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Abstract

Background: Uropathogenic Escherichia coli (UPEC) are amongst the most frequent causes of urinary tract
infections. We report a systematic review and meta-analysis of virulence factors and antimicrobial resistance of
UPEC isolated from urinary tract infections.

Methods: A systematic review and meta-analysis were performed using PRISMA guidelines (Research Registry ref.
5874). Data were extracted from PubMed/MEDLINE and ScienceDirect databases for studies published from January
1, 2000 to December 31, 2019. Studies reporting antimicrobial resistance and virulence factors of UPEC isolated in
confirmed urinary tract infections (≥105CFU/ml) were eligible. Prevalence of antimicrobial resistance and virulence
factors of UPEC were estimated using random-effects meta-analysis model. Estimates with 95% confidence intervals,
I-square (I2) statistic, and Cochran’s Q test were computed using the score statistic and the exact binomial method
by incorporating the Freeman-Tukey double arcsine transformation of proportions.

Results: Our search returned 2504 hits, of which 13 studies were included in the meta-analysis, totalling 1888 UPEC
isolates. Highest antimicrobial resistance rates were observed among the antibiotic class of tetracycline in 69.1%
(498/721), followed by sulphonamides in 59.3% (1119/1888), quinolones in 49.4% (1956/3956), and beta-lactams in
36.9% (4410/11964). Among beta-lactams, high resistance was observed in aminopenicillins in 74.3% (1157/1557)
and first generation cephalosporins in 38.8% (370/953). Meanwhile, virulence factors with highest prevalence were
immune suppressors (54.1%) followed by adhesins (45.9%). Taken individually, the most observed virulence genes
were shiA (92.1%), CSH (80.0%), fimH/MSHA (75.3%), traT (75.1%), sisA (72.2%), iucD (65.7%), iutA (61.8%), kpsMTII
(60.6%), and PAI (55.2%).
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Conclusions: The increased antibiotic resistance of UPEC isolates was demonstrated and suggested a need for
reassessment of empirical therapies in urinary tract infections treatment caused by this pathogen. In addition, this
pathotype exhibited diverse surface and secreted virulence factors.

Keywords: Urinary tract infection, Escherichia coli, Virulence factors, Antimicrobial resistance, Systematic review,
Meta-analysis

Background
Antimicrobial resistance (AMR) has increasingly been
reported in bacteria causing urinary tract infections
(UTI) during the last few decades and has become a
major public health concern [1]. Globally the most com-
mon cause of UTI is Escherichia coli [2], a ubiquitous
gram negative pathogen and member of the family En-
terobacteriaceae. Uropathogenic E. coli (UPEC) are
among the most common extra-intestinal pathogenic E.
coli (ExPEC) encountered [3]. E. coli typically acquires
AMR genes through mobile genetic elements (MGE),
such as plasmids, insertion sequences, transposons, and
gene cassettes/integrons [4]. A large number of
resistance-encoding mobile elements, in particular plas-
mids, are shared between different members of the En-
terobacteriaceae and thus further promote the spread of
resistance genes [5]. MGE can also encode for virulence
factors, and there may be interplay between virulence
and antimicrobial resistance [4].
E. coli is a commensal inhabitant of human and animal

gastrointestinal tract and maintains the stability and
homeostasis of luminal microbial flora by the symbiotic
interplay with its hosts [6]. While confined in the intes-
tinal lumen, this bacterium remains harmless in healthy
individuals but some strains may cause diarrhoea in
some circumstances. Meanwhile, several E. coli lineages
have acquired specific virulence characteristics, giving
them the capacity to thrive in specific niches and cause
disease generally grouped in three clinical syndromes:
enteric/diarrhoeal disease, urinary tract infections (UTIs)
and sepsis/meningitis [7]. These virulence characteristics
are often encoded on genetic elements that can be mobi-
lized to establish new combinations of virulence factors
in different strains, or on genetic elements that have
once been mobile but now become fixed in the chromo-
some [7]. UPEC has large and small pathogenicity
islands (PAIs), which are integrated mobile elements
that encode for the key virulence factors. These allow
UPEC to infect an immunocompetent host, as they en-
code for factors enabling it to colonize the periurethral
area and ascend the urethra to the bladder [7].
Key virulence factors involved in the pathophysiology of

UTIs function in invasion, colonization and mediation of
host defences subversion [8]. PAIs furthermore often carry
cryptic or functional genes that encode mobility factors,
such as integrases, transposases and insertion sequence

elements [7], which are traces from their mobile history
and may promote and contribute to the spread and emer-
gence of antimicrobial resistance [9–12].
Community and hospital acquired UTIs significantly

affect the life quality of infected patients [13]. It has been
reported that E. coli is expected to cause loss of lives of
more than 3 million people each year by 2050 following
the increase in multi-drug resistance. A particular focus
is placed to track carbapenem-resistant strains which are
spreading world-wide and only leave few last-line treat-
ment options like colistin or tigecycline, which are
known for severe side-effects and not applicable for all
types of bacterial infections due to reduced tissue per-
meation, respectively; and resistance mechanisms against
both of these are increasingly observed [14].
Here, we report a systematic review and meta-analysis

of virulence factors and antimicrobial resistance of
UPEC. We also briefly review the relationship between
virulence factors and antimicrobial resistance.

