
RESEARCH ARTICLE Open Access

A novel Bayesian geospatial method for
estimating tuberculosis incidence reveals
many missed TB cases in Ethiopia
Debebe Shaweno1,3* , James M. Trauer1,2,3, Justin T. Denholm3,4 and Emma S. McBryde1,5

Abstract

Background: Reported tuberculosis (TB) incidence globally continues to be heavily influenced by expert opinion of
case detection rates and ecological estimates of disease duration. Both approaches are recognised as having
substantial variability and inaccuracy, leading to uncertainty in true TB incidence and other such derived statistics.

Methods: We developed Bayesian binomial mixture geospatial models to estimate TB incidence and case detection
rate (CDR) in Ethiopia. In these models the underlying true incidence was formulated as a partially observed
Markovian process following a mixed Poisson distribution and the detected (observed) TB cases as a binomial
distribution, conditional on CDR and true incidence. The models use notification data from multiple areas over
several years and account for the existence of undetected TB cases and variability in true underlying incidence and
CDR. Deviance information criteria (DIC) were used to select the best performing model.

Results: A geospatial model was the best fitting approach. This model estimated that TB incidence in Sheka Zone
increased from 198 (95% Credible Interval (CrI) 187, 233) per 100,000 population in 2010 to 232 (95% CrI 212, 253)
per 100,000 population in 2014. The model revealed a wide discrepancy between the estimated incidence rate and
notification rate, with the estimated incidence ranging from 1.4 (in 2014) to 1.7 (in 2010) times the notification rate
(CDR of 71% and 60% respectively). Population density and TB incidence in neighbouring locations (spatial lag)
predicted the underlying TB incidence, while health facility availability predicted higher CDR.

Conclusion: Our model estimated trends in underlying TB incidence while accounting for undetected cases and
revealed significant discrepancies between incidence and notification rates in rural Ethiopia. This approach provides
an alternative approach to estimating incidence, entirely independent of the methods involved in current estimates
and is feasible to perform from routinely collected surveillance data.
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Background
Population level tuberculosis (TB) prevalence and inci-
dence studies are resource and time-intensive, and so
impractical for regular evaluation of TB trends in most
settings. Almost universally, data acquired from routine
programmatic TB notifications are adjusted by a number
of methods, including expert opinion regarding case de-
tection rates (CDR) in the local context, to estimate and
report TB incidence [1]. In the few countries with recent

and well-conducted prevalence surveys, incidence is cal-
culated from a combination of these survey findings and
estimates of the duration of disease, with the latter de-
rived from the pre-chemotherapy era or from mathemat-
ical models [2, 3]. Because of uncertainties in the
duration of disease, incidence estimates from these
methods differ and optimal methods remain elusive [2].
As a result, significant uncertainty exists regarding the
true TB incidence and other programmatically important
unobserved values, such as CDR [4].
Given these uncertainties, notification data with im-

putation of estimated missing cases have been relied on
in many epidemiological TB studies, including in
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spatiotemporal characterization studies [5–8]. Failure to
appropriately account for missed cases could reduce the
power of such studies to detect factors affecting
population-level TB dynamics, and introduce systematic
bias of estimates of the effect of covariates towards the
null [9]. Both factors could obscure important
population-level patterns. Similarly, interpretation of
maps from these studies is problematic, as spatial pat-
terns in notification data could reflect spatial dynamics
in the true underlying incidence or case detection per-
formance. Thus these maps could be biased to areas
with better case detection performance, leading to re-
source misallocation. One such cause of bias is system-
atic under-reporting which could also vary depending on
the availability of health care facilities.
To address this bias, we aimed to estimate TB inci-

dence and case detection in Ethiopia using an alternative
Bayesian methods based on routinely collected surveil-
lance data, without the need for expert opinion regard-
ing programmatic performance or estimates of duration
of disease.

Methods
We collected data on TB patients diagnosed between
2010 and 2014 in all 66 kebeles (the smallest geograph-
ical administrative unit in Ethiopia) of Sheka Zone (a re-
mote zone in the country). These TB cases were pooled
based on kebele of residence and year. We produced
population density using census data and kebele shape
files obtained from the Central Statistical Agency (CSA).
Data on health facility availability were obtained from
the Zonal health department. At the time of data collec-
tion, close to 50% of health facilities in the Zone did not
have sputum microscopy, and there was no access to
chest x-ray and culture facilities. Further details of the
data and the study area are presented elsewhere [10].

