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Abstract

Background: Malaria remains a major global health burden despite the intensification of control efforts, due partly
to the lack of an effective vaccine. Information on genetic diversity in natural parasite populations constitutes a
major impediment to vaccine development efforts and is limited in some endemic settings. The present study
characterized diversity by investigating msp! block 2 polymorphisms and the relationship between the allele
families with ethnodemographic indices and clinical phenotype.

Method: Individuals with asymptomatic parasitaemia (AP) or uncomplicated malaria (UM) were enrolled from rural,
semi-rural and semi-urban localities at varying altitudes along the slope of mount Cameroon. P. falciparum malaria
parasitaemic blood screened by light microscopy was depleted of leucocytes using CF11 cellulose columns and the
parasite DNA genotyped by nested PCR.

Results: Length polymorphism was assessed in 151 field isolates revealing 64 (5) and 274 (22) distinct recombinant
and major msp1 allelic fragments (genotypes) respectively. All family specific allelic types (K1, MAD20 and RO33) as

well as MR were observed in the different locations, with K1 being most abundant. Eighty seven (60 %) of
individuals harbored more than one parasite clone, with a significant proportion (p =0.009) in rural compared to
other settings. AP individuals had higher (p =0.007) K1 allele frequencies but lower (p =0.003) mean multiplicity of
genotypes per infection (2.00 +0.98 vs. 2.56 + 1.17) compared to UM patients.

Conclusions: These results indicate enormous diversity of P. falciparum in the area and suggests that allele
specificity and complexity may be relevant for the progression to symptomatic disease.

Background

Malaria remains a major global human health-threatening
disease, resulting in approximately 207 million clinical
cases and 627,000 deaths each year, mainly in sub-Saharan
Africa [1]. Plasmodium falciparum, causes the most severe
forms of the disease, is responsible for the high morbidity
and mortality, frequent antimalarial drug resistance and
aborted vaccines trials [2, 3]. Despite the dramatic de-
crease in clinical cases from 1,883,199 in 2009 to 313,315
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in 2012 [1] malaria still remains a serious public health
problem in Cameroon. Although efforts for malaria con-
trol and prevention continue to intensity, multiple factors,
including insecticide resistance in the mosquito vectors,
the emergence and rapid spread of drug-resistant strains
and the lack of effective vaccines, are contributing to the
global worsening of the malaria situation. Therefore, there
is an urgent need for the development of a broadly effect-
ive malaria vaccine to reduce malaria morbidity [4] and
significantly impact on this disease of enormous public
health burden.

Extensive genetic diversity in natural parasite popula-
tions is a major obstacle to the development of an effective

© 2015 Apinjoh et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-015-1066-x&domain=pdf
mailto:apinjohtoby@yahoo.co.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Apinjoh et al. BMC Infectious Diseases (2015) 15:309

vaccine against the human malaria parasite, since anti-
genic diversity limits the efficacy of acquired protective
immunity to malaria [5-7]. Individuals born in malaria-
holoendemic areas suffer repeated malaria attacks in
infancy and it takes 3 to 5 years to develop immunity that
confers protection against parasitemia and illness. This
may be due to the concomitant infection with different
parasite genotypes, bearing numerous allelic forms of
asexual blood-stage P. falciparum antigens, over succes-
sive infections and within a given infection that delay the
acquisition of immunity [8]. An infection may thus have
multiple different genotypes due to super-infection and
mosquitoes inoculating multiple genotypes during a single
bite. The extent of multiple-genotype infections sheds
light on malaria transmission, parasite diversity, and the
development of immunity.

The merozoite surface protein 1 (mspl) and other
highly diverse single-copy genes have been used to study
allelic diversity and estimate the minimum number of
different parasite genotypes present within P. falciparum
infections [9]. The sequence differences and tandem re-
peat polymorphism result in fine characterization of
parasite genotypes [8]. The Block 2 region represents
the most polymorphic part of the gene and its sequences
may be grouped into one of the three allelic families or
variants (K1, MAD20 and RO33) [10]. Alleles in K1 and
MAD20 contain antigenically unique, tripeptide repeats,
with extensive diversity in the number of repeats [10].
RO33 lacks the tripeptide repeats observed in the other
two families; however, outside block 2, this allele is simi-
lar to the MAD20 type [11]. Fragment size polymorph-
ism in the three block 2 allele families has commonly
been used as a molecular marker in studies of malaria
transmission dynamics and host immunity in P. falcip-
arum malaria [8, 12—14]. Genetic diversity at the mspl
locus is further increased due to the high meiotic recom-
bination rates between MAD20 and RO33 that creates a
fourth allele family known as MR [15].