Methods
The preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines [15] were used in
conducting this systematic review. The protocol of this
review was registered in the Research Registry (ref 5874)
(https ://www.researchregistry .com/browse-the-
registry#home/registrationdetails/5f2bbf5e83bd1d001
7e9ec9e/).

Search strategy
The electronic bibliographic databases PubMed/MED-
LINE and ScienceDirect were searched in all fields with
the search terms combined as follow: Virulence factors
OR virulence AND factors OR virulence factors AND
associated AND anti-infective agents OR anti-infective
agents OR anti-infective AND agents OR anti-infective
agents OR antimicrobial AND resistance AND uro-
pathogenic Escherichia coli OR uropathogenic AND
Escherichia AND coli OR uropathogenic Escherichia coli
AND UPEC.
A 20 year time period, between 2000 and 2019, was

considered for the search. This time limit was based on
possible changes in the virulence, microbiology, epi-
demiology and antimicrobial susceptibility patterns of
uropathogenic E. coli [16]. The number of records re-
trieved for each database searched was recorded.
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Reference lists of identified studies were checked manu-
ally to supplement the electronic search. Retrieved stud-
ies were exported into Mendeley Desktop version 1.19.4
and screened against inclusion and exclusion criteria.

Inclusion and exclusion criteria
Observational (cross sectional, prospective and retro-
spective cohort, and case-control) studies reporting the
virulence and antimicrobial susceptibility patterns of
uropathogenic E. coli isolated from human samples from
patients of any age and region were included in this re-
view. Studies published before 2000 and after 2019, and
those reporting results from animal samples were ex-
cluded. Grey literature was not considered. Studies pub-
lished in any other language than English and those with
non-accessibility to full-texts were excluded. Only stud-
ies reporting their microbiologically confirmed UTI
(≥105CFU/ml) using the Centre of Disease Control and
Prevention’s definition were included in this review [17].
This review included both inpatients and outpatients
with UTIs. Hence, data from a study which used both
settings were considered as two separate studies and
each was counted as a single study.

Study selection
The identified titles and abstracts of all the studies re-
trieved in the electronic databases and searched manu-
ally were screened for their appropriateness and
relevance to the main aim of the systematic review.
Studies that were irrelevant were excluded at this stage.
Full texts of potentially relevant studies were down-
loaded and added to a created Mendeley library and
were assessed for inclusion and exclusion criteria of this
systematic review. Quality and risk bias assessment was
done for included studies containing relevant data for
the systematic review and meta-analysis.
The author GKB performed the selection process and

other stages of this review. Ten percent of identified
studies were screened independently for inclusion and
exclusion criteria by JM at each stage of the review. The
discrepancies in either the decision on inclusion or ex-
clusion of studies, quality assessment or on data extrac-
tion were discussed between GKB and JM to make the
consensus for the final decision.

Data extraction
Data extraction was independently done by GKB and JM
and was compared for matching. For variables with
missing information or with disagreement between the
two authors, a consensus between the authors was made
for the final decision.
An Excel 2010 spreadsheet was used for data extrac-

tion and contained the following data for studies that
met inclusion criteria: first author, year of publication,

country/place of study, study population/sample size, pa-
tient types (inpatients or outpatients), prevalence of anti-
microbial resistance of different antibiotics tested,
method used for detecting virulence factors, and preva-
lence of virulence factors.

Quality assessment and risk of bias in individual studies
The Newcastle-Ottawa Scale (NOS) adapted for cross-
sectional studies was used for assessing the risk of bias
of included studies (Supplemental file 1). This scale was
adapted from the NOS quality assessment scale for co-
hort studies. The assessment was in the area of selection
(maximum of 3 points), comparability (maximum of 2
points) and outcome (maximum of 3 points). This was
done by GKB and JM. Studies were classified into 4 cat-
egories: very good (9–10 points), good (7–8 points), sat-
isfactory (5–6 points) and unsatisfactory (0–4 points).
The complete assessment of studies is found in the sup-
plemental file 2.

Statistical analysis
We used metaprop and metaprop_one commands in
Stata 16 for Windows to conduct the meta-analysis.
Prevalence of antimicrobial resistance and virulence fac-
tors of UPEC were estimated using random-effects
meta-analysis model. The 95% Wald confidence intervals
were computed using the score statistic and the exact bi-
nomial method by incorporating the Freeman-Tukey
double arcsine transformation of proportions for avoid-
ing exclusion of studies with proportion equal to 0 or 1
from the calculation of the estimate [18]. The effect size
of the prevalence was considered statistically significant
when p-value was < 0.05. The proportions with 95%
Wald confidence intervals were generated. I-square (I2)
statistic test was used to evaluate the proportion of stat-
istical heterogeneity and the Cochran’s Q test was used
to explain the degree of heterogeneity. The funnel plot
publication bias was not assessed as it is not relevant for
the prevalence studies [19], however, the Egger’s linear
regression test was used.