Model development
Hidden Markov models (Bayesian geospatial binomial
mixture models) were developed to estimate the true
underlying but unknown TB incidence and case detection
rates. Hidden Markov models(HMMs) are flexible time
series models for sequences of observations that are
known to be driven by an underlying state which is hidden
from the observer yet is in some way predictable, such as
being serially auto-correlated, geospatially correlated or
through predictor variables that are observable. The value
of HMMs is their ability to predict the underlying process;
which they do provided the second process (the relation-
ship between hidden and observed data) is one that itself
follows rules that can be defined and in turn estimated.
Here, the underlying process is the factors that drive

TB incidence in the study region. We have information
including the population density, serial data and

geospatial position of the kebele. The process that relates
incidence to notification is the case detection rate or the
proportion of cases that are notified. Given that (by
definition) notification is the product of incidence and
case detection rate, the natural model choice is the bino-
mial relationship between the observation (notification)
and hidden state (incidence). We also allow for kebele-
specific effects on incidence, in effect leading to a
(higher variance) beta-binomial distribution for observed
notifications in each kebele.
Such a model when challenged by data can lead to is-

sues of identifiability in that both high incidence/low
case detection and low incidence/high case detection
can explain the same notification rate. However, with
sufficient information (e.g. predictors of incidence,
changes over time and further information to assist in
the observation model, such as presence of a health
centre), the precision of model estimates can increase.
The models are informed by spatially and temporally

replicated TB case counts and yield estimates of the true
incidence and case detection. The parameters of this
state process describe the spatiotemporal variation in in-
cidence, which is considered as a latent variable by the
model and is our key output of interest.

The state-space (the true underlying incidence) model
The number of incident TB cases (the latent state) in
site i and year j, conditional on the expected mean λij is
a realisation of a Poisson distribution, where the ex-
pected number λij is a product of the per capita TB rate
(πij, measured as a probability between 0 and 1) and the
susceptible population size in year j at site i:

Incidence ij
e

Poisson λij
� � ð1Þ

λij ¼ πij � Population ij; ð2Þ

The site index i runs from 1 to 66, representing the 66
kebeles and the year index j runs from 1 to 5. The logit
transformed probability of incident TB (πij) is, in turn, a
logit-linear function of the site- and year-specific covari-
ates where population density (Xi), average incidence rate
in kebeles that share a border with the index kebele (Zij),
and logit transformed incidence rate at a temporal lag of
one year (πij-1) with intercept β0 and slopes β1, β2 and β3
(eq. 3) were fitted as fixed effects. Extra-Poisson dispersion
in the incidence is accounted by specifying two types of
random effects: a spatially correlated random effect (ɛ)
and a non-spatially correlated random effect (ν).

logit πij
� � ¼ βþ β1Xi þ β2Zij þ β3 logit πij−1

� �

þ vij þ εi ð3Þ

Spatial dependence was introduced into regression in
two ways: by introducing spatially structured random
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error and spatial lag. The spatially structured random ef-
fect, ɛ = (ɛ1, … ɛ66), accounts for the effect of spatial
proximity, with the prior distribution taken as a
Gaussian Conditional Autoregressive function (CAR), in
which the prior probability distribution of the value of ɛi
has a mean equal to the weighted average of the
neighbouring random effects [11, 12] and variance fol-
lowing an inverse gamma distribution (shape = 0.5,
scale = 0.0005). Average TB notification rate in the
kebeles adjacent to an index kebele was used to define
spatial lag.

The case detection model
Notified TB cases have two sources of variation: vari-
ation in the true underlying incidence (Incidenceij) and
variation in the case detection process (Pij,). As a de-
scription of the detection process giving rise to detected
(observed) cases, we assumed detected cases (Yij) by
health facilities are realisations of a binomial process
conditional on the underlying true incidence and case
detection probability. The logit transformed case detec-
tion probability (Pij) is a linear function of the covariate
of health facility (H) availability.

Y ij
e

Binomial ðPij; IncidenceijÞ; ð4Þ
logit Pij

� � ¼ θ þ θ1Hi þ ωij ð5Þ
Hence θ1 is the log(odds ratio) of detection in the

presences of a health centre compared with no health
centre. To account for additional heterogeneity in CDR
not captured by this covariate, we fitted a normally dis-
tributed random effect that differed by kebele and year
(ɷij). The prior distribution of this error term had a
mean of zero and a standard deviation drawn from the
uniform (0, 5) distribution.
A non-informative uniform prior distribution (−10, 10)

was chosen for all regression coefficients and intercept
parameters (other than those already specified) to ex-
press the absence of prior information about model
parameters.
We used WinBUGS 1.4.3 to fit the model using

