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Abstract

Background: Hand, foot and mouth disease (HFMD) is a rising public health problem and has attracted considerable
attention worldwide. The purpose of this study was to develop an optimal model with meteorological factors to
predict the epidemic of HFMD.

Methods: Two types of methods, back propagation neural networks (BP) and auto-regressive integrated moving
average (ARIMA), were employed to develop forecasting models, based on the monthly HFMD incidences and
meteorological factors during 2009–2016 in Jiangsu province, China. Root mean square error (RMSE) and mean
absolute percentage error (MAPE) were employed to select model and evaluate the performance of the models.

Results: Four models were constructed. The multivariate BP model was constructed using the HFMD incidences
lagged from 1 to 4months, mean temperature, rainfall and their one order lagged terms as inputs. The other BP model
was fitted just using the lagged HFMD incidences as inputs. The univariate ARIMA model was specified as ARIMA (1,0,
1)(1,1,0)12 (AIC = 1132.12, BIC = 1440.43). And the multivariate ARIMAX with one order lagged temperature as external
predictor was fitted based on this ARIMA model (AIC = 1132.37, BIC = 1142.76). The multivariate BP model performed
the best in both model fitting stage and prospective forecasting stage, with a MAPE no more than 20%. The
performance of the multivariate ARIMAX model was similar to that of the univariate ARIMA model. Both performed
much worse than the two BP models, with a high MAPE near to 40%.

Conclusion: The multivariate BP model effectively integrated the autocorrelation of the HFMD incidence series.
Meanwhile, it also comprehensively combined the climatic variables and their hysteresis effects. The introduction of the
climate terms significantly improved the prediction accuracy of the BP model. This model could be an ideal method to
predict the epidemic level of HFMD, which is of great importance for the public health authorities.
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Background
Hand, foot and mouth disease (HFMD) is a common
infectious disease caused by various enteroviruses, espe-
cially enterovirus 71 (EV-71) and Coxsackie virus A16
(CV-A16) [1]. Recently, enteroviruses other than EV-71
and CV-A16 have been increasing in both mild and se-
vere cases and Coxsackie virus A6 (CV-A6) has been

emerging as another predominant serotype in some re-
gions [2]. HFMD mostly affects children under 5 years of
age. It is a rising public health problem and has attracted
considerable attention worldwide [3–5]. It is especially
widespread in Asia-Pacific areas [1] and presents a gen-
eral increasing incidence in recent decades [6–8]. China
is one of the Southeast Asian countries with the most
serious HFMD epidemics [9]. It is a Class C notifiable
infectious disease in China. Since 2009, the annual inci-
dence of HFMD has never been less than 100 per 100,
000, and caused hundreds of deaths in each year.
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Effective prevention and control of HFMD has become a
major challenge in the field of public health [1, 10].
Incidence forecasting of an infectious disease is essential

for the public health authorities to better understand the
epidemic characteristics and track its seasonal changes in
advance. Accurate predicating is a vital basis to optimize
decisions and configure resources for preventing and con-
trolling infectious diseases. So, it is of great significance to
establish a scientific, appropriate and reliable prediction
model and improve the model performance to the best
[11, 12]. Recently, some researchers are interested in fore-
casting the incidence of HFMD, using the liner time series
models. For example, an ARIMA (1,0,1, 0,1,0)12 model
was constructed to forecast the HFMD incidence in
Sichuan, China [13]. In another study, multivariable
ARIMA models using search engine query data and cli-
mate factors as exogenous variables were developed to
predict the HFMD epidemic in Guangdong, China [14].
However, the assumption of linearity in many time series
events may not be satisfied in practice. The accuracy of
the liner forecasting models therefore needs to be im-
proved. Models based on artificial neural networks (ANN)
can effectively extract nonlinear relationships in data.
They have been widely used in infectious diseases predic-
tions because of their characteristics of robustness, fault
tolerance, and adaptive learning ability. As one of the
common ANN, back propagation neural networks (BP
model) is widely used in many areas, such as economic
and engineering. It has also been introduced into forecast-
ing infectious diseases [15, 16]. To date, however, there
has been no literature report on using BP model to predict
the epidemic of HFMD.
The purpose of this study was to develop an optimal BP