Studies about the malaria parasite and its interaction
with the human host are invaluable to effectively combat
malaria. Although there have been numerous studies
describing the profile of patients and parasite genetics
in endemic regions in Africa, South America and Asia
[9, 13, 14, 16], there is limited information about the
population demographics and parasite genetics in the
Mount Cameroon region. Furthermore, recent infrastruc-
tural development in the area have led to ecological
changes, which together with other factors, such as rain-
fall, temperature, and humidity, affect the structure of the
vector population and thus transmission of infection and
probably the genetic diversity of the circulating parasites.
Although previous entomologic and parasitologic studies
in this region have shown the influence of these changes
on the heterogeneity of the malaria transmission pattern,
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few have determined whether this variability translates
into variation in the P. falciparum genetic diversity. In
addition, studies in the mount Cameroon area have been
constrained and yet restricted to the three major mspl
alleles in children from limited ecological foci [17-19].
Furthermore, there have been no reports on malaria para-
site diversity in adults and the contribution of the MR
allele. This study investigated the distribution of the msp1I
block 2 recombinant and major allele families and their
relationship with age, altitude, season and antimalarial use
in uncomplicated malaria and asymptomatic parasitaemic
individuals along the slope of mount Cameroon. This will
enrich the data on parasite population diversity that is
invaluable for the design and implementation of an effect-
ive malaria vaccine.

Methods

Ethics statement

The study was approved by the Institutional Review
Board of the Faculty of Health Sciences, University of
Buea, Cameroon (No. 2013-03-0153) while administra-
tive authorization was obtained from the South West
Regional Delegation of Public Health. Written informed
consent or assent was obtained from all participants or
the parents/guardians for those below 21 years of age.

Study area
The study was conducted in localities on the eastern slope
of Mt Cameroon, with varying malaria transmission
profiles and geographic features (Table 1) [20]. The terrain
rises from the Atlantic ocean at the Gulf of Guinea,
gradually increasing from Ombe through Mutengene to
800— 1,200 m in Buea. The area is characterised by a
forested equatorial climate, modified by the ocean and
mountain, comprising two seasons: a short dry season
(November—March) and a long rainy season (March-
November). Ambient temperatures vary from 18 °C in
August to 35 °C in March [19, 21] whilethe relative
humidity (75-80 %), average annual rainfall (2625 mm) and
precipitation (2,000—10,000 mm) are relatively high [21].
Malaria transmission is intense and perennial in the
area, with parasitaemia higher in the rainy seasons and
at lower altitude [22]. P. falciparum is responsible for
most of the malaria infections, with a prevalence of up
to 85 % reported recently in asymptomatic adults while
P. vivax and P. malaria accounted for 14.9 % and 5.8 %
infections respectively [23]. Anopheles gambiae is the
dominant, most aggressive and most active of the three
malaria vectors (A. gambiae, A. funestus and A. nili)
[19, 21], with infection rates and overall Entomological
Inoculation Rates (EIR) as high as 287 infective bites/
person/year and 3.93 infective bites/person/night re-
spectively [19]. Although the indigenes of this area are
of the Bakweri tribe and part of the Bantu ethnic group
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Table 1 Geographical characteristics, malaria parasitaemia and clinical profile of the study sites in the Mount Cameroon area

Altitude Site Geographic Locality GMPD?
Class masl® coordinates AP UM P value
Low 135 Ombe Native 4°06'N, 9°29'E Rural 9533 39175 0.029
197 Mutengene 4°08'N, 9°30'E Semi-Rural
Interm-ediate 385 Mile 14 - Dibanda 4°11'N, 9°30°E Semi-Rural 6000 21898 <0.001
397 Mile 15 - Buea 4°11'N, 9°30'E Semi-Rural
485 Mile 16 - Bolifamba 4°13'N, 9°30'E Semi-Rural
533 Muea 4°17'N, 9°30E Semi-Rural
575 Molyko 4°15'N, 9°29'E Semi-Urban
High 636 Tole 4°11N, 9°24'E Rural 5464 17300 0.002
771 Soppo 4°15'N, 9°25'E Semi-Urban
976 Buea Town 4°16'N, 9°23'E Semi-Urban
p value 0.380 0.109

AP Asymptomatic parasitaemia, UM Uncomplicated Malaria
2GMPD geometric mean parasite density per microliter of blood
Pmasl metres above sea level

[24] its fertile volcanic soils and vast plantations have
attracted people from other regions of the country,
mainly from the Semi-Bantu ethnic group of the North
West. There is a substantial level of human migration
between localities, mainly for educational, recreational
and commercial purposes.

Selection of sampling sites and participants

This cross-sectional community - and hospital - based
study was conducted between May 2013 and March
2014. Communities were first identified as rural, semi-
rural or semi-urban and then randomly selected based
on differences in altitude (Fig. 1). All selected sites were
geo-located using a handheld GPS (eTrex, Vista, Garmin,
USA); communities below 251 m were considered to be

at low altitude while those between 385 — 626 m and
above 626 m were at intermediate and high altitude re-
spectively [20]. Individuals with asexual P. falciparum
infection and no signs/symptoms of the disease, asymp-
tomatic parasitaemia (AP), were enrolled through
surveys in randomly selected communities as described
elsewhere [20]. Uncomplicated Malaria (UM) subjects
were registered from health facilities within these commu-
nities andcharacterised by an axillary temperature > 37.5 °C,
asexual P. falciparum parasitaemia, haemoglobin > 8 g/dL
and full consciousness but noclinical signs and symptoms
of severe malaria and/or evidence of vital organ dysfunc-
tion. A structured questionnaire was used to record
demographic and clinical data such as age, area of residence
and drug history of all participants.
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Fig. 1 Map of the study area. Localities on the slope of Mt. Cameroon included in the survey are indicated by blue triangles
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Sample collection and parasite detection

