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Abstract

Background: Human norovirus is regarded as the leading cause of nonbacterial acute diarrhea in developing and
developed countries. Among all genotypes, GII.4 has been the predominant genotype, but in East Asia, it was
replaced by the GII.17 in 2014/2015. However, after the prevalence of new GII.17 variant in South China, a sharply
increase in the number of norovirus infections associated with sporadic acute diarrhea was detected. In this study,
we would investigate the prevalence and genetic diversity of noroviruses in the sporadic acute gastroenteritis cases
in the post-GII.17 period in South China.

Methods: Norovirus was screened from 217 patients with sporadic acute gastroenteritis from August 2015 to
October 2017 by reverse transcription-polymerase chain reaction. Then, two regions including the partial RNA
polymerase and the capsid gene of positive samples were amplified and sequenced. Phylogenetic analyses were
performed to determine norovirus genotypes. Complete VP1 sequences of GII.4 strains detected in this study were
also amplified and subjected into evolutionary tracing analyses.

Results: A total of 43 (19.82%) norovirus samples were confirmed from 217 stool specimens, and it was found that
GII.4 resurged as the new predominant variant, accounting for 76.74% (33/43) of positive samples. Only one local strain
GZ2015-L550 was clustered with the contemporary GII.P16/GII.4–2012 recombinant variant, and other 32 local strains
belonged to the clade with the GII.Pe/GII.4–2012 variant. Other genotypes including GII.17 (n = 4), GII.3 (n = 4), GII.8
(n = 1) and GI. 6 (n = 1) were also detected. Furthermore, all GII.4 strains were phylogenetic analyzed based on their
capsid P2 subdomains. Combined with other reported 754 strains, the GII.4–2012 variant could be divided into two
clades. Most GII.4 strains collected in 2016 and 2017 in this study (7/8) formed a new cluster A in Clade II with
additional 103 contemporaneous strains. In addition, evolutionary tracing of the capsid P2 subdomain of this variant
was also analyzed, and one specific amino acid substitutions (N373) was identified for Cluster A.

Conclusion: In summary, this study confirmed a norovirus infection peak in the post-GII.17 period in South China,
which was caused by the resurgence of the GII.4 variant.
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Background
Norovirus (NoVs) is considered to be the main cause of
non-bacterial acute gastroenteritis in developed and devel-
oping countries. This virus infects people of all ages and is
responsible for almost one-fifth of all acute gastroenteritis
cases worldwide [1]. This pathogen is responsible for al-
most half of all foodborne gastroenteritis outbreaks, and it
is estimated that every year 200,000 children under 5 years
old die from NoV associated gastroenteritis in developing
countries [2, 3]. Huge medical economic and social losses
caused by this virus have been estimated [4]. This virus
can be transmitted by the fecal-oral pathway through con-
taminated environments, food, water, and person-to-per-
son contact. Extensive NoV outbreaks are more
prominent in semi-enclosed areas, including school, hos-
pitals, nursing homes, cruise ships and holiday resorts [5].
NoV vaccine candidates have been tested in phase 1 and
phase 2 clinical trials [6, 7], but there are still no licensed
virus vaccines or effective medicine treatments against
NoV infections as of this writing.
As a member of the family Caliciviridae, NoV is a sin-

gle strand, positive-sense RNA virus. Its genome is ap-
proximately 7.5 kb to 7.7 kb in size and contains three
open reading frames (ORFs) [8]. Given its high genetic
diversity, NoVs could be classified into seven genogroups
(GI to GVII) based on the complete major capsid pro-
tein VP1 sequences [9, 10]. GI and GII NoVs are the
genogroups primarily responsible for humans, and GIV
could also infect humans. Genogroups could be further
divided into more than 40 genotypes, and GI and GII in-
clude at least 9 and 22 genotypes, respectively [11]. Of
all genotypes, GII.4 has been identified as the most pre-
dominant genotype for 70~80% of NoV outbreaks in
most countries over the past 20 years [12]. The global
pandemic spread of the GII.4 variant (US95/96) was first
recognized in the mid-1990s. Then, after the emergence
of GII.4 Farmington Hills 2002, new GII.4 variants ap-
peared every 2 to 3 years and could spread globally
within months [13]. In addition, a serial of non-GII.4
epidemic variants emerged recently have drawn exten-
sive attention, especially the GII.17 Kawasaki 2014 in the
winter of 2014/2015 [14–16].
In China, NoV gastroenteritis is also a public health con-