model to predict the future trend of HFMD in Jiangsu
province, China, with special emphasis on elucidating the
effects of meteorological factors as predictors. Meanwhile,
the performance of BP model was compared with ARIMA
model. It was expected that the findings in this work
would be useful for the prevention and control of HFMD.

Methods
Data sources
The monthly case numbers of HFMD in Jiangsu prov-
ince during 2009–2016 were obtained from the National
Notifiable Disease surveillance System (http://www.cdpc.
chinacdc.cn). The demographic data were collected from
the Jiangsu provincial statistics department. And the
monthly meteorological data were gained from Jiangsu
Meteorological Service Center. The meteorological
variables used in this study included rainfall (RF), sun-
shine duration (SD), relative humidity (RH), atmospheric
pressure (AP), minimum temperature (MIN_T), mean
temperature (MEAN_T), maximum temperature (MAX_
T) and wind velocity (WV).

BP neural networks
ANN is a family of intelligent methods that mimic the
biological neural networks. BP model is one of the most
common ANN, developed by Rumelhart and McClelland
in 1986 [17]. Since the distinguish performance, BP model
has been popularly used in many practical fields including
public health [16, 18]. Typical BP model has a three-layer
network construction, consisting of an input layer, a hid-
den layer and an output layer. Each layer consists of a
number of neuron nodes. The upper layer and lower layer
nodes are connected by the connection weights.
BP model is trained with a back-propagation algorithm,

in which the external input information at the input nodes
is propagated forward to calculate the outputs. Then the
error between the predicted values and the target outputs
is propagated backward to modify the connection weights
and thresholds. BP model training includes three steps: (1)
the forward feeding of the input training pattern, (2) the
calculation and back-propagation of the associated error,
and (3) the adjustment of the weights and thresholds.
Given n nodes in the input layer, m nodes in the hidden
layer and one node in the output layer, the outputs of each
node in the hidden layer and the output layer are calcu-
lated according to the following formulas:

net j ¼ f
Xn
i¼0

ωijxi þ bj

 !
i ¼ 0; 1;…; n; j ¼ 1; 2;…;mð Þ

ŷ ¼ f
Xm
j¼1

ω jnet j þ b

 !
j ¼ 1; 2;…;mð Þ

In the formulas, netj is the output of the jth node in
the hidden layer, ωij denotes the connection weight be-
tween input node i and hidden node j, xi the ith input, bj
the threshold of hidden node j, ŷ the output of the last
layer (i.e., the predicting value), ωj the connection weight
between hidden node j and the output node, b the
threshold of output node, f the activation function of a
node which is usually a sigmoid function as follow:

f xð Þ ¼ 1
1þ exp −xð Þ

ARIMA model
Auto-regressive integrated moving average (ARIMA),
also called Box-Jenkins model, is a traditional method to
study the time series data [19]. ARIMA model deals with
non-stationary time series with a differencing process
based on ARMA model. As an extension of ARIMA
model, seasonal ARIMA has both non-seasonal and
seasonal components [19, 20]. It is denoted as ARI-
MA(p,d,q)(P,D,Q)s in which p, d, q indicate orders of
non-seasonal auto-regression (AR), differencing and
moving average (MA) terms; P, D, Q are orders of
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seasonal AR, differencing and MA, respectively; the
superscript s indicates seasonal period (s = 12 in this
study). The process of fitting ARIMA model involves
four stages. First, the original time series is trans-
formed by logarithmic algorithm, difference or sea-
sonal difference to achieve stationarity. Second, auto-
correlation function (ACF) and partial auto-
correlation function (PACF) of the stationary time
series are calculated and plotted to identify the initial
p, q, P, Q parameters. Alternative ARIMA models are
established with different model parameters. Third,
Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC) are conducted to access the
goodness-of-fit of the ARIMA models, the one with
the minimum AIC and BIC values is considered as
the optimal model. Fourth, Box-Ljung test for the re-
sidual series of the optimal model is conducted to de-
termine if the residual series is white noise sequence
(p > 0.05). Finally, prospective prediction is conducted
using the optimal model.
Since the incidence time series of HFMD commonly