Prospective participants were prescreened using finger
prick blood samples spotted on glass slides by light mi-
croscopy. Thick and thin blood smears were prepared
following standard procedures and stained with 10 %
Giemsa (Sigma, St. Louis, USA). The malaria parasit-
aemia status and density were determined under oil
immersion with the 100x objective, 10x eyepiece of a
binocular Olympus microscope (Olympus Optical Co.,
Ltd, Japan) while the Plasmodium species was identified
on thin blood smears. A smear was only considered
negative if no malaria parasites were seen in 100 high
power fields. With each positive smear, the level of para-
sitaemia was estimated by counting the parasites against
at least 200 leucocytes and assuming a leucocyte count
of 8000 per microlitre to calculate the number of parasites/
ul blood [22, 25]. Quality control was ensured by staining a
known positive and negative sample to ascertain the qual-
ity of Giemsa for each freshly prepared stock [25]. Venous
blood (3-5 ml) was then collected from P. falciparum
positive participants into an EDTA tube (BD Vacutainer
Systems, Plymouth, UK) for molecular analysis.

DNA extraction and allelic typing

Leucocytes were depleted from whole blood using CF11
cellulose columns as described by the WorldWide Anti-
malarial Resistance Network (WWARN) protocol v1.2
[26] with some modifications. Parasite genomic DNA
was then extracted using a commercial kit (Qiagen, UK)
according to manufacturer’s instructions, eluted with
100 uL TE (10 mM Tris—HCIL; 0.5 mM EDTA; pH 9.0)
elution buffer (Qiagen, UK) and kept at —34 °C until geno-
typing. Nested PCR genotyping was performed by amplifi-
cation of the highly polymorphic Block 2 region of msp1I,
considered to be the most informative genetic marker for
the assessment of multiplicity of P. falciparum infection
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[27]. An initial amplification of the outer region of the
gene was followed by individual nested PCR reactions
using family specific primers for K1, MAD20, RO33 and
MR, based on previously described standard protocols
[28], with slight modifications. All reactions were carried
out in a final volume of 20 pl containing 1X of MgCl, free
buffer, 2 mM of MgCl,, 125 uM dNTPs, 250 nM of each
primer (Table 2) and 0.4 U of Taq polymerase (Sigma,
UK). In the first round reaction, 1 pl of genomic DNA was
added as a template and the amplification performed in a
thermocycler (Biorad T100™, California, USA) viz: initial
denaturation at 95 °C for 5 mins, followed immediately by
25 cycles of denaturation at 94 °C for 1 min, annealing at
58 °C for 2 mins and extension at 72 °C for 2 min. The
final cycle had a prolonged extension at 72 °C for 5 mins.
In the nested reaction, 0.5 pl of the primary PCR product
was added as DNA template and the amplification per-
formed similarly to the first round except that the primer
concentrations were doubled, the annealing done at 61 °C
for 2 mins and the cycles of denaturation — annealing —
extension increased to 30. Positive and negative controls
were systematically incorporated in each PCR run.

Detection of alleles

The secondary PCR products were separated by electro-
phoresis on 1.5 % agarose gel in 1X TBE (Trisborate
EDTA) buffer stained with 0.5 % (v/v) ethidium bromide
at 100 V for 20 mins. Bands were visualized under UV
transillumination by the gel document system (Gel Doc™,
Biorad, California, USA) and fragment sizes estimated by
comparison to the 1 kb plus DNA ladder (Invitrogen, UK).
The prevalence of each allelic type was determined as the
presence of PCR products for the type in the total number
of amplified bands. The overall number of genotypes
present within the P. falciparum population and their
respective prevalence was assessed by arbitrarily binning

Table 2 Sequences of the primers used to amplify the msp1 gene of P. falciparum isolates along the slope of Mount Cameroon

Amplification Allele Primer Primer sequence
Primary PCR
NA Forward 5' - CTAGAAGCTTTAGAAGATGCAGTATTG - 3
Reverse 3' - CTTAAATAGTATTCTAATTCAAGTGGATCA - 5'
Secondary PCR
K1 Forward 5' - AAATGAAGAAGAAATTACTACAAAAGGTGC - 3!
Reverse 3'- GCTTGCATCAGCTGGAGGGCTTGCACCAGA - 5
MAD20 Forward 5' - AAATGAAGGAACAAGTGGAACAGCTGTTAC - 3'
Reverse 3' - ATCTGAAGGATTTGTACGTCTTGAATTACC - 5'
RO33 Forward 5' - TAAAGGATGGAGCAAATACTCAAGTTGTTG - 3'
Reverse 3" - CATCTGAAGGATTTGCAGCACCTGGAGATC - 5
MR Forward 5' - AAATGAAGGAACAAGTGGAACAGCTGTTAC - 3'
Reverse 3"~ CATCTGAAGGATTTGCAGCACCTGGAGATC - 5'

NA Not Applicable
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20 base-pair (bp) intervals together to define a genotype.
The median genotype for each allele family was identified
and the absolute size of the identified median band +/-
10 bp formed the initial bin. Thereafter, each 20 bp inter-
val below and above the median band were defined as
representing a distinct genotype [27].