cern, and this virus has been identified as one of the first two
causes of acute diarrhea for more than a decade [17, 18]. A
series of globally prevalent GII.4 variants have also been
found in China, along with the GII.17 Kawasaki 2014 variant.
However, a recent study showed that GII.17 did not com-
pletely replace GII.4, and a GII.P16/GII.4–2012 recombinant
was detected as a new predominant variant [19, 20]. Re-
cently, we detected a sharply increase in the number of NoV
infections associated with sporadic acute diarrhea in South
China. Increasing NoV infection activity is generally associ-
ated with the emergence of new epidemic variants. To give

early warning of the next upcoming NoV season, we con-
ducted a pilot study to characterize the prevalence and evo-
lution patterns of NoV variants in the post-GII.17 period.

Methods
Fecal specimen collection
From August 2015 to October 2017, 217 fecal specimens
were collected from patients suffering from acute diar-
rhea at the Third Affiliated Hospital of Sun Yat-sen Uni-
versity in Guangzhou, South China. All specimens were
stored at − 80 °C until further analyses.

Sample treatment, RNA extraction and NoV detection
A 10% (w/v) stool suspension was first prepared using phos-
phate-buffered saline (diethylpyrocarbonate-treated) and
centrifuged at 10000 g for 1min at 4 °C. Viral RNA was then
extracted from 140 μL of the supernatant using a QIAamp
Viral RNA Mini Kit (QIAGEN, Hilden, Germany) according
to the manufacturer’s instructions. One-step reverse tran-
scription-polymerase chain reaction (RT-PCR) was employed
for NoV detection using a one-step RT-PCR kit (TAKARA,
Dalian, China) in this study. Genogroup-specific primers of
G1SKF/G1SKR and G2SKF/G2SKR were used to screen for
GI and GII NoV strains by amplifying the capsid N/S do-
main (region C in ORF2) [21]. Primers JV12Y and JV13I
were also chosen to detect NoVs by amplifying a partial
RNA-dependent RNA polymerase (RdRp) region (region A
in ORF1) [22]. Besides, the primer set of NV2of2 and
GV132 was used to amplify the full-length GII.4 NoV VP1
gene [23]. All tests were conducted in different rooms to
avoid cross-contamination. In each run, RNase-Free distilled
water served as a negative control, and a NoV-positive stool
sample was used as a positive control.

Sequencing and phylogenetic analyses
After analyzed agarose gel electrophoresis, positive
amplicons were purified from agarose gels using DNA
extraction kits (Magentec, Guangzhou, China) following
the manufacturer’s instructions, and then were subjected
to direct sequencing using amplification primers. DNA
sequencing was performed in the ABI Prism 3730XL
Genetic Analyzer (Applied Biosystems, Foster City,CA,
USA) using the BigDye® Terminator v3.1 Cycle Sequen-
cing Kit, which was carried out by Majorbio Co., Ltd.
(Shanghai, China). Nucleotide sequences data of de-
tected NoV strains in this study were deposited in Gen-
Bank under accession numbers MH469166-MH469208.
All nucleotide sequences were first edited with the