Results
Study selection
The literature search using PRISMA identified a total of
2536 studies (2504 studies through databases searching
and 32 from other sources). After removing duplicates,
1053 were screened for eligibility. After the screening of
titles and abstracts, 1006 studies were excluded. Full-
texts of the remaining 47 studies were read and 35 more
studies were excluded. At the end, 12 papers were in-
cluded; from which 14 studies were included in the
qualitative analysis and 13 in the meta-analysis as ex-
plained below (Fig. 1).
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Study characteristics
Study characteristics of included studies are presented in
Table 1. The 14 studies reported in this systematic re-
view represent 8 countries, namely Iran (6 studies),
China (2), India (1), Poland (1), Jordan (1), Mexico (1),
Brazil (1) and Nigeria (1). The total sample size of UPEC
isolates from the 14 studies is 1888 (range 32–227). Nine
of the 14 studies report UPEC from inpatients [2, 20–23,
25, 27, 29, 30] while 5 are from outpatients [20, 24, 26,
28, 30]. Among the 14 studies, 2 studies reported UPEC
from in- and out-patients [20, 30] and were therefore
considered each as single study for each category of pa-
tients. Meanwhile, 2 other studies [26, 27] reported
UPEC in in- and out-patients but did not specify sample
size in each category of patients. After consensus of au-
thors, one was considered as reporting in-patients [27]
and another one out-patients [26]. Among the 13 studies
included in the meta-analysis, one reported in- and out-
patient UPEC but did not distinguish the two categories
while reporting the antimicrobial resistance rate [20],

and was hence considered as a single study in the meta-
analysis.
Of the 14 included studies, 9 studies used the

polymerization chain reaction (PCR) as method for de-
tecting virulence factors of UPEC [2, 20, 22–26, 28, 30],
3 studies used phenotypical methods [21, 27, 29], while
2 studies used both methods [22, 24].

Quality assessment and bias assessment
Based on the quality assessment of studies using the
NOS assessment, six studies scored 8 points [20, 23, 24,
26, 29, 30], which could be regarded as good studies.
While eight studies scored 5–6 points [2, 20–22, 25, 27,
28, 30], and could be regarded as satisfactory studies.
The detailed NOS assessment is found in the supple-
mental file 2. A bias assessment was done on the coun-
tries of origin of the included studies. The Egger’s
regression intercept was of − 7.71, with a standard error
of 2.23, 95% CI: − 2.26 – 3.46, t-value of 6.0 and p =
0.013. The fact that almost 50% of included studies in

Fig. 1 The PRISMA flowchart for literature search and study selection
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this meta-analysis came from a single country could
have introduced a bias in the analysis.

Antimicrobial resistance and virulence factors of UPEC
Of the 13 studies included in the meta-analysis, the pooled
number of E. coli isolates was 1888. Tables 2 and 3 both
present the specific proportions of antimicrobial resistance
and virulence factors with 95% exact confidence intervals
for each antibiotic and virulence factor, and the I2 and Q
statistics which describe proportions of total variations
due to inter-antibiotics/virulence factors heterogeneities.
The heterogeneity tests for both antimicrobial resistance
and virulence factors were significant (I2 > 75%). Highest
antimicrobial resistance rates were observed among the
antibiotic class of tetracyclines in 69.1% (498/721)
followed by sulphonamides in 59.3% (1119/1888), quino-
lones in 49.4% (1956/3956), beta-lactams in 36.9% (4410/
11964), aminoglycosides in 28.7% (881/3069), nitrofurans
in 20.0% (297/1486) and fosfomycin in 8.4% (9/107)
(Fig. 2a). Among beta-lactams, high resistance was ob-
served in aminopenicillins in 74.3% (1157/1557), beta-
lactam associated with inhibitors in 39.0% (604/1550),
cephalosporins in 35.8% (2564/7155) and monobactam in
22.0% (78/354). However, carbapenems had the least rate
of resistance, 0.5% (7/1348) (Fig. 2b). Among the cephalo-
sporins, high rates of resistance were observed in the first
generation cephalosporins in 38.8% (370/953) and third
generation cephalosporins in 37.0% (1421/3838) (Fig. 2c).
While taken individually, the highest resistance was ob-
served in the following antibiotics: ampicillin 75.0% (835/
1114, 95% CI: 0.72–0.77), amoxicillin 72.7% (322/443, 95%
CI: 0.68–0.77), tetracycline 69.1% (498/721, 95% CI: 0.66–
0.72), cotrimoxazole 59.3% (1119/1888, 95% CI: 0.57–
0.61), nalidixic acid 59.0% (777/1317, 95% 0.56–0.62),

cefpodoxime 57.8% (166/287, 95% CI: 0.52–0.63), cepha-
lexin 56.6% (146/258, 95% CI: 0.50–0.63), and cefuroxime
55.2% (389/705, 95% CI: 0.51–0.59). Meanwhile, virtually
almost all isolates were susceptible to the carbapenems
with the following resistance rates: ertapenem in 0.4% (1/
227, 95% CI: 0.00–0.03), imipenem 0.7% (5/567, 95% CI:
0.00–0.02), and meropenem in 0.3% (1/354, 95% CI: 0.00–
0.02) (Table 2).
Regarding the virulence factors, both factors associated