Multiplicity of infection and heterozygosity

The multiplicity of infection (MOI), the number of
genotypes per infection was estimated as the average
number of PCR fragments per individual, by dividing the
total number of mspl fragments detected by the number
of positive samples as described previously [29]. Hetero-
zygosity, the likelihood of being infected by two parasites
with different alleles at a given locus was estimated from
the following formula: HE = [n/(n-1)] [(1-Zpi?)], where n
represents the number of samples and pi, the allele
frequency at a given locus. Monoclonality was defined as
the presence of only one allele of the three major mspl
types in the sample while isolates with two or more
genotype were considered as polyclonal infection [30].

Statistical analyses

All data were entered into Excel and analyzed using
SPSS Statistics 20 for windows (SPSS Inc, Chicago,
USA). The significance of difference in prevalence were

Table 3 Basic characteristics of the study population

Page 5 of 12

explored using the Pearson’s y* test whereas the differ-
ences in group means were assessed using Student’s t - test
or analyses of variance (ANOVA). A difference giving a
p value < 0.05 was considered statistically significant.

Results

Baseline demographic data

The characteristics of the study participants are pre-
sented on Table 3. A total of 259 individuals with
microscopy confirmed P. falciparum mono-infection
were enrolled, mainly with uncomplicated malaria (192,
74.1 %) and asymptomatic parasitaemia (64, 24.7 %).
The clinical phenotype of three participants could not
be ascertained because their body temperature and/or
fever status were not recorded at enrolment. The geo-
graphic distribution of the participants included 145
(56 %) mainly from semi-rural areas of mile 16-Bolifamba
(59, 22.8 %), mile 14 Dibanda and 15 Buea (28, 10.8 %),
Muea (27, 10.4 %) and Mutengene (26, 10 %); 71 (27.4 %)
mainly from semi-urban areas of Molyko (41, 15.8 %) and
Soppo (20, 7.7 %) and 35 (13.5 %) from rural communities
of Tole (26, 10 %) and Ombe (6, 2.3 %). The exact resi-
dence of 8 (3.1 %) of the participants within the area
could not be ascertained. The mean age (+ SD) and
geometric mean parasitaemia of the participants was
13.83+13.10 years (range: 4 months - 65 years) and

Parameter n All subjects AP n UM P value
GMPD*® 256 15715 64 6328 192 21730 0.030
Age [Mean + SD] (years) 256 13.8+13.1 64 8.7+80 192 155+ 140 <0.001
Weight [Mean + SD] (kg) 224 36.6+247 61 274+188 163 40.1+£259 0.001
Hb [Mean + SDJ (g/dl) 243 10.7£2.1 64 101+16 179 109+22 0.006
Anaemia prevalence (%) 116 472 38 330 77 67.0 0.024
Reported antimalarial use (%) 40 305 3 6.5 37 435 <0.001
Altitude

Low 31 12.6 1 355 20 64.5 0.118
Intermediate 161 652 35 217 126 783

High 55 22.3 18 32.7 37 67.3

Locality

Rural 34 13.7 19 559 15 441 <0.001
Semi-rural 144 58.1 39 27.1 105 729

Semi-urban 70 282 6 86 64 914

Gender

Female 133 524 30 226 103 774 0310
Male 121 476 34 28.1 87 719

Ethnicity

Bantu 62 278 12 194 50 80.6 0.109
Semi-bantu 161 72.2 48 29.8 113 70.2

2GMPD geometric mean parasite density per microliter of blood
AP Asymptomatic parasitaemia, UM Uncomplicated Malaria
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15,715 parasites/pl (range: 1267-1,840,000) respect-
ively. Most of the study participants were from the
semi-bantu ethnic group (72.2 %, 161/223) and had at
least 10,000 parasites per microliter of blood (54.9 %,
141/257). One hundred and sixteen (47.2 %) had
anaemia while 30.5 % (40/131) had reportedly taken
antimalarial drugs.

Plasmodium falciparum allelic diversity

Length polymorphism was assessed in 151 P. falciparum
field isolates (Fig. 2), with a total of 64 distinct recom-
binant (MR) and 274 major allele family fragments de-
tected respectively, representing an estimated 27 mspl
genotypes. Six (4.0 %) samples (geometric mean parasit-
aemia of 6,257 parasites/ul (range: 1660—40,000) were
excluded from the analysis due to negative PCR outcome
in all allele families.