BioEdit® Sequence Alignment Editor software (v.7.0.1).
NoV nucleotide sequences or derived amino acid se-
quences detected in this study with reference sequences
of different genotypes were aligned using the ClustalX
algorithm v1.83 with the default parameters [24]. For
further phylogenetic analysis of local GII.4 NoV strains
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during the period from August 2015 to October 2017, a
total of 754 reference GII.4 strains (including 751 GII.4–
2012 strains, one GII.4–2009 strain, one GII.4-2006b
strain, and one GII.4–2004) were also selected, and their
information was listed in the Additional file 1 Table S2.
We inferred maximum likelihood trees with Molecular
Evolutionary Genetics Analysis (MEGA) v7.0 software
[25], and best substitution models for the dataset were
chosen based with the lowest Bayesian Information Criter-
ion scores. Besides, neighbor–joining trees were also con-
ducted with MEGA v7.0 software using the Kimura two-
parameter model for nucleotide sequences. The reliability
of the phylogenetic tree was assessed by bootstrap sam-
pling of 1000 replicates. All nucleotide sequences were
also submitted to the online NoV Genotyping Tool (ver-
sion 2.0) (https://www.rivm.nl/mpf/typingtool/norovirus/)
to verify phylogenetic results [26].

Results
Prevalence of NoVs associated with sporadic acute
diarrhea in South China
A total of 217 fecal specimens were collected from pa-
tients with acute diarrhea at the sentinel hospital from
August 2015 to October 2017. Using the primer set tar-
geting the capsid N/S domain, 43 samples (19.82%) were
detected NoV positive, 42 of which were identified by
G2SKF/G2SKR primers, and only one identified by
G1SKF/G1SKR primers (Table 1).
Among all, 93 fecal samples were collected from female

patients with the NoV positive rate of 21.51%, which was a
little higher than that of male patients (23/124, 18.55%). Fif-
teen NoV positive samples were collected from children
under 5 years old (n= 56) with the NoV positive rate of
26.79%, and three positive samples were collected from older
children and teenagers between 5 and 18 years old (n= 11)
with the positive rate of 27.27%, which were both higher
than that of the adult group (28/161, 17.39%) (Table 2).

Genetic diversity of NoV strains during this surveillance
To identify the genotypes of the detected NoVs strains, nu-
cleotide sequences of the capsid N/S domain (n = 43) amp-
lified by G1SKF/G1SKR or G2SKF/G2SKR and the partial
RdRp region (n = 14) amplified by JV12Y/JV13I were ob-
tained for phylogenetic analyses. Only one strain, which

collected from a seven-month-old baby boy in May 2016,
belonged to GI genogroup (GI.Pb/GI.6). Other 42 strains
were clustered as GII genogroup, consisting of four geno-
types (Fig. 1a). Most of these strains belonged to GII.4 (n =
33, 76.74%), and among them, partial RdRp regions from
ten GII.4 strains were amplified and identified as GII. Pe
genotype. The positive rate of GII.4 NoVs reached 20.88%
(2016) during the monitoring. Especially between August
2016 and February 2017, 24 GII.4 strains were detected
with the positive rate of 46.15% (Fig. 2). In addition, four
GII.17 positive samples were detected every year during the
study period (August 2015, February and November 2016,
January 2017), and two of them were also verified by the
partial RdRp regions as GII.P17. Four GII.3 positive sam-
ples were also detected, which collected in August and No-
vember 2016. And one GII.P8/GII.8 strain was detected
from a 27-year-old female patient in August 2017, which
was the first one detected in mainland China.

Phylogenetic analyses and evolutionary tracing of GII.4–
2012 strains based on the capsid P2 subdomain
For further understanding the cause of the sharply in-
crease in the prevalence of NoV infections, local GII.4
strains (12 in this study, 6 in our previous study) were
phylogenetically analyzed with other reference GII.4
strains (751 GII.4–2012 strains, one GII.4–2009 strain,
one GII.4-2006b strain, and one GII.4–2004). Inferred ML
trees based on their capsid P2 subdomains showed that all
GII.4–2012 strains (n = 766) could be divided into two
clades I (n = 115) and II (n = 651) (Fig. 3). Most local GII.4
strains collected in 2016 and 2017 in this study (7/8)
formed a new cluster A in Clade II with other contempor-
aneous GII.4–2012 strains (n = 103). And one local strain
GZ2016-L550 was clustered with other GII.P16/GII.4–
2012 strains (n = 48) as Cluster R in Clade I.
Based on multi-alignment results, evolutionary tracing

of above GII.4–2012 strains were subsequently performed,
mainly focusing on five epitopes (A-E) and other three
variable sites in the P2 subdomain (Fig. 4). The variable
site was defined as being conserved in less than 95% of all
strains. Only eight variable sites were identified for this
variant, five of which located in the epitopes (A-D). For
strains in Cluster R, their amino acid substitutions at these
variable sites were consistent with those of other strains in
Clade I. However, for strains in Cluster A, their amino
acid substitutions at these variable sites were not com-
pletely consistent with those of other strains in Clade II,
especially N373 only specific to Cluster A.