with E. coli surface cell and those secreted and exported
to the site of action were observed. Taking into account
the groups of virulence factors according to their action
mechanisms, a high prevalence was observed among im-
mune suppressors in 54.1% (874/1615), followed by
adhesins in 45.9% (2316/5048), siderophore systems in
41.8% (647/1549) and toxins in 19.9% (529/2664) (Fig.
2d). Taken individually, the most prevalent virulence fac-
tors from adhesins group were: the cell surface hydro-
phobicity (CSH) in 80% (120/150, 95% CI: 0.73–0.86),
the fimbrial and afimbrial adhesins: fimH/MSHA in
75.3% (881/1170, 95% CI: 0.73–0.78), fimP/MRHA in
35.6% (219/616, 95% CI: 0.32–0.39), the serum resist-
ance coded by the gene traT in 75.1% (266/354, 95% CI:
0.70–0.79), the capsular polysaccharide K antigen
(kpsMTII) in 60.6% (120/198, 95% CI: 0.54–0.67) and
pap in 30.2% (350/1158, 95% CI: 0.28–0.33). Frequencies
of immune suppressors coded by the pathogenicity
islands (PAIs) genes were shiA in 92.1% (209/227, 95%
CI: 0.88–0.95), sisA in 72.2% (164/227, 95% CI: 0.66–
0.78), sisB in 24.7% (56/227, 95% CI: 0.19–0.31) and PAI
in 55.2% (265/480, 95% CI: 0.51–0.60). The secreted
virulence factors exported to the site of infection were
represented by toxins and siderophore molecules. The
most frequent toxins observed were the haemolysin

Table 1 Characteristics of included studies after full assessment

Authors Publication year Country Sample size Type of patients Method for VFs detection NOS points

Ghazvini et al. (1) [20] 2019 Iran 168 Outpatients PCR 8

Ghazvini et al. (2) [20] 2019 Iran 32 Inpatients PCR 6

Jadhav et al. [21] 2011 India 150 Inpatients Phenotypical 6

Kot et al. [22] 2016 Poland 173 Inpatients Phenotypical, PCR 6

Malekzadegan et al. [23] 2018 Iran 126 Inpatients PCR 8

Miranda-Estrada et al. [24] 2017 Mexico 107 Outpatients Phenotypical, PCR 8

Neamati et al. [25] 2015 Iran 150 Inpatients PCR 5

Oliveira et al. [26] 2011 Brazil 204 Outpatients PCR 8

Olorunmola et al. [27] 2013 Nigeria 137 Inpatients Phenotypical 5

Raeispour et al. [2] 2018 Iran 60 Inpatients PCR 5

Shakhatreh et al. [28] 2019 Jordan 227 Outpatients PCR 5

Tabasi et al. [29] 2015 Iran 156 Inpatients Phenotypical 8

Wang et al. (1) [30] 2014 China 69 Inpatients PCR 8

Wang et al. (2) [30] 2014 China 129 Outpatients PCR 6
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(hlyA) in 22.1% (334/1511, 95% CI: 0.20–0.24), the se-
creted autotransporter toxin (sat) in 26.2% (28/107, 95%
CI: 0.19–0.35) and the cytotoxic necrotizing factor-1
(cnf-1) in 13.3% (91/682, 95% CI: 0.11–0.16). For sidero-
phores, the aerobactin system was observed most fre-
quently, and included outer membrane proteins genes:
iucD in 65.7% (95% CI: 0.59–0.72), iutA in 61.8% (0.55–
0.68), the aerobactin (aer) in 52.4% (130/198, 95% CI:
0.48–0.57) and the heme receptor genes (chuA) in 20.3%
(46/227, 95% CI: 0.16–0.26) (Table 3). High rates of
AMR and virulence factors are statistically significant
among in-patients than in out-patients as shown in
Table 4.

Relationship between antimicrobial resistance and
virulence factors in UPEC
In this section, we will briefly review the possible rela-
tion between AMR and virulence factors in UPEC on se-
lected examples, focusing on resistance to quinolones
and beta-lactams. We will discuss how harbouring viru-
lence factors may increase or decrease the possibility of
UPEC to develop resistance to antibiotics, although only
aggregate data were available and trends in AMR and
virulence factor carriage could not be directly related in
this analysis.
Previous studies on UPEC reported that quinolone-

resistant isolates encoded for virulence factor genes

Table 2 Meta-analysis of antibiotic resistance for UPEC isolates from urinary tract infections

Antibiotics No of
studies

n/N Random model Heterogeneity Egger’s test

% (95% CI) P Q P I2 t P

Amikacin 8 214/1074 19.9 (0.18–0.22) < 0.001 344.4 < 0.001 96.5 3.98 0.002

Amoxicillin 3 322/443 72.7 (0.68–0.77) < 0.001 225.6 < 0.001 94.7 4.76 0.001

Amoxiclav 6 407/998 40.8 (0.38–0.44) < 0.001 406.2 < 0.001 97.1 2.35 0.039

Ampicillin 8 835/1114 75.0 (0.72–0.77) < 0.001 222.9 < 0.001 94.6 1.15 0.276

Ampicillin-sulbactam 3 161/354 45.5 (0.40–0.51) 0.089 178.0 < 0.001 93.3 5.54 < 0.001

