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Abstract

Background: Early warning and robust estimation of influenza burden are critical to inform hospital preparedness
and operational, treatment, and vaccination policies. Methods to enhance influenza-like illness (ILI) surveillance are
regularly reviewed. We investigated the use of hospital staff ‘influenza-like absences’ (hospital staff-ILA), i.e. absence
attributed to colds and influenza, to improve capture of influenza dynamics and provide resilience for hospitals.

Methods: Numbers and rates of hospital staff-ILA were compared to regional surveillance data on ILI primary-care
presentations (15–64 years) and to counts of laboratory confirmed cases among hospitalised patients from April
2008 to April 2013 inclusive. Analyses were used to determine comparability of the ILI and hospital-ILA and how
systems compared in early warning and estimating the burden of disease.

Results: Among 20,021 reported hospital-ILA and 4661 community ILI cases, correlations in counts were high and
consistency in illness measurements was observed. In time series analyses, both hospital-ILA and ILI showed similar
timing of the seasonal component. Hospital-ILA data often commenced and peaked earlier than ILI according to a
Bayesian prospective alarm algorithm. Hospital-ILA rates were more comparable to model-based estimates of ‘true’
influenza burden than ILI.

Conclusions: Hospital-ILA appears to have the potential to be a robust, yet simple syndromic surveillance method
that could be used to enhance estimates of disease burden and early warning, and assist with local hospital
preparedness.

Keywords: Influenza, Syndromic surveillance, Healthcare workers, Emergency preparedness, Informatics,
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Background
Recognition that earlier detection of infectious diseases
at the population level is critical for reducing morbidity
and mortality has led to the extensive use of syndromic
surveillance, i.e. monitoring a collection of symptoms
purported to identify a particular condition. While the
2009 H1N1 influenza pandemic (pH1N1) demonstrated
the critical value of such surveillance systems, it also
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highlighted inherent shortcomings [1]. The World Health
Organization (WHO) review of influenza surveillance
following pH1N1 underscored critical gaps in assessing
influenza annually, including an inability for most coun-
tries to quantify burden of disease and distinguish inten-
sity between seasons, and non-standardized, and therefore
non-comparable, approaches nationally and internation-
ally [2]. Similarly, problems related to managing a surge in
patients with influenza in hospitals have been highlighted
as a weakness in preparedness in Europe [3]. As timing and
severity of influenza changes annually, delays in informa-
tion reaching healthcare settings could result in a lack of
readiness, especially related to hospital workforce staffing,
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with consequent risks of compromising patient safety and
increased mortality [4,5].
Monitoring of primary care influenza-like illness (ILI)

presentations is recommended by WHO as part of a
minimum influenza surveillance strategy [2], and is used
for early detection of influenza in the United Kingdom
(UK) [6] and most other Western countries [2,7], and
subsequent planning of health resources. In the UK, ILI
surveillance data are principally collected by primary-
care providers, and are supplemented by surveillance of
severe cases [2,7,8], and other community reporting, e.g.,
medical helplines [6,9]. When modelled using multiple
data sources, these systems provide a good estimate of
seasonal influenza dynamics, but they are hindered by
unavoidable presentation bias, limiting the ability to cap-
ture the full spectrum of disease across a population [10],
and in particular the burden of influenza annually, which
has been highlighted as a key influenza surveillance ob-
jective [2,3]. Additionally, whilst data are reported daily,
even short delays in processing and disseminating data
alongside varying seasonal patterns in different years can
leave hospitals unprepared for staffing shortages, particu-
larly if concentrated in certain departments.
Presentation bias is an important issue. In longitudinal

household studies, 20-50% of those with influenza who
experienced ILI visited a primary-care setting where
healthcare visits were free at the point of care [11,12],
and only 3% where there was a cost at the point of care
[13]. While these studies may represent extreme ends of
the spectrum in accessing care, they illustrate the wide
difference in healthcare-seeking behaviours in different
settings. Such differences were also observed in the UK
during the pH1N1 introduction when the community
was urged to seek healthcare if they experienced ILI
symptoms, resulting in increased primary-care visits
given the relatively low burden of disease. In the subse-
quent winter (2009/2010) a specialty triage telephone
line was established, causing a reduction in primary-care
visits relative to disease burden [1,11]. Additionally, ILI
primary-care visits in the UK generally occur two or
more days after onset of symptoms [14]. These patterns
of behaviour reduce both the completeness and timeli-
ness of detection of ILI, and delay warnings to health-
care systems. As these data come from healthcare
presentation, they are unlikely to give hospitals very
much lead time to prepare for a surge of patient presen-
tations and they may not provide pre-emptive insight
into patient-facing staff absences.
A number of innovative ILI sentinel sources have been