The distribution of genotypes within the respective
allelic families and their corresponding band size ranges
in AP and UM individuals is presented on Fig. 3. The KI
allelic family was the most polymorphic, with thirteen
distinct fragments, representing 10 genotypes while
MAD20, MR and RO33 had 8, 5 and 4 different geno-
types respectively. All mspl family specific allelic types
i.e. KI, MAD20 and RO33 as well as MR were observed
in the different geographical locations (Table 4). In
general, the K1 type was most abundant while RO33, the
least abundant was detected in 46.2 % of the samples.
Eighty seven (60 %) of individuals harbored more than
one parasite clone, with some 39.3 % of the infections car-
rying two allelic types (K1/MAD20, K1/RO33, MAD20/
RO33) whereas 30 samples contained all three major
mspl allelic types. The overall prevalence of the KI,
MAD20 and MR alleles was similar across the different
localities whereas the proportion of the RO33 allele
(p=0.007) as well as polyclonality (p =0.009) was signifi-
cantly different among the localities. In UM patients, all
mspl allele types were similar across localities while AP
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individuals in rural settings had the highest proportion of
Ro33 (p =0.003), MR (p = 0.034) and polyclonal infections
(p =0.023) (Table 4).

Variation in msp1 block 2 alleles with disease phenotype

The proportion of the K1 allele was higher (p =0.007)
in asymptomatic parasitaemia (AP) individuals (55/61,
90.2 %) compared to their uncomplicated malaria (UM)
counterparts (58/81, 71.6 %). However, the proportions
of MAD20, RO33, MR and polyclonality were inde-
pendent of disease phenotype. The variation in the pro-
portion of the recombinant and major allele families as
well as polyclonality with age, altitude, antimalarial
usage, season and level of malaria parasitaemia in UM
and AP individuals is shown on Table 5. The frequen-
cies of all the alleles and the proportion of individuals
with polyclonal infections was independent of age.
Nevertheless, in children below 5 years of age, the fre-
quency of the MAD20 (p=0.013) and MR (p =0.005)
alleles was higher in the UM compared to their AP
counterparts. Conversely, the proportion of the KI
allele (p=0.043) was higher in AP children below
5 years compared to their UM counterparts. There was no
association between allele proportions with altitude in
UM individuals. However, in AP participants, RO33 (p =
0.022) and MR (p = 0.044) allele frequencies were highest
at high altitude (Table 5). At low altitude, the frequency of
the MAD?20 allele (p = 0.009) was higher in UM compared
to AP individuals while at intermediate altitude, the latter
had higher K1 (p = 0.009) but lower RO33 (p = 0.043) and
MR (p =0.006) allele frequencies compared to the former.
Apart from the higher proportion of the RO33 allele
(p=0.030) in AP individuals during the transition
compared to the rainy season, the frequency of alleles was
independent of the season of enrolment. During the rainy
season, AP individuals had higher KI (p=0.017) but
lower MR (p =0.017) allele frequencies compared to
their UM counterparts. In UM patients, the proportion
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Fig. 2 Banding pattern of msp1 block 2 alleles in asymptomatic and symptomatic P. falciparum infections along the slope of mount Cameroon.
A =K1, B=MAD20, C=RO33; D=MR: M =1 kb plus molecular weight marker; 1 — 11 = selected samples; N = negative control
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of the MAD20 allele (p = 0.041) as well as polyclonal in-
fections (p=0.041) was higher in non-antimalarial
users compared to those who had reportedly taken
antimalarial drugs prior to the survey. There was no
association between the frequency of alleles or poly-

clonal infections and the level of malaria parasitaemia
(Table 5).

Association between mean multiplicity of infection,
sociodemographic and clinical status

A majority of the infections were polyclonal, with only
58/145 (40 %) of the individuals carrying single P.
falciparum genotypes (Table 4). The overall mean
multiplicity of genotypes per infection (MOI) + SD was
found to be 2.33 £1.13 (range: 1-6). Mean MOI was
similar (p =0.726) across the different study sites but
was higher (p=0.003) in UM patients (2.56+1.17)
compared to their AP (2.00 + 0.98) counterparts. The
variation in multiplicity with age, altitude, locality,
season, antimalarial usage and level of parasitaemia in
UM and AP individuals is presented in Table 6. Un-
complicated malaria patients who had reportedly taken
antimalarial (p = 0.020) and asymptomatic individuals >
15 years (p = 0.039) had lower mean MOI compared to

non-antimalarial users and younger counterparts respect-
ively. Additionally, AP individuals<5 years (p=0.009)
and > 15 years old (p =0.007) had lower MOI compared
to their UM counterparts. Similarly, MOI was lower in AP
individuals at low altitude (p=0.016), in semi-rural
settings (p =0.011), during the rainy season (p =0.005)
as well as in non-antimalarial users (p = 0.023), moder-
ate parasitaemic (p = 0.007) and high parasitaemic individ-
uals (p=0.046) compared to their UM counterparts
(Table 6). The heterozygosity associated with UM patients
and AP individuals was 0.66 and 0.63 respectively.