Aztreonam 2 78/354 22.0 (0.18–0.27) < 0.001 172.8 < 0.001 93.1 24.1 < 0.001

Cefepime 7 280/952 29.4 (0.27–0.32) < 0.001 143.3 < 0.001 91.6 3.38 0.006

Cefixime 3 120/443 27.1 (0.23–0.31) < 0.001 124.0 < 0.001 90.3 5.58 0.001

Cefoperazone-sulbactam 2 36/198 18.2 (0.13–0.24) < 0.001 81.21 < 0.001 85.2 24.2 < 0.001

Cefotaxime 7 379/1055 35.9 (0.33–0.39) < 0.001 235.5 < 0.001 94.9 3.99 0.002

Cefoxitin 4 104/707 14.7 (0.12–0.18) < 0.001 91.61 < 0.001 86.9 13.6 < 0.001

Cefpodoxime 2 166/287 57.8 (0.52–0.63) 0.008 182.7 < 0.001 93.4 11.5 < 0.001

Ceftazidime 9 509/1209 42.1 (0.39–0.45) < 0.001 212.1 < 0.001 94.3 3.33 0.007

Ceftriaxone 5 247/844 29.3 (0.26–0.32) < 0.001 239.6 < 0.001 95.0 5.50 < 0.001

Cefuroxime 5 389/705 55.2 (0.51–0.59) 0.006 288.2 < 0.001 95.8 3.16 0.009

Cephalexin 3 146/258 56.6 (0.50–0.63) 0.035 189.3 < 0.001 93.7 12.8 < 0.001

Cephalothin 3 82/437 18.8 (0.15–0.23) < 0.001 181.0 < 0.001 93.4 3.23 0.008

Cephazolin 3 142/258 55.0 (0.49–0.61) 0.106 168.4 < 0.001 92.9 13.7 < 0.001

Ciprofloxacin 12 792/1781 44.5 (0.42–0.47) < 0.001 265.5 < 0.001 95.5 0.54 0.602

Ertapenem 1 1/227 0.4 (0.00–0.03) < 0.001 0.799 1.000 0.00 0.49 0.634

Fosfomycin 1 9/107 8.4 (0.04–0.15) < 0.001 37.35 < 0.001 67.9 21.0 < 0.001

Gentamicin 13 637/1888 33.7 (0.32–0.36) < 0.001 269.6 < 0.001 95.6 0.70 0.497

Imipenem 7 5/767 0.7 (0.00–0.02) < 0.001 3.719 0.988 0.00 5.02 < 0.001

Meropenem 3 1/354 0.3 (0.00–0.02) < 0.001 1.416 1.000 0.00 2.40 0.035

Nalidixic acid 9 777/1317 59.0 (0.56–0.62) < 0.001 248.2 < 0.001 95.2 1.70 0.118

Nitrofurantoin 10 297/1486 20.0 (0.18–0.22) < 0.001 297.1 < 0.001 96.0 3.77 0.003

Norfloxacin 5 286/614 46.6 (0.43–0.51) 0.090 273.1 < 0.001 95.6 3.20 0.009

Ofloxacin 2 101/244 41.4 (0.35–0.48) 0.007 153.5 < 0.001 92.2 13.6 < 0.001

Tetracycline 6 498/721 69.1 (0.66–0.72) < 0.001 207.3 < 0.001 94.2 2.44 0.033

Tobramycin 1 30/107 28.0 (0.20–0.37) < 0.001 103.8 < 0.001 88.4 35.2 < 0.001

Co-trimoxazole 13 1119/1888 59.3 (0.57–0.61) < 0.001 177.1 < 0.001 93.2 1.06 0.313
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related to their ability to invade the urinary tract [31].
The relevant virulence factors, like haemolysin, aerobac-
tin, cytotoxic necrotizing factor-1 (cnf-1) and sat are
chromosomally encoded in the PAIs, which can be de-
leted from the chromosome spontaneously and easily
[32, 33]. Quinolones can act by increasing the deletion
and transposition of DNA regions during the develop-
ment of quinolone-resistance facilitated by an exposure
to quinolones [34]. While PAIs share some characteris-
tics with bacteriophages, it has been proven that pro-
phages hidden within chromosomal DNA are excised by
the activation of SOS [35], a DNA repair mechanism.
Quinolones likely contribute to the partial or total exci-
sion of PAIs in a SOS-dependent way because the anti-
microbial agents activate the SOS system [36]. Hence,
this may induce the loss of virulence factors of
quinolone-resistant E. coli that are less able to cause in-
vasive UTIs as this phenomenon may result in pheno-
typic changes in bacteria. Nevertheless, the fact that

quinolone-resistance impairs the ability of UPEC to in-
vade local tissue of the kidney and prostate does not dis-
rupt a strain’s capacity to cause bacteraemia (urosepsis)
once local invasion has taken place [31].
In E. coli, the majority of virulence associated plasmids

belong to the F incompatibility group and are often key
determinants of antimicrobial resistance [37]. It is con-
ceivable that genetic determinants of virulence may be
co-mobilized under antimicrobial selective pressure if
they are located on the same genetic platform as anti-
microbial resistance genes (plasmids, transposons, inte-
grons) [38]. The relationship between resistance and
virulence remains uncertain and depends on the inter-
action between the strain’s phylogenetic group and the
type of resistance determinant [39]. In Enterobactericeae,
the IncF plasmid family is very widespread and can en-
code aerobactin as well as other factors of putative viru-
lence such as the traT virulence protein, responsible for
serum resistance in E. coli. Extended-spectrum beta-