explored to enhance early warning and estimation of the
burden of disease, including pharmaceutical sales, emer-
gency department visits, health helpline calls [15], social
media [16-18], volunteer community self-report surveil-
lance [19] and school absences [20,21]. The opportunities
for syndromic surveillance are expanding with the advent
of more sophisticated modern electronic databases and
the use of ‘Big Data’ [22-24]. While these methods pro-
vide varying degrees of information on mild to severe
respiratory illness in the community, those related to
health-seeking suffer from presentation bias and we have
yet to fully understand the validity of social media, such
as increase in internet searches for the term influenza
[25]. School absences, while promising, often contain all
absences, without specification of reason, and are limited
to term time and week days. Hospital staff illness
absences, on the other hand, are recorded all year around
and within the NHS provide data on absence reasons.
They also have the added benefit of providing real-time
information to hospitals about staffing levels that could
support continuity of care.
We addressed the feasibility and efficiency of a novel

syndromic surveillance method using hospital staff cold,
cough, and influenza absences to extend local and national
influenza surveillance, improve existing systems, and
inform local hospital preparedness.

Methods
We performed surveillance analyses on data from staff ab-
sences reported to Human Resources (HR) at the Imperial
College Healthcare NHS Trust (ICHT), Royal College of
General Practitioners (RCGP) ILI incidence data for the
London Strategic Health Authority (SHA), and positive
influenza test results from ICHT inpatients. The use of
hospital staff data was approved by the UK National
Research Ethics Committee, and all data were anonymized
before analysis. Analyses were based on data aggregated
into weekly counts, stripped of any personal identifiers.

Sources of data and definitions
ICHT hospital staff influenza-like absence (hospital staff-ILA)
ICHT is one of the largest NHS hospital organisations in
the UK, including five hospitals, nine satellite clinics,
1200 beds, and approximately 9500 staff. The reason
and date of illness for all staff absences are recorded and
entered into an electronic reporting system as standard
practice at ICHT. Start dates of absences due to “cold”,
“cough”, “influenza”, or any combination thereof were
aggregated into weekly counts, over the period from
week 14 in 2008 (ISO-8601 numbering, commencing
2008-03-31) to week 17 in 2013 (ending 2013-04-28);
and monthly data on the total number of staff in post
were used to calculate rates.
All staff from all hospital and satellite clinics were com-

bined in the analyses. The vast majority of these staff
were “patient-facing” e.g., clinical doctors and nurses, re-
ception, etc.. Illness absence for each staff member was
regarded as a single episode if the absence was for the
same illness and on consecutive days, for example five



Drumright et al. BMC Infectious Diseases  (2015) 15:110 Page 3 of 10
days of absence due to influenza was counted as a single
absence and attributed to the week of the first day of
absence.

RCGP London Strategic Health Authority ILI (London-ILI)
The RCGP collect ILI data from a network of participat-
ing primary-care physicians who report on all patients
attending their clinic who meet a standardised definition.
RCGP ILI data from the London Strategic Health
Authority (SHA) were collated, comprising of weekly
counts by age group from week 14 in 2008 to week 17 in
2013. Corresponding population sizes, comprising of the
number of patients registered at reporting practices, were
used to obtain rates. To aid comparability with the staff
absence data, we restricted analysis to cases between 15
and 64 years of age inclusive, as standard ‘adult’ age
groupings start with 15–24 years.
Due to recent changes in the RCGP service provider’s

database system for illness, the number of sentinel sites
reporting temporarily decreased resulting in a reduction
in the population size for which ILI was observed from
approximately 106,000 patients to around 35,000 patients
from the middle of 2012 for the London SHA.

