 
on transmission, and should be interpreted with cau-
tion in a constantly changing epidemiological situa-
tion (impacted for example by behaviour, adherence 
and other factors). Similarly, this model only consid-
ers the epidemiological impact of NPIs; the social or 
economic costs of different control measures is not 
considered in this analysis.

Table 3 Median and 95% interval of weighted interval score (WIS) and squared error of the median of one-, two-, three- and four-
week-ahead national-level death forecasts for Czechia, France and Italy for our model (Endemic-Epidemic, EE) and European COVID-19 
Forecast Hub ensemble model (Ensemble) across all time points in the prediction period from 29th October 2022 to 22nd April 2023

Country Forecast horizon 
(weeks)

WIS, median (95% interval) Squared error of median, median (95% 
interval)

EE Ensemble EE Ensemble

Czechia 1 3.91 (1.34–18.9) 7.1 (2.25-34) 30.5 (0.25–850) 81 (0.55–4320)

2 5.72 (1.69–52.5) 9.81 (3.53–75.7) 110 (1.75–4330) 182 (2.58–22,200)

3 4.49 (1.45–66.9) 9.33 (3.99–212) 60.1 (0.144–7970) 225 (25-160000)

4 6.9 (2.13-42) 16.3 (4.44–546) 240 (5.06–2770) 362 (4-1110000)

France 1 41.7 (3.61–195) 28.1 (11.3–82.8) 6320 (7.19–47,500) 1870 (50.7-28400)

2 39.9 (5.41–206) 37 (12.3–88.9) 3800 (83.6-57200) 1850 (34-30400)

3 43.2 (10.9–199) 58.5 (18.2–115) 5780 (135-67000) 5630 (293-41900)

4 53.1 (4.59–185) 47.7 (17.2–199) 5820 (34.8-50200) 4620 (4.05-119000)

Italy 1 28.9 (4.01–129) 39.2 (21.7–114) 760 (2.59–26,500) 2510 (72.9-45300)

2 34.3 (3.87–213) 46.6 (19.8–156) 2920 (18.6-59700) 1940 (49-70200)

3 49.2 (5.32–192) 63.3 (33.7–187) 7440 (76.2-56900) 6520 (256-92000)

4 30.8 (6.39–205) 66.3 (33.2–255) 3540 (111-64500) 6240 (270-141000)
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4) Replicate calibration: The forecasts generated over 
the calibration period, at a local and age-stratified 
level.

Previous and current forecasts
Case and death forecasts can be viewed via a map of the 
predicted median case/death incidence over the next 
two weeks, or via time series plots by region (and age 
group when age-stratified data is available) of the median 
numbers of daily cases/weekly deaths over the next four 
weeks (with 50% and 95% prediction intervals) (Fig.  5). 
Forecasts can be visualised at different geographical 
scales, either at NUTS-3 level or NUTS-1/NUTS-2 level. 
The accuracy of past forecasts at different geographical 
scales and over different time horizons can be visually 
assessed by varying the date from which to predict (to a 
date in the past) and comparing past predictions to the 
observed data.

Local predictors of transmission and importations
Spatial heterogeneity in case incidence, transmission and 
importation risk at the latest date of the forecasts is dis-
played in the app via three different maps showing the spa-
tial distribution of cases at a NUTS-3 or NUTS-1/NUTS-2 
level, the local risk of transmission (the population-
weighted average value of the epidemic component for each 
region across all age groups), and the local risk of impor-
tation (the endemic component for each region summed 
across age groups) (Fig.  6). The local risk of transmission 
and importation are shown as a percentage of the highest 
value of the predictor in the country, and give insight into 
the spatial heterogeneity in risk in the country. In all three 
countries, the risk of transmission is more homogeneous 
across the regions than the risk of importation. The risk of 
importation, quantified by the endemic predictor, is heavily 
influenced by the number of inhabitants in a region, so the 
regions gathering most of the importation risks are regions 
containing the major cities in all three countries.