Table 3 Meta-analysis of virulence factors for UPEC isolates from urinary tract infections

Antibiotics No of
studies

n/N Random model Heterogeneity Egger’s test

% (95% CI) P Q P I2 t P

aer 3 229/437 52.4 (0.48–0.57) 0.315 189.2 < 0.001 93.1 4.45 0.001

afa 5 98/701 14.0 (0.12–0.17) < 0.001 169.6 < 0.001 92.3 4.54 0.001

chuA 1 46/227 20.3 (0.16–0.26) < 0.001 93.10 < 0.001 86.0 25.9 < 0.001

cnf1 5 91/682 13.3 (0.11–0.16) < 0.001 71.34 < 0.001 81.8 13.2 < 0.001

Colicin 1 13/137 9.5 (0.06–0.16) < 0.001 45.42 < 0.001 71.4 16.9 < 0.001

CSH 1 120/150 80.0 (0.73–0.86) < 0.001 242.1 < 0.001 94.6 39.3 < 0.001

eco274 1 99/227 43.6 (0.37–0.50) 0.055 157.9 < 0.001 91.8 33.7 < 0.001

fimH/MSHA 10 881/1170 75.3 (0.73–0.78) < 0.001 210.7 < 0.001 93.8 0.72 0.489

fimP/MRHA 4 219/616 35.6 (0.32–0.39) < 0.001 152.0 < 0.001 91.5 8.02 < 0.001

fyuA 1 41/227 18.1 (0.14–0.24) < 0.001 85.68 < 0.001 84.8 24.8 < 0.001

hlyA 12 334/1511 22.1 (0.20–0.24) < 0.001 241.9 < 0.001 94.6 2.62 0.022

iucD 2 130/198 65.7 (0.59–0.72) < 0.001 203.3 < 0.001 93.6 29.9 < 0.001

iutA 2 144/233 61.8 (0.55–0.68) < 0.001 198.6 < 0.001 93.5 18.9 < 0.001

kpsMTII 2 120/198 60.6 (0.54–0.67) 0.003 191.2 < 0.001 93.2 36.4 < 0.001

PAI 3 265/480 55.2 (0.51–0.60) 0.023 241.8 < 0.001 94.6 3.80 0.003

pap 9 350/1158 30.2 (0.28–0.33) < 0.001 87.35 < 0.001 98.9 0.54 < 0.001

sat 1 28/107 26.2 (0.19–0.35) < 0.001 100.3 < 0.001 87.0 25.3 < 0.001

sfa 5 262/701 37.4 (0.34–0.41) < 0.001 10.08 < 0.001 90.8 0.05 0.001

shiA 1 209/227 92.1 (0.88–0.95) < 0.001 292.1 < 0.001 95.6 45.4 < 0.001

sisA 1 164/227 72.2 (0.66–0.78) < 0.001 234.0 < 0.001 94.5 40.9 < 0.001

sisB 1 56/227 24.7 (0.19–0.31) < 0.001 106.9 < 0.001 89.8 27.8 < 0.001

sivH 1 81/227 35.7 (0.30–0.42) < 0.001 137.5 < 0.001 90.6 31.5 < 0.001

traT 2 266/354 75.1 (0.70–0.79) < 0.001 236.2 < 0.001 94.5 40.7 < 0.001

vat 1 63/227 27.8 (0.22–0.34) < 0.001 115.9 < 0.001 88.8 28.9 < 0.001

yfcv 1 57/227 25.1 (0.20–0.31) < 0.001 108.2 < 0.001 88.0 27.9 < 0.001
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Fig. 2 Forest plot of UPEC resistance to different antibiotic subgroups (A main antibiotic groups, B Beta-lactams classes, C Cephalosporins classes)
and virulence factors groups (D)
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lactamase (ESBL) producing E. coli are emerging and are
posing challenges to the clinicians on therapeutic
choices; and F-plasmids often encode for ESBL genes
from the CTX-M, TEM or SHV groups, as well as genes
conferring resistance to other antibiotic groups [40–43].
These few examples demonstrate how antimicrobial
pressure can select for plasmids carrying virulence and
resistance determinants, and hence allow virulent traits
to be selected for by antimicrobial use in a bacterial
population.
Some specific lineages within the E. coli species,

such as the phylogroup B2, show high frequency of
virulence factors [44–46]. Independent predictors for
pathogenicity have been identified to be alpha-
hemolysin, yersiniabactin receptor (fyuA), serum
resistance-associated outer membrane protein (traT),
and aerobactin receptor type iutA. In strains produ-
cing the blaCTX-M-1 and blaCTX-M-9 group ESBL en-
zymes, respectively, iutA and traT were significantly
more common among these virulence factors [47].
Similar results, where iut and traT are more preva-
lent, have been reported in E. coli CTX-M ESBL
group from UTIs [48].