Inpatient positive influenza test results (inpatient-PITR)
All cases of influenza, defined as having one or more
positive tests for influenza, among patients in the three
acute care hospitals within the ICHT were included,
from week 14 in 2008 until week 17 in 2013. From
March 2008 through June 2009 influenza A and B
viruses were detected using direct immunofluorescence
(Light Diagnostics, EMD Millipore Ltd., UK) and virus
isolation in cell culture from nasopharyngeal aspirates
(NPA) or bronchoalveolar lavage (BAL). From July 2009,
influenza A and B viruses were detected using real-time
polymerase chain reaction to detect influenza RNA
(adapted from “CDC protocol of real time RT-PCR for
swine influenza A (H1N1) 28/04/2009. CDC Ref. #I-007-
05.”).

Statistical analyses
Multiple quantitative approaches were used to assess the
comparability of hospital staff-ILA to London-ILI. To
investigate the overall correlation between hospital staff-
ILA and London-ILA, we calculated the cross-correlation
of log10 transformed time series for different time lags.
We used a prospective outbreak detection algorithm to
establish the timing of ‘alarms’, i.e. when the number of
cases began to increase, to determine if hospital-ILA
could provide earlier warning for hospital preparedness,
and to compare the dynamics of ILA with ILI, particularly
at low levels. We employed a Bayes subsystem [26], using
reference values from the previous six weeks due to rela-
tively short, heterogeneous time series, modified to take
into account potentially fluctuating population sizes. An
upper bound for the number of cases is calculated based
on this distribution (we used the 0.95 quantile), and an
alarm is raised if the number of cases is the same or
exceeds this upper bound. The resulting threshold from
this approach varies over time, such that multiple ‘alarms’
may be triggered in a given season. We also calculated
epidemic threshold for each season using the Moving Epi-
demic Method [27], which identifies the epidemic period,
and hence generates a single ‘alarm’ per season. To inves-
tigate the comparability of seasonal patterns in more
detail, we decomposed the log10 transformed time series
into seasonal, trend, and irregular components using loess
smoothing (known as an ‘STL’ approach). To determine
the comparability of estimates of disease burden, we com-
pared hospital staff-ILA and London-ILI with predictions
of an age-structured epidemiological model developed by
Birrell et al. [1]. Estimates of numbers of influenza symp-
tomatic cases and all infections for the London SHA for
weeks 19–52 for 15–64 year olds, in the form of posterior
medians and 95% credible intervals, were converted into
rates per 100,000, assuming a constant population size
over the time period. All analyses were performed in
R v. 3.1.0 [28], using the surveillance (v1.7.0) and mem
(v1.4) libraries [29,30].

Results
Over the study period, there were 20,021 reported hos-
pital staff-ILA at ICHT (with a median of 9577 staff
monthly), 1197 inpatient-PITR, and 4661 community
London-ILI cases (median population size 103,666).

Similarities in surveillance patterns
Hospital staff-ILA, London-ILI and inpatient-PITR dem-
onstrated similarities in surveillance patterns, with clear
seasonal trends similar to those observed with London-ILI
data among 15–64 year olds (Figure 1; also see Additional
file 1: Figure S1 for interactive surveillance figure), and
elevated peaks and troughs of illness at similar time
points, but differing magnitudes. With respect to the sum-
mer of 2009 (Figure 1), London-ILI (peak rate = 196.8/
100,000) demonstrated the burden of influenza to be
greater than during any other standard winter influenza
season (peak rate range: 11.8-73.0 per 100,000). In con-
trast to this, hospital staff-ILA estimated the burden of
influenza in the summer of 2009 (peak rate = 1142.6/
100,000) to be lower than in all winter influenza seasons
(peak rate range: 1389.5-2878.2 per 100,000). The number
of hospital staff-ILA and London-ILI cases per week
across the 5 years were correlated (Figure 1 inset, log10
transform, correlation r = 0.64, permutation P < 0.001).
This correlation was robust to the age group of ILI
used for comparison, with the exception of the very
young (<1 year old) and the elderly (>75 years old)