Fig. 4 Probability integral transform histograms showing the calibration of the weekly death forecasts from the model for Italy, Czechia and France 
(columns, left to right) for one-, two-, three- and four-week-ahead forecast horizons (rows, top to bottom) for 29th October 2022 to 22nd April 2023. 
Red dashed lines at relative frequencies of 0.5 and 1.5 show reasonable bounds for calibration compared to desired relative frequency of 1 (blue 
dashed line)
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Short‑term transmission scenarios
Finally, simulations showing the impact of various 
changes in transmission (either increases due to changes 
in behaviour or new variants, or decreases caused by tar-
geted or global NPIs) on predicted numbers of cases and 

deaths are shown in the app via similar figures to those 
used to display the case and death forecasts (Fig.  7). 
Options for exploring the impact of changes in transmis-
sion include combinations of:

Fig. 5 Visualisation of COVID-19 death forecasts for a region of Czechia in the RShiny app. A Map of forecasted 14-day incidence of deaths 
per 100,000 inhabitants from 9th to 23rd January 2023 at NUTS-3 level. B Age-stratified 28-day-ahead death forecasts for the region outlined 
in red in (A). Since the prediction date is 4 weeks in the past, the observed number of deaths is also plotted to allow assessment of the accuracy 
of the forecasts. The closeness of the median forecast to the observed data and the fact that the 95% prediction intervals cover nearly all 
of the observed data points indicate the good predictive performance of the model for this region. Time series forecast plots for other regions can 
be viewed in the app by clicking on those regions in the map. Together, panels (A) and (B) can be used to identify which regions appear to be at risk 
of higher burden

Fig. 6 Visualisation of spatial heterogeneity in case incidence and risks of transmission and importations in Italy in the RShiny app. A Map 
of forecasted percentage change in cases in next week compared to the last week of data in Italy. B Map of local risk of transmission (as quantified 
by the estimated epidemic predictor in the model). C Map of local risk of importation (as quantified by the estimated endemic predictor 
in the model). All maps are at NUTS-2 level and show values on 7th March 2023
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– Increasing transmission by 0, 20, or 40% to repre-
sent different properties of an emerging variant, or 
changes in behaviour that lead to increased risks of 
spread.

– Dropping transmission by 0, 20, or 40% to represent 
the impact of increased NPIs.

– Targeting NPIs at the whole population or a specific 
age group.

– Removing importations from outside the selected 
country to represent stringent border closures.

Throughout all three countries, removing importa-
tions has very little impact on the transmission dynam-
ics in the case forecasts. Local transmission is sufficient 
to maintain transmission without new cases being added 
through the endemic component. On the other hand, 
the moderate and large changes in transmission through 

NPIs or changes in behaviour have a large impact on the 
forecasted number of cases and deaths. 

Discussion
We have developed a framework to forecast subnational 
COVID-19 case and death incidence up to 4 weeks ahead, 
and explore the potential impact of changes in transmis-
sion on reported incidence. The framework has been 
applied to France, Czechia and Italy. The model outputs 
are based on routinely collected, publicly available surveil-
lance data. We have also developed a RShiny app, where 
users can visualise the 4-week-ahead forecasts of both 
reported cases and deaths, and the predicted impact of 
changes in transmission. The code we developed to imple-
ment the model and the RShiny App is publicly available 
in two Github repositories: https:// github. com/ EU- ECDC/ 
RShin yCovi dApp and https:// github. com/ EU- ECDC/ 

Fig. 7 Visualisation of impact of different scenarios for changes in transmission (due to changes in behaviour, a new variant, or a change 
in NPIs) on forecasted cases in France in the RShiny app. Map of forecasted 14-day case incidence from 7th to 21st March 2023 at NUTS-3 
level and age-stratified time series plots of national four-week-ahead case forecasts for (A) no change in transmission, and (B) a 40% decrease 
in transmission among 20-60-year-olds due to NPIs targeted at 20–60 year-olds with a one-week delay to effect

https://github.com/EU-ECDC/RShinyCovidApp
https://github.com/EU-ECDC/RShinyCovidApp
https://github.com/EU-ECDC/BackendCovidApp
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Backe ndCov idApp. The model fits and scenario simula-
tions are updated automatically every week.