Discussion
Uropathogenic Escherichia coli (UPEC) are the primary
bacterial type associated with urinary tract infection
(UTI) [1]. They include diverse E. coli phylogroups that
express a wide range of virulence factors and genes that
can increase its pathogenicity and resistance to antimi-
crobials [4, 49–52]. During the last few decades, the
emergence of high rates of antimicrobial resistance and
multidrug resistance (MDR) phenotype reported in
UPEC has become a major concern worldwide [53, 54].
In this study, we reported virulence factors and anti-
microbial resistance of UPEC.
The study of AMR showed variable proportions of

resistance in different antimicrobial categories. High re-
sistance rates were observed in aminopencillins, tetracy-
clins, cotrimoxazole, nalidixic acid and cephalopsporins.
Several studies have reported high resistance rates of
UPEC on these antibiotics and by different mechanisms
[52, 53, 55, 56]. This study showed high resistance to
beta-lactam antibiotics. The increasing rate of 3rd-
generation cephalosporin resistance, suggesting
extended-spectrum beta-lactamase (ESBL) producing E.
coli is of concern worldwide. It has been reported that

Table 4 Distribution of antibiotics resistance and virulence factors among in- and out-patients

In-patient, n/N (%) Out-patient, n/N (%) OR (95% CI) p-value

A. Main antibiotic groups

Aminoglycosides 403/1432 (28.1) 478/1637 (29.2) 0.96 (0.83–1.12) 0.631

Sulfonamides 610/1021 (59.7) 509/867 (58.7) 1.02 (0.88–1.18) 0.817

Cyclines 416/614 (67.8) 82/107 (76.6) 0.88 (0.65–1.21) 0.441

Fosfomycin 0 9/107 (8.4) 11.3 (0.21–603.0) 0.232

Nitrofurans 130/952 (13.7) 167/534 (31.3) 0.44 (0.34–0.56) < 0.0001

Quinolones 1333/2217 (60.1) 623/1739 (35.8) 1.68 (1.50–1.88) < 0.0001

Beta-lactams 2244/5622 (39.9) 2166/6342 (34.2) 0.86 (0.80–0.92) < 0.0001

B. Beta-lactams classes

Aminopenicillins 846/1117 (75.7) 311/440 (70.7) 1.07 (0.90–1.27) 0.427

Carbapenems 2/659 (0.3) 5/689 (0.7) 0.41 (0.8–2.16) 0.298

Monobactams 77/150 (51.3) 1/204 (0.5) 104.7 (14.4–761.4) < 0.0001

Beta-lactam+Inhibitors 273/754 (36.2) 331/796 (41.6) 0.87 (0.72–1.05) 0.150

Cephalosporins 1046/2942 (35.6) 1518/4213 (36.0) 1.01 (0.93–1.11) 0.776

C. Cephalosporins classes

1GCs 210/491 (42.8) 160/462 (34.6) 1.24 (0.97–1.57) 0.087

2GCs 118/518 (22.8) 375/894 (41.9) 0.54 (0.43–0.69) < 0.0001

3GCs 571/1648 (34.7) 850/2190 (38.8) 0.89 (0.89–1.01) 0.072

4GCs 147/285 (51.6) 133/667 (19.9) 2.59 (1.97–3.40) < 0.0001

D. Virulence factors groups

Adhesins 1635/3309 (49.4) 681/1739 (39.2) 1.3 (1.13–1.40) < 0.0001

Siderophore systems 276/428 (64.5) 371/1121 (33.1) 1.9 (1.61–2.36) < 0.0001

Toxins 312/1418 (22.0) 217/1246 (17.4) 1.3 (1.05–1.53) 0.016

Immune suppressors 200/276 (72.5) 674/1339 (50.3) 1.4 (1.17–1.77) 0.001
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carbapenems are the best options for treating ESBL
UPEC-producers [1, 57], and our findings report similar
results with susceptibility rates to carbapenems close to
100%. However, there is high risk of a similar develop-
ment like the spread of ESBL following the widespread
use of 3rd generation cephalosporins; the spread of car-
bapenem resistance mechanisms if these are used rou-
tinely. Using carbapenems as first-line antimicrobial
treatment does not make them the best option as first
line over oral agents like nitrofurantoin and/or fosfomy-
cin in treating UTIs, and reserving carbapenem use for
extensively drug resistant isolates with few or no other
treatment alternatives.
Regarding virulence factors of UPEC, this study

showed a high prevalence of fimbriae (fimH/MSHA:
75%). P fimbriae and type 1 fimbriae are known to play
a key role in the pathogenesis by facilitating the attach-
ment of E. coli to the uroepithelium [58]. The fimH ad-
hesion mediates the adherence of UPEC to the bladder
epithelium as well as the invasion of bladder epithelial
and mast cells into caveolae, which has been reported to
protect the bacteria from host defences and antimicro-
bials [59]. In addition to that, the P-fimbrial adhesins,
encoded by the papG gene, mediate the attachment to
the P-blood group antigens on uroepithelial cells [59].
The expression of E. coli surface adhesins is increased by
initiating the close contact of the bacteria with the host
cell wall. Receptors for S- and P-fimbriae are located, in
UPEC pathotypes, on the surface of epithelial cells lining