Discussion
After the emergence of GII.17 Kawasaki 2014 in South
China, a sharply increase of NoV infections was found from
August 2015 to October 2017. NoV positive rate was almost
two times higher than those in our previous studies

Table 1 Positive rates and distribution of NoVs genotypes
detected in South China, from 2015 to 2017

Year Samples
collected

Positive
samples

Positive samples of different genotypes

GI.6 GII.3 GII.4 GII.8 GII.17

2015 61 5 (8.20%) 4 (6.56%) 1

2016 91 26 (28.57%) 1 4 19 (20.88%) 2

2017 65 12 (18.46%) 10 (15.38%) 1 1

Total 217 43 (19.82%) 1 4 33 (15.21%) 1 4
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(Additional file 1 Table S1) [17, 18]. Findings in this study
suggested that the resurgence of the GII.4 variant caused in-
creased levels of NoV activity in the post GII.17 period. More
interestingly, the GII.4 strains appeared in 2016 and 2017
had an obvious phylogenetic difference with previous ones.
NoVs are regarded as the primary cause of acute viral

gastroenteritis worldwide [3]. Despite its broad genetic diver-
sity, GII.4 has been the predominant genotype in outbreaks

and sporadic infections since its global pandemic [12]. The
emergence of novel GII.4 epidemic variants has been con-
tinuously updated until the replacement of GII.4 Sydney
2012 by the novel GII.17 Kawasaki 2014 in 2014/2015 [15,
27]. It was of great significance for the pandemic of GII.17
Kawasaki 2014 as the first non-GII.4 epidemic variant,
and it was even suggested whether GII.17 be the end of
the GII.4 era [28]. However, epidemiological surveillance

Table 2 Demography of NoV-positive patients detected in this study

Patient profile Number of samples collected Number of positive sample (%)

Gender

Male 124 23 (18.55%)

Female 93 20 (21.51%)

Age

<5 years old 56 15 (26.79%)

5–18 years old 11 3 (27.27%)

>18 years old 150 25 (16.67%)

Fig. 1 Phylogenetic trees of NoV strains based on the nucleotide sequences of (a) the partial capsid gene and (b) the partial RNA-dependent
RNA polymerase gene. The dendrogram was constructed by the neighbor-joining method with the Kimura two-parameter model in MEGA v7.0
[25]. Numbers at the nodes indicate supporting bootstrap values (%) for 1000 resampled datasets; only values greater than 70% are shown. The
scale bar represents the unit for the expected number of substitutions per site. Local NoV strains from this study are labelled by black triangles
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Fig. 2 Temporal distribution of norovirus positive strains detected during the period from August 2015 to October 2017, in South China.
Norovirus genotypes are represented in this study by different colors in the legend (GII.4, red; GII.17, yellow; GII.3, blue; GII.8, green; GI.6, grey).
And the numbers of samples tested per month were listed below the collecting time, which were in parentheses

Fig. 3 Phylogenetic analysis of GII.4 NoV strains detected in South China during the period from August 2015 to October 2017, based on the
nucleotide sequences of the capsid P2 subdomain. Phylogeny was reconstructed using the maximum-likelihood method implemented in MEGA
v7.0 [25] with the TN93 + G + I model (best nucleotide substitution model for the dataset based with the lowest Bayesian Information Criterion
scores). Numbers at the nodes indicate supporting bootstrap values (%) for 1000 resampled datasets, and bootstrap values of selected branches
are shown (> 70%). The scale bar represents the unit for the expected number of substitutions per site. Local NoV strains from this study are
labelled by red triangles (for strains in 2016 and 2017) and blue triangles (for strains in 2014 and 2015), respectively. Local NoV strains from
previous studies are labelled by blue squares. Information of all reference sequences used for phylogenetic analysis in this figure was listed in the
Additional file 1 Table S2
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data showed that GII.17 was detected less frequently after
2015 [27].
NoV epidemic and evolutionary characteristics after the