The main aim of the framework developed here was 
to evaluate the local risk of transmission in the presence 
of complex immunity patterns. As more data sources 
became available, we selected the covariates that were 
associated with changes in level of immunity (recent 
incidence, vaccine coverage), or with changes in behav-
iour and transmission risk (variant, testing). As outbreaks 
unfold, the inclusion of new covariates during real-time 
forecasting can stem from new datasets becoming avail-
able (e.g. testing data, number of additional vaccine 
doses), or changes in transmission patterns, such as the 
emergence of new variants. Since such changes may take 
several weeks to identify and include in the model, the 
scenario simulation may highlight that recent dynamics 
would be in line with changes in transmission.

Case and death forecasts aggregated at a country 
level perform comparably with the European COVID-
19 Forecast Hub ensemble model, a benchmark in epi-
demic forecasting built as an ensemble of forecasts from 
many independent models. In addition, our framework 
provides NUTS-3-region-level (i.e. much more highly 
spatially resolved) and, if age-stratified data is avail-
able, age-stratified forecasts. Therefore, it can be used 
for more targeted policy making and planning at a local 
level. Given the significant spatiotemporal heterogeneity 
in COVID-19 incidence, and changes in age patterns, the 
detailed local-level visualisation provided by our model is 
particularly useful to evaluate targeted control measures. 
This study highlights the need for surveillance systems 
that gather accurate, timely, age-stratified data, and the 
value of making such data publicly available to improve 
understanding and prediction of local transmission and 
outbreak response planning.

As demonstrated by our calibration analysis, the sub-
national and age-stratified case and death forecasts are 
accurate up to 2 weeks ahead: the case PIT histograms 
are flat for Italy and for most age groups for Czechia and 
France, while the median country-level forecast is closer 
to the data than the European COVID-19 Forecast Hub 
ensemble forecast. However, the forecasts become less 
reliable beyond a 2-week horizon. This may be due to 
fundamental predictability limits; the difficulty of fore-
casting changes in behaviour and/or sudden changes in 
transmission, e.g. due to the emergence of a new highly 
transmissible variant, more than a couple of weeks into 
the future; or other factors that cause the model to be 
misspecified, and reflects similar findings from other 
forecasting efforts [7, 17, 59]. If COVID-19 transmission 
dynamics become similar to those of seasonal influenza, 
sudden unexpected changes in transmission may become 
rarer, which would improve the performance of the 

model. The age-stratified PIT histograms in both Czechia 
and France show that calibration is especially difficult in 
younger age groups, where changes in case-finding strat-
egy had a big impact that could not be fully captured by 
the testing covariates [60, 61].

The model was built to provide accurate predictions of 
case and death incidence at a regional level. Our results 
show that generating reliable case forecasts several weeks 
ahead is challenging, even when using age-stratified local 
data. However, the accuracy of death forecasts decreased 
less rapidly as the forecast horizon increased. The qual-
ity of the case and death forecasts was robust to the 
large reporting changes observed throughout the fit-
ting period, and improved at the latest calibration dates 
where incidence was low in all three countries. This 
may be because local outbreaks in groups at risk in low-
incidence settings are easier to forecast, rather than out-
breaks where all regions are equally vulnerable. Past two 
weeks, forecasts generated by the model appear to be 
overconfident, and underestimate the uncertainty in the 
potential level of transmissions. The alternative transmis-
sion scenarios in the Shiny App therefore help to illus-
trate the full range of variability in short-term regional 
transmission dynamics that is possible. The local risk of 
outbreaks and importations is also represented in the 
Shiny App, using the local predictors of the Endemic-Epi-
demic model. The forecasts, scenarios, and risk map con-
stitute a reliable, thorough representation of the local risk 
of transmission, and thus provide a useful aid for plan-
ning control measures.