the host urinary tract [10], and the high hydrophobicity
of bacterial cell promotes the adherence of UPEC to mu-
cosal epithelial cells surfaces [60]. UPEC pathotypes
carry significantly higher numbers of fimbrial gene clus-
ters compared to faecal/commensal pathotypes [61].
Siderophores bind ferric iron and iron-siderophore com-
plexes are recognised by cognate outer-membrane re-
ceptors. UPEC pathotypes encode the proteins required
for the biosynthesis and uptake of several siderophores,
such as enterobactin, aerobactin, yersiniabactin and sal-
mochelin [61]. Haemolysin and siderophores are se-
creted virulence factors that enable the UPEC to
colonize the urinary tract and persist despite the effect-
ively functioning host immune defence mechanism [53].
The iron uptake systems of UPEC are mediated by the
siderophore aerobactin synthesized by a number of iuc
genes and proteins encoded by iut genes mediate its
transport [62, 63]. This study showed prevalence of iucD
and iutA genes of 66 and 62%, respectively. The toxins
produced by UPEC inflict tissue damage and are in-
volved in the host-pathogen interplay [61]. This is medi-
ated by the haemolysin (hlyA), in addition to its cytolytic
effect. The hlyA was the most reported toxin in this re-
view, followed by sat and cnf-1. The cnf-1 help the
UPEC to survive even in the presence of neutrophils
[61]. However, the invasins like the sisA and sisB play a
key role in suppressing the host immune response dur-
ing the initial stages of infection [64]. The summary of
UPEC virulence factors mechanisms is in Table 5.

Table 5 UPEC virulence factors mechanisms of action

Virulence
factors groups

Examples of genes Mechanisms

Adhesins afa, CSH, fimH, fimP,
kpsmtII, pap, sfa, traT

UPEC adhesins can contribute to virulence in different ways: (i) directly triggering host and bacterial
cell signalling pathways, (ii) facilitating the delivery of other bacterial products to host tissues, and
(iii) promoting bacterial invasion [3]. Adhesins help in the adhesion of organism to epithelial cell
surface, thereby it escapes from flushing action during micturition [7]. Fimbriae is responsible for
adhesion, colonization, invasion of host epithelium and makes UPEC to escape from the innate
immune system by internalization process within urothelial cells which is mediated by the
transduction cascades [8].

Toxins Cnf1, hlyA, saT, vaT Toxins like haemolysin and Cytotoxic Necrotising Factor (CNF) act by their cytotoxicity and
invasiveness. Haemolysin production could inhibit the cytokine production of host cells and
promote the cytotoxicity. It causes lysis of the erythrocytes which release nutrients and other
vitamins available for the bacteria. At the same time it releases inflammatory mediators and
enzymes which are cytotoxic to renal proximal tubular epithelial cells, erythrocytes and leukocytes,
thereby causing renal epithelial damage [3]. CNF interferes with the phagocytosis of E. coli by the
WBCs and thus it leads to exfoliation and apoptosis of bladder epithelial cells. It further enhances
the easy access of bacteria into the underlying tissue. These toxins can alter signalling pathways,
provoke the inflammatory response and prevent the apoptosis thereby they cause the UPEC
population to expand [1].

Siderophores aer, chuA, fyuA, iuD, iutA,
yfcv

Production of siderophores by E. coli which takes up iron from the host and helps in colonization
and survival of pathogen [1, 8]. They contribute to the process of nutritional passivation of metal
ions, in which UPEC access these vital nutrients while simultaneously protecting themselves from
their toxic potential [65]

Immune
suppressors

PAI, shiA, sisA, sisB, sivH,
Eco274

UPEC induces a non-sterilizing adaptive immune response in the bladder. Its causes long-lasting
changes in the bladder urothelium, conferring resistance or increased susceptibility to subsequent
infections depending on the outcomes of the first infection [66]. The invasins play a key role in sup-
pressing the host immune response during the initial stages of infection [64].
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Virulence factors and antimicrobial resistance patterns
of UPEC is varying from a region to another. A local
and/or national antimicrobial resistance and UPEC viru-
lence factors study may be useful for staying abreast re-
garding the trend for the UTIs’ empirical treatment [9].
Intervention strategies on virulence factors that govern
the UPEC-mediated UTIs symptomatology may protect
against a wide range of UTI syndromes.

Conclusion
Relative high rates in antimicrobial resistance were ob-
served among aminopenicillins, beta-lactams associated
with inhibitors, tetracyclines, sulfonamides, quinolones
and 1st generation cephalosporins. This suggests a re-
assessment of empirical therapies in urinary tract infec-
tions treatment caused by this pathogen. The most
frequent observed virulence factors included both sur-
face and secreted virulence factors (shiA, CSH, fimH/
MSHA, traT, sisA, iucD, iutA, kpsMTII, and PAI).
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