emergence and prevalence of GII.17 is an important issue.
Surveillance data from the NoroNet network suggested that
no GII.4 drift variants emerged after 2012, and instead, the
GII.42012 capsid seemed to persist through recombination.
A novel GII.P16/GII.4–2012 variant has been detected in
some countries since 2014, including China [19, 20]. In our
study, only one strain GZ2016-L550 was detected as this re-
combinant genotype. Therefore, it was not considered to be
the main reason for the increase in sporadic NoV infections
in South China. Based on VP1 sequences, GII.P16/GII.4–
2012 strains were phylogenetically separated from previ-
ously circulating GII.4–2012 strains, but their antigenic do-
mains in the capsid remains unchanged [29]. Besides, two
other recombinants of GII.Pe/GII.4–2012 and GII.P4–
2009/GII.4–2012 were also reported co-circulating with the
GII.P16/GII.4–2012 [27, 30]. In addition to antigenic evolu-
tion, recombination is an important evolutionary pattern
for GII.4 genotype, and three recombination hot spots have
been reported, including near the ORF1/ORF2 and ORF2/
ORF3 overlaps, as well as within ORF2 [31]. However, the
effect of GII.4 recombination on its epidemic should be
verified in the next work.
More importantly, the GII.4 strains in the new Cluster

A, which evolved by amino acid substitutions, were pre-
dicted as the cause of the sharply increase of NoV infec-
tions in this study. When compared with the previous
GII.4 strains, some obvious specific amino acid substitu-
tions were identified (especially N373) [17]. It has been re-
ported that under the pressure of herd immunity, the
antigenicity of capsid protein VP1 gradually alters through
variants selection [32, 33]. During the epidemic of the
GII.4–2012 variant, most of the variable amino acid sites (5/

8) located in the previously reported epitopes (297, 372 in
Epitope A, 333 in Epitope B, 340 in Epitope C, 393 in Epi-
tope D). The change of one amino acid in the key epitope
could cause the effect of virus immunogenicity, so the signifi-
cance of these amino acid substitutions should be deter-
mined using antibody experiments in future work [13].
However, it should be noted that the bootstrap support on
the root node of clade A is not more than 70 (only 48).
Therefore, the novelty of N373 to clade A is supported by
the inferred ML tree (Fig. 3), but N373 may not be specific
to a single cluster.
We reported a new Cluster A consisted by recently de-

tected GII.4–2012 strains in the post-GII.17 period, which
was predicted to be responsible for the sharply increase in
NoV prevalence in South China. This result was not com-
pletely consistent with the report based on surveillance
data from the NoroNet network [27]. This inconsistency
was mainly due to the different collection times of isolated
strains. In addition, the limitation of our study was that
our results were not from nationwide surveillance. How-
ever, newly emerged GII.4 variants could spread globally
within months after its emergence [13], and the similar
situations for GII.4–2012 and GII.17 Kawasaki 2014 were
also reported in China [34].

Conclusion
In conclusion, the resurgence of the GII.4 variant in the
post-GII.17 period caused a sharply increase in the num-
ber of sporadic infection cases in South China. Most
local GII.4 strains evolved by amino acid substitutions
and clustered into a new GII.4–2012 Cluster A. Mean-
while, the recently reported GII.4–2012 recombinant,
which mainly caused outbreaks, was also rarely detected
in this sporadic infection surveillance.

Fig. 4 Evolutionary tracing of variable sites on the capsid P2 subdomain of GII.4–2012 strains. All variable sites are marked by asterisks below.
Conserved amino acid sites in five epitopes A-E were only listed for the GII.4–2012 variant, and then replaced by dashes “-” for different clades
and clusters. The specific amino acid substitution N373 for Cluster A is highlighted in light gray
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