Discussion

The genetic structure of P. falciparum populations plays
a highly important role in the natural acquisition of
immunity in malarial infections. Genetic diversity allows
parasites to evade natural immune responses, contribut-
ing to the failure of anti-malaria parasite control mea-
sures and may jeopardize the effectiveness of vaccines
[15]. Therefore, identifying the genotypes circulating in a
particular geographical location is necessary to develop
strategies to control the disease, including the design of
broadly effective vaccines against the parasite [29]. In this
study, genetic polymorphisms of the highly polymorphic
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Table 4 Distribution of msp1 block 2 alleles among study localities

Msp1 block 2 allele Clinical Number of positives (%) P value
type phenotype All subjects Rural Semi-rural Semi-urban

K1 AP 55(90.2) 16 (84.2) 36 (94.7) 3 (75.0) 0.260
MAD20 32 (52.5) 13 (684) 18 (47.4) 1(250) 0.170
RO33 26 (42.6) 14 (73.7) 10 (26.3) 2 (500 0.003
MR 21 (344) 11(57.1) 9(23.7) 1(25.0) 0.034
Monoclonality 24 (39.3) 3(158) 18 (47.8) 3(750) 0.023
Polyclonality® 37 (60.7) 16 (84.2) 20 (52.6) 1(25.0) 0.023
K1 +MAD20 14 (23.0) 3(15.8) 11 (289) 0 (0.0) 0.284
K1+R0O33 6 (9.8) 3(158) 3(79) 0 (0.0) 0.507
MAD20 + RO33 2(33) 2 (105) 0 (0.0 0 (0.0 0.102
K1+ MAD20 + RO33 15 (24.6) 8 (42.1) 6 (15.8) 1(25.0) 0.094
K1 UM 58 (71.6) 10 (71.4) 30 (71.4) 18 (72.0) 0.999
MAD20 45 (55.6) 9 (64.3) 24 (57.1) 12 (48.0) 0.591
RO33 38 (46.9) 8 (57.1) 18 (42.9) 12 (48.0) 0.645
MR 38 (46.9) 6 (42.9) 19 (45.2) 13 (52.0) 0.819
Monoclonality 34 (42.0) 314 21 (50.0) 10 (40.0) 0.167
Polyclonality® 47 (58.0) 11 (78.6) 21 (50.0) 15 (60.0) 0.167
K1+ MAD20 17 (21.0) 4 (286) 7 (16.7) 6 (24.0) 0.578
K1+R0O33 9(11.1) 2(14.3) 2 (48) 5(200) 0.145
MAD20 + RO33 8 (99 3(214) 3(7.1) 2 (80) 0.279
K1+ MAD20 + RO33 13 (16.0) 2 (143) 9(214) 2 (8.0) 0.344

Boldface values indicate significant p values
AP Asymptomatic parasitaemia, UM Uncomplicated Malaria
Estimated based on the three major allele families only

Block 2 region of mspl of P. falciparum field isolates col-
lected along the slope of mount Cameroon, where malaria
is endemic were analyzed. Although the marker has previ-
ously been exploited in studying parasites in children from
selected foci in the area [17-19] the diversity has been
underestimated by only genotyping three allele families as
there is a fourth recombinant allele family that is distrib-
uted worldwide [7]. This, to our knowledge, is the first
report of the contribution of intragenic recombination
to P. falciparum genetic diversity in wider population
spectrum that includes adults.

In addition to all three major msp1 allele families previ-
ously reported in the region [17-19], the recombinant
between the MAD20 and RO33 allele was observed in
significant proportion, supporting the notion that sexual
intragenic recombination is an important factor in the
evolution of genetic diversity [7]. Nevertheless, the KI
allelic type was found to be the most prevalent, as is the
case worldwide. Studies in other areas of the region [17],
sub-Saharan Africa countries including neighboring Gabon
[31], Nigeria [32] and Congo Brazzaville [33] as well as in
Asia as far as Lao PDR [34] and India [35] have consistently
shown that the K1 allele is more prevalent than MAD20
and RO33. Nevertheless, a recent study in the area [19]

showed that KI was the least abundant of the three major
allele types, consistent with previous reports of MAD20
being the most predominant allele in P. falciparum
populations from Myanmar, Thailand, Iran, Pakistan and
Colombia [29]. Although this low K1 allele prevalence may
have been due to the exclusively asymptomatic infections
studied, with their inherently low parasite loads [22],
substantial variations in allele prevalence may occur during
different study periods, owing to the dynamic nature of the
mspl genetic structure in P. falciparum populations [35]. It
is also possible that the acquisition of strain specific im-
munity may modulate the selection of different allelic vari-
ants. Further work is required to consolidate these findings.

Genotype analysis showed a very rich polymorphism
of the P. falciparum population, with 22 major and 5
MR allelic types (27 genotypes) present at the mspl
locus, the most common not exceeding 30 % of all al-
leles of a given family. Nevertheless, this is an underesti-
mation of the diversity in the area since 30.5 % of the
individuals reportedly received anti-malarial drugs prior
to enrolment and clonal disappearance due to treatment
activity cannot be ruled out. Although direct comparison
could be difficult due to the differences in the volume of
blood samples used in each study, the results are
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Table 5 Variation in mspT block 2 diversity with age, altitude, antimalarial usage and season in individuals with Uncomplicated
Malaria (UM) and Asymptomatic Parasitaemia (AP); a, b, ¢, d, e significance of differences in K1, MAD20, RO33, polyclonaility and
proportions in uncomplicated and asymptomatic parasitaemia individuals respectively
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MR