The model fits and simulations highlight several fea-
tures of COVID-19 dynamics common to all three coun-
tries: the risk of background importation of cases (i.e. 
new cases that were not linked to recent local infections) 
is always very strongly associated with the number of 
inhabitants in the region. Hence, more populated and 
urban areas are at higher risk of further importations of 
SARS-CoV-2 infections. On the other hand, the risk of 
transmission is relatively homogeneous across regions, 
with no regions where the number of secondary cases 
expected is less than half the region most at risk (Fig. 6B). 
This could change in future COVID-19 dynamics, where 
the local level of immunity may be sufficient to com-
pletely avoid transmission in certain regions, as is cur-
rently observed for pathogens such as measles [34]. The 
vast majority of cases stem from the epidemic compo-
nent of the Endemic-Epidemic model, showing that the 
local transmissibility is sufficient to maintain transmis-
sion, even without input from background importations. 
Therefore, the removal of importations (e.g., by border 
closures) consistently resulted in a minimal impact on 
the expected number of case numbers up to four weeks 
ahead. In contrast, altering the transmission risk within 

https://github.com/EU-ECDC/BackendCovidApp


Page 17 of 20Robert et al. BMC Infectious Diseases          (2024) 24:204  

the regions (e.g. via interventions targeted at specific age 
groups or encompassing the entire population) can sub-
stantially change the forecasted case dynamics. Even with 
strategies targeting a particular age group, we observe 
indirect effects on incidence in all age groups. We did 
not observe a strong effect of changes in transmission 
risk on the four-week-ahead death forecasts. However, 
we emphasise that we considered a three-week delay 
between cases and deaths and, hence, the impact of 
changes in transmission on deaths would be visible for 
longer-term death forecasts (beyond four weeks ahead).

Including other countries
The framework is currently implemented for France, 
Czechia and Italy, but other countries can be straightfor-
wardly incorporated, provided the data required for mak-
ing the subnational daily case and weekly death forecasts 
(namely NUTS-3-level daily case counts, subnational 
daily death counts, NUTS-3-/NUTS-2-level daily/weekly 
vaccinations administered by dose, and NUTS-3-/
NUTS-2-/national-level daily/weekly numbers tested) for 
those countries is available and up-to-date. Full instruc-
tions for incorporating a new country are available in the 
public GitHub repository for the model code: https:// 
github. com/ EU- ECDC/ Backe ndCov idApp.

Age stratification
Our comparison of forecasted and observed numbers 
of cases and deaths over all age groups for France and 
Czechia indicates that the non-age-stratified model 
has similar predictive performance in terms of overall 
cases/deaths as the age-stratified model (Supplementary 
Figs. 6–9), albeit with slightly worse prediction of deaths 
(Supplementary Fig.  9). We believe the loss in perfor-
mance observed in death forecasts to be due to changes 
in the age structure of reported cases from changes in 
case detection. Indeed, active case finding may lead to 
milder cases being reported, while interruption of such a 
strategy would mean that a larger proportion of the cases 
are severe. Such changes are likely to be reflected in the 
age structure of the cases and such information is lost in 
the non-age-stratified version of the model.

The overall good performance of the non-age-stratified 
model is encouraging for the application of the model to 
other countries, very few of which report age-stratified 
case and death data. While we did not observe a sig-
nificant improvement by age-stratifying the model, we 
emphasise that age-stratified data and models are crucial 
for evaluating the impact of targeted (age-specific) non-
pharmaceutical and pharmaceutical interventions, as 
well as for health-economic analyses (e.g., the computa-
tion of DALYs).