Markov chain Monte Carlo (MCMC). MCMC is a simu-
lation tool to draw large samples from the Bayesian pos-
terior distribution of parameters that is typically
analytically intractable [13]. The model was executed in
R version 3.3.1 using the R2WinBUGS library. To en-
hance convergence of the MCMC sampler, we standard-
ized population density by dividing the difference
between each observation and the group mean by their
respective standard deviations and also truncated the
normal distributions for over dispersion effects to within
(−16, 16) by multiplying with an indicator uniform prior
distribution [14]. We ran the model for 250,000 itera-
tions and discarded the first 50,000. We checked

whether the priors were too restrictive, by inspecting a
histogram of the posterior [15], with no such evidence
found.
As we were executing two interdependent logit

models, the model initially did not appear to find realis-
tic parameter space for incidence rate and case detection
rates (with estimated incidence rates far exceeding ob-
served rates). Thus the model was forced into realistic
parameter space [16] by restricting the maximum inci-
dence rate to 1%, corresponding to 1000 per 100,000 per
year (this is a realistic upper limit, being five times that
of current notification rates and only reported in one
country in the world in 2015).
Four candidate Bayesian geospatial models were

considered:
Model 1 Covariate only; logit(πij) = β + β1Xi + β2Zi j +

β3logit(πij − 1).
Model 2 Covariates and non-spatially correlated random

effect; logit(πij) = β + β1Xi + β2Zi j + β3logit(πij − 1) + νij.
Model 3 Covariate and spatially correlated random

effect; logit(πij)= β + β1Xi + β2Zi j + β3logit(πij − 1) + ɛi.
Model 4 Full Model with covariates and all random ef-

fects included logit(πij) = β + β1Xi + β2Zi j + β3logit(πij − 1) +
νij + ɛi.
Covariates and random effects were included/excluded

to determine if this had an effect on model fit and to de-
termine the extent to which they accounted for the
spatial correlation. The effect of spatially correlated ran-
dom effects was assessed by examining the credible in-
tervals (CrI) of the coefficients of the selected covariates
and incidence and case detection estimates.
The deviance information criterion (DIC) statistic

was calculated for the models with or without ran-
dom effect terms to determine if the addition of the
geospatial component improved model fit. Maps of
the summary statistics of the posterior distributions
of predicted incidence and the notified cases were
constructed using R.

Goodness-of-fit
We conducted posterior predictive checks to evaluate
whether the models considered could likely have gener-
ated datasets that are similar to our observed dataset.
This procedure uses parameter values estimated by the
model using observed data to generate simulated data
sets. Chi-square fit statistic was calculated to quantify
the lack of fit both for the observed data and for the
simulated data sets, and a Bayesian P-value was calcu-
lated to quantify the ratio between the fit statistic for the
observed data and that of the simulated (perfect datasets
under model assumptions) (Additional file 1). A
Bayesian P-value close to 0.5 indicates a model fits the
data, while a P-value close to zero or one suggests poor
fit [15, 17, 18].
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Results
Model selection
We found that a binomial mixture model containing the
spatially structured random effect and covariates was the
best fitting model, and that the model with no random
effects included was the poorest fitting. When a spatially
structured random effect was included into the covariate
model, the DIC dropped by more than 230 whereas in-
clusion of the non-spatially correlated random effect re-
duced the DIC by only 123 (Additional file 2).

The role of the spatially correlated random effect
As well as the marked reduction in the DIC, the coeffi-
cient for the temporal lag in the state-space model became
non-significant while the credible intervals surrounding
other coefficients widened, but remained significant, after
inclusion of the geospatial component in the state-space
model. Similarly, the inclusion of non-spatially structured
random effects resulted in non-significant temporal lag.
By contrast, the credible intervals surrounding the pre-
dicted case detection and incidence rates became more
precise when the geospatial component was added to the
model (Additional file 2). In the covariate only model, the
coefficient for the spatial lag covariate was not statistically
significant, but became significant with the inclusion of
both random effects.

Incidence and case detection rates
Outputs from the best fitting model are presented in
Table 1 and show the estimated TB incidence in Sheka
Zone was 198 (95% CrI: 187, 233) per 100,000 per year
in 2010 and 232 (95% CrI: 212, 253) per 100,000 per
year in 2014.
The model demonstrated a wide discrepancy between

the estimated incidence rate and the notification rate, with
estimated incidence 1.4 (2014) to 1.7 (2010) times the no-
tification rate, placing CDR at 60% (95% CrI: 49, 72) in
2010 to 71% (95% CrI: 60, 81) in 2014 (Fig. 1).