shows significant cyclical and seasonal patterns [21, 22],
ARIMA model was considered to erect the benchmark
model. Once the univariate ARIMA model was selected,
the multivariate ARIMA model including climate factors
as external regressors [23] was further developed. In this
study, ARIMA model that incorporates climate factors
was referred as ARIMAX.

Model evaluation
Four models were fitted in this study, BP model with
meteorological variables, BP model without meteoro-
logical variables, ARIMA model and ARIMAX model.
The data between 2009 and 2014 were used as training
set to fit models, and data between 2015 and 2016 were
used as testing set to evaluate the forecasting accuracy
of different models. Root mean square error (RMSE) and
mean absolute percentage error (MAPE) were selected
as the measures to evaluate the performance of the
models, which were calculated as the following formulas:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

ŷt−ytð Þ2

n

vuuut

MAPE ¼ 1
n

Xn
t¼1

ŷt−ytj j
yt

where n means number of real data or predicted values,
yt means real data and ŷt means predicted value.

Statistical software
All statistical analyses were completed using R software
version 3.5.0. Particularly, ARIMA models were performed
with R package “forecast” version 8.5. Meanwhile, BP
models were constructed with R package “nnet” version
7.3–12.

Fig. 1 Temporal distribution of HFMD in Jiangsu province, 2009–2016
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Results
General description
Totally 917,285 cases were detected during 2009–2016
in Jiangsu province, China, reaching an average annual
incidence rate of 145.39 per 100,000. As shown in Fig. 1,
the incidence presented no long-term trend in the 8
years. However, there was a distinct seasonality, and two
incidence peaks were observed in each year, the higher
occurred between April and June, the lower occurred be-
tween November and December.
Univariate spearman correlation analysis indicated that

all the meteorological factors were significantly associated
with the incidence of HFMD, except sunshine duration,
relative humidity and wind velocity. Notably, strong
correlations were detected among mean temperature,
maximum temperature, minimum temperature and at-
mospheric pressure, with correlation coefficients > 0.9. See
Table 1. To avoid multicollinearity, just monthly mean
temperature and rainfall were considered in the following
models. Further cross-correlation analysis indicated that
both mean temperature and rainfall significantly related

with the incidence of HFMD at lag 1, with correlation co-
efficients of 0.235 (p = 0.0216) and 0.251 (p = 0.0146)
respectively. These lagged terms were also considered in
the following modelling.

Model fitting
Multivariate BP model
According to the results of autocorrelation analysis, the
HFMD time series presented significant autocorrelation
at lag 1–4. Given this, its four lagged terms were consid-
ered as predictors in the BP model. Ultimately, eight var-
iables, including the monthly case numbers lagged from
1 to 4months (× 1-× 4), the monthly mean temperature
and rainfall (× 5, × 6), and the one order lagged mean
temperature and rainfall (× 7, × 8), were taken as inputs
of the BP model. The current monthly case number was
taken as output of the model. To determine the number
of neurons in the hidden layer, 18 BP models with differ-
ent neurons in the hidden layer were built, and RMSE
was employed to evaluate their performance. As shown
in Fig. 2, the model performed better on the training set

Table 1 Spearman correlation coefficients between HFMD and meteorological factors in Jiangsu province, 2009–2016