Parameter Uncomplicated Malaria [n (%)] Asymptomatic parasitaemia [n (%)] P value
K1 MAD20 RO33  Polyclonality MR K1 MAD20 RO33  Polyclonality MR a b c d e
Age group (years)
<5 1165 1482 953 12 (71) 11(65) 16 (94) 7@41) 741 10 (59) 3(18) 0.043 0.013 0300 0473 0.005
5-9 11069 744 5@31) 6 (38) 4(25) 25(89) 16(57) 16(57) 17 (61) 12 (43) 0100 0392 0447 0.138 0236
10-14 8(73) 4(36) 436 4 (36) 5(46) 7(100) 6(86) 6 (86) 6 (86) 4(57) 0202 0057 0352 0057 0500
215 27 (75 20(56) 19 (53) 24 (67) 17.(47) 7(78) 3(33) 444 4 (44) 2(22) 0618 0207 0470 0.198 0.164
P value 0882 0.058 0423 0.070 0.154 0450 0.136 0804 0414 0.158
Altitude
Low 14(78) 13(72) 7(39) 11 (61) 6(33) 10091) 327 436 5 (46) 3(7) 035 0.023 0604 0330 0534
Intermediate 28 (65) 20 (47) 23 (54) 22 (51) 24 (56) 30 (91) 17(52) 10 (30) 16 (55) 8 (24) 0.009 0665 0.043 0.770 0.006
High 16 (80) 12 (60) 8 (40) 14 (70) 8(40) 15(88) 12 (71) 12(71) 14 (82) 10 (59) 0413 0501 0063 0315 0254
P value 0383 0165 0450 0354 0214 0952 0080 0.022 0.085 0.044
Season
Transition® 11 (85) 8 (62) 5 (39) 8 (62) 4(31) 16(94) 11(65) 11 (65) 13 (77) 9(53) 0397 0579 0153 0314 0225
Rainy 47 (69) 37 (54) 33 (49) 39 (57) 34 (50) 39(89) 21 (48) 15 (34) 24 (55) 12 (27) 0.017 0489 0.132 0770 0.017
P value 0217 0636 0505 0.779 0203 0460 0.183 0.030 0.116 0.059
Reported Antimalarial use
Yes 12(67) 739 11(52) 7 (39 8(44) 3(100 2(67) 1(33) 2 (67) 1(33) 0342 0383 0684 0383 0612
No 15(71) 15(71) 7 (39) 15 (71) 9 (43) 38(91) 25(60) 21 (50) 28 (67) 19 (45) 0.059 0355 0859 0.702 0858
P value 0748  0.041 0399 0.041 0921 0751 0651 0517 0.746 0.585
Level of parasitaemia (parasites/pl)
< 10,000 25 (78) 22 (69 11 (34) 20 (63) 14 (44) 43 (92) 27 (57) 20 (43) 30 (64) 18 (38) 0089 0310 0465 0904 0.628
210,000 33(67) 23 (47) 27 (55) 27 (55) 24 (49) 12(86) 5(36) 6(43) 7 (50) 3 (1) 0157 0456 0418 0.736 0066
P value 0293 0.053 0068 0510 0645 0420 0153 0610 0352 0201
Boldface values indicate significant p values
*Transition from rainy to dry season
consistent with a fast evolution of mutations in an area ~ monomorphic bands observed for all three major mspl

of high malaria transmission [35]. Higher diversities of
major mspl alleles (25-33) have been reported in
holoendemic areas such as Senegal [36], Uganda [37]
and Gabon [31] while in low endemic Asian countries
including Thailand [38], Iran [39] and Myanmar [29]
parasite diversity is limited to 9-14 genotypes.

The K1 allelic family was the most polymorphic, with
thirteen distinct fragments, representing 10 genotypes
while MAD20 and RO33 had 8 and 4 different genotypes
respectively. These findings are in conformity with previ-
ous reports in similar populations in Pakistan [27] where
12, 8 and 5 different K1, MAD20 and RO33 fragments
respectively were observed. Similarly, Bharti et al. [35]
confirmed the semi-conserved nature of RO33 in India
with only 2 fragments detected while 22 K1 and 11
MAD20 were reported. However, in a low transmission
area such as Lao PDR, no clonal fluctuation in allelic
types are observed in P. falciparum clinical isolates, with

allele types [34].

The proportion of the KI allele was higher in AP
compared to UM individuals in this study, consistent
with the reported association between the K1 allele and
asymptomatic parasitaemia in children from mile 16-
Bolifamba [18] and Nigeria [40]. As such, the KI allele
type may be responsible for the reduced risk of develop-
ing symptomatic disease in AP individuals [40]. Con-
versely, MAD20 and RO33 were found to be associated
with UM corroborating the strong association between
the MAD20 allele and symptomatic disease in Ghanaian
children [41] as well as the higher proportion of the
RO33 allele in individuals with UM in mile 16-Bolifamba
[18]. Although all three major allele families were similar
across age groups in both UM and AP, the prevalence of
MAD20 and RO33 tended to be higher in children below
5 years of age. This suggests that the susceptibility of
this vulnerable group of children to UM or symptomatic
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Table 6 Mean Multiplicity of infection across different age groups, altitude, locality, transmission season, reported antimalarial usage
and level of parasitaemia in individuals with uncomplicated malaria and asymptomatic parasitaemia