Covariate effects on incidence and detectability
Coefficients of the covariates included in the four candi-
date hierarchical binomial mixture models are presented

in the Additional file and the coefficients for the best fit-
ting model are presented in Table 2. Our methodological
approach enabled us to present predictors of incidence
and CDR separately.
As shown in Table 2, TB incidence rate was positively

associated with population density and spatial lag in the
geographically adjacent sites. An increase of 10/100,000/
year in average TB incidence in adjacent kebeles
predicted a 5.0/100,000/year increment in TB incidence
in an index kebele. Similarly, an increase of population
size by 10 per square kilometre predicted an increase in
TB incidence by 1/100,000/year. Population density
remained a significant predictor of TB incidence in all
candidate models (Additional file 2). All the models ex-
cept the covariate only model demonstrated the statisti-
cally significant effect of incidence at neighbouring
locations. In the best fitting model, TB incidence was
not significantly related to incidence at a temporal lag of
one year (Table 2).
On the other hand, CDR was related to the presence

of a health facility in the best fitting model, as well as
in all other candidate models considered in this study.
The estimated case detection rate in kebeles with no
health facility was 59% (95% CrI: 55, 63), while the
rate was 69% (95% CrI: 62, 77) in kebeles with a
health facility.

Spatial distribution
Maps of the spatial distribution of estimated incidence
and notification rates of TB presented in Fig. 2 revealed
the presence of undetected TB cases at kebele level in
Sheka Zone. The patterns observed in the maps of inci-
dence and notifications appeared broadly correlated.
However, the incidence map shows areas of considerably
greater burden and identifies new, previously unrecog-
nised areas of high burden. The incidence map identified
many rural kebeles without a health facility and urban
kebeles as high burden locations, in contrast to the noti-
fication map that identified mainly urban kebeles. These
locations corresponded to kebeles with high population
density and were surrounded by high incidence kebeles.
The maps illustrate that estimated incidence rates are
higher than notification rates, highlighting that notifica-
tion data markedly underestimate incidence.

Goodness of fit of the model
We calculated a Bayesian P-value by comparing a
Pearson chi-square for both the simulated datasets and
the actual dataset. The proportion of times the discrep-
ancy measure for simulated data is greater than the ac-
tual data (a Bayesian P-value) from a posterior predictive
check was 0.40. The Bayesian P-value suggests that the
model fits the observed data satisfactorily [15, 18]. As an
internal validity check, we simulated using posterior

Table 1 Incidence and case detection estimates in Sheka zone,
Ethiopia

Year Median, 95% credible interval

Estimated incidence Case detection rate

2010 198 (187, 233) 60 (49, 72)

2011 218 (199, 238) 65 (53, 77)

2012 216 (200, 234) 59 (47, 71)

2013 219 (203, 236) 67 (56, 77)

2014 232 (212, 253) 71 (60, 81)

Shaweno et al. BMC Infectious Diseases  (2017) 17:662 Page 4 of 8



parameter values whether our model could reproduce
the notification data that were previously used to esti-
mate the model parameters. Comparison of notification
data with simulated data indicated a close fit (Fig. 3). In
addition, comparison of priors with their posteriors also
indicated that our estimates were entirely data-driven
(Fig. 4).

Discussion
The Bayesian hidden Markov model approach used in
this study provided a means to estimate both TB inci-
dence and case detection rate, and identified previously
unrecognised TB hotspots in rural Ethiopia. To our
knowledge, this is the first report applying spatially ex-
plicit binomial mixture methods to estimate TB inci-
dence and case detection using only case notifications
distributed over space and time.
By using Bayesian inference, we were able to incorpor-

ate the spatial dependence structure, random effects and
a hidden state (true TB incidence) into our model. The
improved fit achieved by including a geospatial term
highlights the importance of accounting for spatial cor-
relation in TB studies [8]. In this study, incorporation of
the spatial dependence structure changed estimated rela-
tionships between covariates and incidence: some rela-
tionships changed from significant to non-significant,
while others remained significant but with reduced pre-
cision. Like others [19, 20], we conclude that failing to
account for spatial effects may lead to inflated regression
coefficients and spuriously narrow credible intervals.
In contrast to previous analyses that described patterns

in the notified cases (as a proxy for incidence) [7, 8], our
model explicitly separated the true incidence (hidden

Fig. 1 Comparison of WHO estimated TB incidence for Ethiopia, with the model estimated incidence using data from Sheka Zone, Ethiopia
(Broken lines represent the upper and lower 95% credible intervals)

Table 2 Predictors of incidence, and case detection rate in the
binomial mixture model

Coefficient, median
(95% CrI)

Odds*, Odds ratio
(95% CrI)