HFMD RF SD RH AP MIN_T MEAN_T MAX_T

RF 0.334*

SD 0.129 −0.142

RH 0.167 0.752* −0.404*

AP −0.400* −0.723* − 0.330* −0.471*

MIN_T 0.409* 0.741* 0.300* 0.608* −0.943*

MEAN_T 0.410* 0.719* 0.334* 0.576* −0.947* 0.998*

MAX_T 0.409* 0.686* 0.387* 0.526* −0.949* 0.990* 0.996*

WV 0.045 0.151 0.099 −0.241* −0.175 − 0.033 −0.035 − 0.029
*: p < 0.05

Fig. 2 Performance of BP models with different neurons in hidden layer
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with more neurons in the hidden layer, which means the
more neurons in the hidden layer, the better goodness-
of-fit. The prospective prediction accuracy reached the
best on the testing set when the number of neurons in
the hidden layer was 11. Accordingly, the best BP model
structure was determined as 8–11-1, which means there
were 8 nodes in the input layer, 11 nodes in the middle
layer and one node in the output layer.

Univariate BP model
To assess the effects of meteorological factors on the
forecasting of HFMD, a BP model without climate vari-
ables was constructed, just using the cases numbers
lagged from 1 to 4 months (× 1-× 4) as the model inputs.
The model fitting process was the same as the former
BP model. And the best model structure was determined
as 4–4-1.

Univariate ARIMA model
The original time series of HFMD achieved stationary
after one order seasonal differencing. As shown in
Table 2, eight alternative univariate ARIMA models
were constructed. The results of Ljung-Box test suggest
that all the residual series of these models were white
noise sequences. Based on the AIC and BIC, the best-
fitting model was determined to be ARIMA(1,0,1)(1,1,
0)12, with a minimum AIC = 1132.12 and a minimum
BIC = 1440.43.

Multivariate ARIMAX model
Mean temperature (× 5), rainfall (× 6) and their one
order lagged terms (× 7 and × 8, respectively) were
added into the optimal univariate ARIMA(1,0,1)(1,1,
0)12 model as exogenous variables, individually or in
combination. Accordingly, 15 multivariate ARIMAX
models were fitted. As shown in Table 3, these
models were all statistically significant (Ljung-Box test
p > 0.05). ARIMA(1,0,1)(1,1,0)12 with one order lagged

temperature as external predictor was the optimal
ARIMAX model, with a minimum AIC = 1132.37 and
a minimum BIC = 1142.76.

Prediction performance comparison
The comparison of the models was summarized in
Table 4, and the predicting outputs were displayed in
Fig. 3. The multivariate BP model performed the best in
both model fitting stage and prospective forecasting
stage. The predicted values matched the real HFMD in-
cidences very well, with a MAPE no more than 20%,
which suggested that this model would be able to accur-
ately estimate the prevalence and seasonal fluctuation of
HFMD. The BP model without climate variables had
much higher RMSE and MAPE than the multivariate BP
model on both training set and testing set. Its forecast-
ing performed well in 2015 but presented a high error in
2016. The performance of the multivariate ARIMAX
model was similar to that of the univariate ARIMA
model. Both performed much worse than the two BP
models. They could not accurately predict the real data
in the study area, with a high MAPE near to 40%.

Discussion
Accurately identifying the epidemic trend in advance is
of critical importance for infectious diseases prevention
and control. As HFMD is a common infectious disease
throughout the world, modeling its epidemic has been
concerned and actively studied in recent years. Some re-
searchers have put forward different prediction methods