Parameter Uncomplicated malaria Asymptomatic parasitaemia P value
n Mean = SD n Mean = SD
Age group (years)
<5 17 312154 17 1.82+081 0.009
5-9 16 237+£1.15 28 204 £1.04 0332
10 -14 " 218+£1.17 7 286+ 1.07° 0.224
215 36 250094 9 156+0.73 0.007
P value 0.142 0.047
Altitude
Low 18 300133 1 1.82+087 0.016
Intermediate 43 233+£1.11 33 1.88+1.08 0.082
High 20 265+1.09 17 235+0.79 0457
P value 0.112 0218
Locality
Rural 14 3.00+1.18 19 237+076 0.069
Semi-rural 42 257+135 38 1.87+1.04 0.011
Semi-urban 25 228+0.74 4 150+ 1.00 0.084
P value 0.184 0.111
Season
Transition® 13 285+1.21 17 229+0.85 0.193
Rainy 68 250+1.17 44 1.89+1.02 0.005
P value 0333 0.148
Reported Antimalarial use
Yes 18 200+0.84 3 233+085 0.787
No 21 286+ 1.28 42 2.17£1.02 0.023
P value 0.020 0.790
Level of parasitaemia (parasites/ul)
<10, 000 32 275122 47 206 £0.99 0.007
210, 000 49 243+£1.14 14 1.79+098 0.046
P value 0.230 0.357

Boldface values indicate significant p values
*Transition from rainy to dry season

Bsignificantly higher (p=0.039) than the corresponding values for individuals > 15 years old

malaria may accrue to the higher proportion of both
allele families. The frequency of the RO33 allele was also
significantly higher at high altitude compared to inter-
mediate and low altitude consistent with previous re-
ports of the allele type being the most prevalent at high
altitude [19]. There was a trend of decreasing prevalence
of all allele families in UM patients with antimalarial
use, consistent with a susceptibility of parasite genotypes
to antimalarial treatment. Furthermore, the prevalence
of MAD20 allele and polyclonal infections were signifi-
cantly lower in individuals who reportedly took antima-
larials compared to those who did not. This could be as
a result of selection due to drug pressure on parasite
population that is clearing this parasite variant.

Although it seems likely that nonreciprocal recom-
bination events, such as replication slippage and gene
conversion, during the mitotic (asexual) replication
of the parasite also play a plausible role in creating
allele variation, allelic diversity of P. falciparum mspl is
mainly generated by meiotic recombination events in-
volving genetically distinct parasite clones that infect
the same mosquito vector. New genotypes and thus in-
creased parasite population diversity do not only accrue
to increased number of clones per infected individual
but also to the proportion of mixed infections [29].
Multiple clonal infections with different parasite geno-
types were identified among isolates in a high proportion
(60 %) of participants. This is consistent with extensively
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polymorphic and mainly multiclonal P. falciparum infec-
tions elsewhere in the region [19] and in southeast Gabon
[31]. As such, individuals in this area are frequently ex-
posed to repeated bites of mosquito vectors transmitting
different or multiple parasite clones. The higher propor-
tion of individuals with polyclonal infections in the rural
settings, recorded here may reflect greater vector densities
accruing to poor sanitation and bushy environments.

The overall mean multiplicity of genotypes per infec-
tion (2.33) recorded in this study is comparable to
previous findings in the area [19] and to other highly
endemic areas in Africa with perennial malaria transmis-
sion such as Brazzaville [33] and Tanzania [16]. Al-
though much higher MOI have been reported in areas
of high malaria transmission such as Gabon [31] and
Mauritania [42] the reported MOI is much higher com-
pared to that obtained in low malaria transmission areas
of Lao PDR [34] and Malaysia [30]. Mean MOI was
consistently higher in UM patients compared to their
AP counterparts. This is in line with previous reports of
a positive association between multiplicity and clinical
morbidity [3]. UM patients who had reportedly taken
antimalarials and asymptomatic individuals aged 15 years
and above had lower MOI compared to non-antimalarial
users and younger counterparts respectively. This is
expected since some parasite genotypes must have
been cleared in antimalarial users by the drug, redu-
cing the MOI in this group. Also older individuals are
believed to have had substantial previous exposure to
some of the parasite clones [3] and so developed anti-
parasite immunity towards specific parasite genotypes,
thus reducing the MOI in individuals aged 15 years
and above.

This study has a few limitations. First, it is a cross-
sectional study, and inherently there are limitations.
Though the sample size is reasonable, mount Cameroon
is a populous area and there is a definite possibility of
sampling error. Furthermore, the inclusion of partici-
pants with a minimum of 1000 parasites per microliter
only, may have automatically excluded parasite geno-
types inherent in individuals with lower parasitaemia.

Conclusions

Intragenic recombination contributes to the high poly-
morphisms in P. falciparum populations in the mount
Cameroon area. Multiplicity of infection was high, with
most individuals harboring more than one parasite
genotypes, reflecting both the high endemicity level
and malaria transmission in the area. Allele specificity
and complexity are relevant for the progression to
symptomatic disease. This data is invaluable in under-
standing the parasite’s population dynamics which
could facilitate the development and testing of a
broadly effective malaria vaccine.
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