Limitations
Our forecasting framework does have some limitations. 
First, as for all forecasting studies, the forecasts are only 
as reliable as the input data, and we cannot guarantee the 
accuracy of the data imported from public data sources, 
which may have reporting errors or biases that we are 
not able to account for. In addition, the definition of a 
COVID-19 death may vary across countries. The frame-
work will only work as long as subnational (and age-
stratified, for France and Czechia) case and death data 
continues to be reported online in the same location and 
format as it is currently, but several countries have ceased 
reporting subnational case and death data or changed 
the format or location of their reporting since we started 
developing the framework. Changes in data availability 
could potentially be addressed via changing the  spatial 
resolution of the model, but this would involve substan-
tial modification of the model structure. We only forecast 
reported cases, which reflect a combination of underly-
ing incidence of infections and reporting, rather than the 
“true” number of cases. Thus, if testing levels are very 
low, forecasted case numbers could be low even if circu-
lation is high. However, testing level is adjusted for in the 
fitting of the model, so forecasts reflect the expected inci-
dence given current testing levels, and still provide a use-
ful indication of changes in transmission. The model for 
the death forecasts, which uses an estimate of the recent 
CFR (with uncertainty) to predict deaths, is relatively 
simple and assumes a constant relationship between 
changes in case numbers and changes in the CFR over 
time. However, the calibration analysis shows it provides 
a relatively straightforward and reliable means of trans-
lating case forecasts into death forecasts.

The number of daily cases in each region and age group 
is drawn from a negative binomial distribution. In this 
model framework, the overdispersion parameter is con-
stant throughout the fitting period, which implies that 
the variability around the mean estimate is not affected 
by the epidemiological situation. This is a strong assump-
tion, and extensions accounting for time-varying over-
dispersion, or association between overdispersion and 
covariates would improve the Endemic-Epidemic frame-
work. Furthermore, because of the large number of 
regions and age groups per country, the national-level 
estimates of the number of cases were computed as a 
sum of hundreds of negative binomial draws. This leads 
to very narrow prediction intervals, especially in France, 
which do not fully capture the uncertainty around the 
national estimates.

The contact matrices used to fit the model for France 
and Czechia were taken from pre-pandemic studies, 
and may not reflect the contact patterns between age 

https://www.github.com/EU-ECDC/BackendCovidApp
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groups in 2020 and 2021. Ideally, time-varying matrices 
would have been used to estimate age-stratified contact, 
but such matrices were not available or straightforward 
to implement in the Epidemic-Endemic framework [62]. 
The addition of an age-specific intercept in the epidemic 
component allowed the model to modify the risk of 
transmission in each group where the number of contacts 
was not in line with the case counts. However, since these 
coefficients were not time-dependent, the model consid-
ers this age-stratified risk of new cases to be constant (if 
all other covariates do not vary).

We do not include information on NPIs or population 
mobility in the covariates in the model despite the improve-
ments in predictions these may yield, since centralised 
databases of these covariates (such as Google Mobility data 
[42], the Oxford Stringency Index [43], and the ECDC-
JRC Response Measures Database [2]) are no longer being 
updated, and binary covariates made the model less con-
sistent and comparable between countries, while poten-
tially not being specific enough (i.e. they incorporated the 
impact of other parameters associated with transmission). 
Including more NPI covariates also led to issues with iden-
tifying the effects of different interventions as many were 
implemented at the same or overlapping times.

Generalising beyond COVID-19
The flexible framework developed in this paper could be 
used or readily adapted to model incidence of both novel 
and seasonal pathogens of public health importance, such 
as influenza, in order to predict local health burden and 
inform outbreak response. The Endemic-Epidemic frame-
work underlying our model has already been applied to 
a variety of other pathogens including measles, chol-
era, leishmaniasis and pertussis [34, 63–65]. However, 
the number of model parameters that can be estimated 
directly depends on the amount of data available. There-
fore, in its current specification (with a large number of 
parameters), the model may not be suitable for the early 
stages of an outbreak (except if the pathogen is seasonal, 
with available data on previous outbreaks). However, it 
can be used to estimate the impact of various covariates 
(from different data sources) on transmission risk.
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