State-space model

β0 (intercept) −5.5 (−6.1, −4.9) 0.004 (0.002, 0.007)*

β1 (population density)a 0.1 (0.1, 0.14) 1.1 (1.1,1.2)

β2 (temporal lag)b 0.003 (−0.1, 0.1) 1.0 (0.9, 1.1)

β3 (spatial lag)b 0.5 (0.3, 0.7) 1.6 (1.4, 2.0)

Case detection model CDR, median
(95% CrI)

CDR in kebeles with no health facility 0.59 (0.55, 0.63)

CDR in kebeles with a health facility 0.69 (0.62, 0.77)
a Population per square km, b: number of incident TB cases/100,000
population/year
CDR- case detection rate
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state) and observation process (case detection). A high or
increasing notification rate could reflect either an efficient
health system rapidly diagnosing all incident cases or a
poor health system failing to detect patients quickly
enough to gain control of the epidemic. As these two phe-
nomena lie at opposite poles of programmatic TB control
and would be associated with profoundly different case
detection rates, it is critical to distinguish them objectively
and without the need for opinion-based estimates of case
detection [21].

Applied to five years of TB surveillance data in Sheka
Zone Ethiopia, our model demonstrated a wide discrep-
ancy between the estimated incidence rate and notifica-
tion rate in areas with no health centres, which is
consistent with WHO estimates [22, 23], highlighting the
importance of strengthening surveillance systems to re-
duce missed cases [23, 24]. Unlike the WHO estimates,
however, we estimated that the incidence of tuberculosis
is increasing, and that increased notification rates reflect
both increased detection and increased incidence.

Fig. 2 Comparison of spatial distribution of model estimated TB incidence and notifications per 1,000,000, Sheka Zone, Ethiopia, 2010–2014

Fig. 3 Comparison of the observed (notifications) (in blue) and the simulated notifications (in red). All the chains in the simulated data are plotted
as dots
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The estimated TB incidence in this study is highly
spatially heterogeneous, replicating previous reports
[10, 20, 25], and associated with average incidence in
the neghbouring kebeles (spatial lag) and population
density, reflecting an extended duration of contact be-
tween individuals as a driver of TB epidemiology in
high-burden settings [26, 27]. In contrast, TB inci-
dence at a temporal lag of one year in this study failed
to replicate the statistically significant association ob-
served in the previous analysis using GLMs [10].
In our study, health facility availability predicted high

TB case detection. Higher notification rates in some of
the studied kebeles were attributable to both underlying
higher incidence and higher case detection in the setting
of health facility availability.
In contrast to methods used by WHO to estimate TB

incidence, our approach uses only routinely collected
surveillance data and does not incorporate costly preva-
lence surveys and expert opinion regarding CDR, which is
criticized for its insensitivity to recent changes and the po-
tential for bias [1]. Expert opinion is a potentially import-
ant strategy to use in a Bayesian models where
information is lacking, but has a recognised limitations in
accurate adjustment of disease estimates [3] and is widely
considered the lowest standard of empirical evidence [28].
In addition, it does not exist at fine geographical levels,
such as the one we are assessing here, and so is impracti-
cal to use in this context. Hence, our approach uses expert
opinion only for the purpose of developing a vague prior
probability distribution. We aim to improve on expert
opinion through the use of the structured hidden Markov

Model and so to develop a feasible alternative approach
that can be used for regular monitoring of TB incidence
and is reactive to recent changes.
Our case detection model assumes that individual TB

cases are detected at a fixed rate and independently
(conditional on a given incidence). This assumption may
not be valid in the case of concerted efforts at contact
tracing. However, as contact tracing is not systematically
implemented in Ethiopia, the proportion of cases in our
study arising from contact tracing would be small and
this assumption would be a minor consideration. More-
over, we included a random effect term (ɷij) in our
model to allow for changes in detection rate over place
and time. Sparse data were accounted for by including
random effects to explain extra-model variability. Fur-
ther work is in progress to build models that account for
over dispersion, which may arise from non-independent
detections of individuals.

Conclusions
By using Binomial mixture models, we were able to in-
vestigate different epidemiological questions related to
the size, trend and predictors of TB incidence and CDR.
Our model demonstrated a wide discrepancy between
incidence rate and notification rates, and identified pre-
viously unrecognised TB hotspots in rural Ethiopia, but
was broadly consistent with official estimates. This ap-
proach provides an alternative approach to estimating
incidence, entirely independent of the methods involved
in current case detection rate estimates and is feasible to
perform from routinely collected surveillance data.

Fig. 4 Comparison of prior and posterior probabilities of case detection rate (CDR)
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