Table 2 Selection of the univariate ARIMA model

Model AIC BIC Ljung-Box test

Qa p

ARIMA(1,0,1)(1,1,0)12 1132.12 1140.43 10.233 0.5272

ARIMA(1,0,0)(1,1,0)12 1135.73 1141.96 17.418 0.1432

ARIMA(2,0,1)(1,1,0)12 1133.77 1144.16 10.187 0.4422

ARIMA(2,0,0)(1,1,0)12 1134.98 1143.29 13.207 0.2944

ARIMA(3,0,1)(1,1,0)12 1134.63 1147.09 9.118 0.4455

ARIMA(3,0,0)(1,1,0)12 1132.76 1143.15 8.6807 0.5811

ARIMA(4,0,1)(1,1,0)12 1136.61 1151.15 8.4172 0.4136

ARIMA(4,0,0)(1,1,0)12 1134.64 1147.11 8.6288 0.4917
aQ denotes the statistics of Ljung-Box test

Table 3 Selection of the multivariate ARIMAX model

Model AIC BIC Ljung-Box test

Qa p

ARIMA+×5 1134.05 1144.43 10.679 0.4005

ARIMA+×6 1134.08 1144.47 10.274 0.4347

ARIMA+×7 1132.37 1142.76 10.982 0.3759

ARIMA+×8 1134.07 1144.45 10.272 0.4348

ARIMA+×5 + × 6 1135.97 1148.43 10.903 0.2985

ARIMA+×5 + × 7 1134.01 1146.47 10.406 0.3357

ARIMA+×5 + × 8 1135.97 1148.43 10.85 0.3023

ARIMA+×6 + ×7 1134.21 1146.68 11.149 0.2811

ARIMA+×6 + ×8 1136.06 1148.52 10.28 0.3456

ARIMA+×7 + ×8 1134.00 1146.46 11.144 0.2815

ARIMA+×5 + ×6 + ×7 1135.93 1150.48 10.502 0.2468

ARIMA+×5 + ×7 + ×8 1135.62 1150.16 10.325 0.2587

ARIMA+×5 + ×6 + ×8 1137.94 1152.49 10.926 0.2201

ARIMA+×6 + ×7 + ×8 1135.99 1150.53 11.157 0.2066

ARIMA+×5 + ×6 + ×7 + ×8 1137.61 1154.23 10.294 0.1861
aQ denotes the statistics of Ljung-Box test
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for HFMD. For examples, Yu et al. [24], developed a
new hybrid model with ARIMA and nonlinear auto-
regressive neural network. Zhong et at [25]., employed
XGBoost, one of the machine learning methods, to fore-
cast HFMD with multiple environmental factors.
In this study, an optimized multivariate BP model with

meteorological factors was constructed. This model pre-
sented a satisfactory accuracy in forecasting the HFMD
incidences in Jiangsu province, China. It reached a
MAPE less than 20% in the prospective forecasting stage
and accurately estimated the seasonal fluctuation of
HFMD in the next 24 months. The predictive perform-
ance is much better than that in many similar studies. It
may serve as a reliable tool for the public health author-
ities in the practice of HFMD prevention and control.
Notably, BP model has a risk of over-fitting, which is a
critical issue that usually leads to poor generalization
[26]. In this work, it was observed that the accuracy of
prospective predication getting worse when the neurons
in the hidden layer was more than 11, which suggested
that too many neurons in hidden layer maybe causes se-
vere over-fitting. Hence, how to determine an optimized
model structure is an important issue. Unfortunately, it

is still controversial. In this study, this work was com-
pleted based on MAPE, the BP model with the mini-
mum MAPE on testing set was selected as the best
optimal model.
A substantial studies have proposed that infectious dis-

eases are climate sensitive [27–29]. Climatic factors may
influence the survival and spread of infectious pathogens
in the environment, the host susceptibility and exposure
probability [30–32]. The effects of meteorological fac-
tors, such as temperature, rainfall and relative humidity,
on the epidemics of HFMD have attracted considerable
concerning recently [22, 33]. Song et al. [34], developed
a seasonal ARIMA model with lagged precipitation as
predictor to forecast the incidence of HFMD. Unfortu-
nately, the model did not present a satisfactory perform-
ance. Similarly, the ARIMAX model we developed using
lagged temperature as predictor did not achieve a good
enough accuracy for practical application. And the intro-
duced climate variable did not improve the performance
of the ARIMA model. It may be due to two reasons.
Firstly, ARIMA model is essentially a linear method.
However, meteorological factors were proved to be non-
linearly associated with the epidemic of HFMD, so

Fig. 3 Plot of observed HFMD incidences and predicted values via different models (Note: BP1 means BP model with climate factors, BP2 means
BP model without climate factors)

Table 4 Comparison of the four models

model RMSE MAPE

Training set Testing set Training set Testing set

Multivariate BP 2125.68 2653.73 16.59 18.57

Univariate BP 3055.32 2981.11 20.46 28.55

ARIMA(1,0,1)(1,1,0)12 + ×7a 3313.60 4476.06 26.11 36.43

ARIMA(1,0,1)(1,1,0)12 3377.48 4476.39 28.02 36.67
a×7 means one order lagged mean temperature
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ARIMA model is inappropriate to fit the relationships
between predictors and HFMD incidence. Besides, data
size is not sufficient for the model to fully extract the
underline pattern contained in data. Consequently, the
model could not achieve a satisfied predictions. Zhao
et al. [35], also constructed an ARIMA model with
temperature as predictor based on the data in Huainan
City, China. It presented a well goodness-of-fit. However,
its extrapolated predictive capability was not explained.
Consequently, its practical application value is doubtful. In
this study, BP neuron network was employed to forecast
the HFMD incidence with monthly average temperature,
rainfall and their lagged terms as predictors. This model
performed much better than the BP model without climatic
variables, which suggested that climate factors can improve
the prediction effect. Meanwhile, we also found that both
of the two BP models performed much better than the
ARIMA models. This may indicate that BP model is more
suitable than ARIMA model to predict the HFMD inci-
dence in the study region.
It is worth mentioning that the multivariate BP

model developed in this study achieved accurate esti-
mations of the HFMD incidences in the next 24
months. Thus, it could be used to predict the
medium to long term epidemic level of HFMD, which
is of great important for the public health authorities.
As shown in Fig. 3, given the whole test set, the BP
model without climate variables performed relatively
poor. Interestingly, the first few predicted values
matched the real incidences very well. It suggested
that this model may have the potential to be used for
short-term forecasting, which is necessary to be fur-
ther verified in practice.
Some limitations need to be mentioned. First, the epi-

demic of HFMD is affected by many factors, including
natural and social environmental factors, etiological fac-
tors, and so on. In this study, just meteorological vari-
ables were considered to improve the predication ability.
Other factors associated with HFMD may also be used
as good predictors, which deserves progressive studies.
Second, because some mild cases might use home ther-
apies, and some cases with atypical symptoms may be
misdiagnosed, so the data reported may underestimate
the HFMD incidence, which may affect the precision of
the predictions. Third, the optimal BP model was con-
structed based on the data in Jiangsu province, China,
generalizability of our findings to other regions with
different epidemic characteristics of HFMD and cli-
mate situations might not be straightforward. But the
use of the BP model incorporating climate factors in
the detection and prediction of HFMD may provide
an opportunity for re-allocating healthcare resources
more efficiently in other regions or countries. Besides,
similar to many other neural network models, BP

model can not explain the specific association be-
tween risk factors and disease.

Conclusion
In this study, four models were constructed to forecast
the incidence of HFMD in Jiangsu province, China. The
BP models performed much better than the ARIMA
models. The introduction of mean temperature, rainfall
and their one order lagged terms significantly improved
the prediction accuracy of the BP model. On the con-
trary, neither the univariate ARIMA model nor the
multivariate ARIMAX model achieved satisfactory pre-
diction accuracy. The climate factors did not optimize
the performance of the ARIMA model. In general, the
multivariate BP model comprehensively combined the
autocorrelation of the independent, the climatic variables
and their hysteresis effects. It is an ideal method to pre-
dict the HFMD epidemic, which has a good prospect of
practical application.
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