Figure 1 Weekly counts of hospital staff-ILA (blue), hospital inpatient-PITR (orange), and London-ILI in the community (red) from April
2008 to April 2013 and prospective alarms for elevated counts (circles) using a Bayesian subsystem algorithm, using the previous six
weeks as the reference for prediction. Data plotted by counts rather than rates for clarity. (inset) Scatterplot of hospital staff-ILA counts against
London-ILI counts for ages 15–64 demonstrating an overall strong (r = 0.64) and statistically significant (P < 0.001) correlation between the two
datasets (using log10 transformed counts and a permutation test).
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(Additional file 2: Figure S2). The similarity of hospital
staff-ILA and London-ILI was further demonstrated by
calculation of cross-correlation between the time series
for different time lags; across seasons, the correlation
was generally strongest for a time lag of zero (Additional
file 3: Figure S3).
In time series analyses, both hospital staff-ILA and

London-ILI showed similar timing of the seasonal com-
ponent (Additional file 4: Figure S4), although seasonal
changes were of lower amplitude in the London-ILI data.
There were a greater average number of hospital staff-
ILA cases than London-ILI, potentially demonstrating
the broader detection of more mild cases among hospital
staff.

Early warning
Whilst cross-correlation and time series analysis demon-
strated the similarity of hospital staff-ILA and London-
ILI over both high and low rates of symptom reporting,
it is the dynamics of the data when symptom reporting
is low that is important for providing early warning of
increased cases. We examined early warning in two
ways; firstly, we used a Bayesian alarm model to examine
weekly alarm triggers that indicated weekly increases in
cases regardless of the current case rate, and secondly,
we used the Moving Epidemic Method to examine sea-
sonal alarms by cases exceeding a seasonally established
threshold.

Bayesian alarm model
We examined the timing of increases in numbers of hos-
pital staff-ILA and London-ILI, based on the observed
number meeting or exceeding an upper bound calculated
from reference values over the previous 6 weeks, i.e.
using a threshold that changes over time. As this ap-
proach treats each week independently, and gives an
indication of increasing numbers, regardless of the abso-
lute case burden, it is possible to have multiple alarms in
a given influenza season. While multiple alarms may be
of secondary interest in early warning, they serve as a
convenient measure to compare when numbers of hos-
pital staff-ILA and London-ILI increase. Alarms clearly
marked increasing numbers of cases, but did not always
occur consistently week after week (Figure 1). Hospital
staff-ILA demonstrated earlier alarms and greater con-
tinuous ‘runs’ in alarms up to peak week than London-ILI.
These patterns were robust to the number of previous
weeks used as a reference for generating alarms (data not
shown). Both London-ILI and hospital staff-ILA data gen-
erated a similar number of alarms across the five years, i.e.
hospital staff-ILA data were not associated with increased
overall alarm rate (Figure 2). Cumulative alarm rates
demonstrated a lead time in hospital staff-ILA starting in
October of each year. However, in the summer of 2009,
when pH1N1 was introduced in the UK, ILI clearly led
alarms. To further investigate how alarms were being trig-
gered, we calculated the number of cases above the upper
bound for setting off an alarm (Figure 3). Not only were
alarms triggered earlier for hospital staff-ILA, but the
absolute number of cases above the upper bound was
higher for than for London-ILI, suggesting a wider dynamic
range. An exception to this is evident in the summer of
2009, when pH1N1 was introduced to the UK.

Moving epidemic method
We used the Moving Epidemic Method to estimate an
absolute threshold for hospital staff-ILA and London-ILI
for each season (weeks 40–20, i.e., October through
March). Although similar fixed thresholds are used for
ILI in the UK, no such threshold exists for ILA; the
MEM approach, although not used in the UK for sur-
veillance, allowed us to generate comparable estimates



Figure 2 Cumulative number of weeks with alarms over year-long periods (week 14 in one year to week 13 in the next), for the periods
(a) 2008/9, (b) 2009/10 – split between the first (dotted lines) and second (solid lines) parts of the year to show the pH1N1 introduction in
the summer of 2009, (c) 2010/11, (d) 2011/12 and (e) 2012/13 for hospital staff-ILA (blue) and London-ILI (red). Alarms are generated using
a Bayesian approach, taking the previous 6 weeks as reference. With the exception of pH1N1 introduction in the summer of 2009, hospital staff-ILA
generates alarms at the same or earlier times than London-ILI; however, this is not generally associated with a higher number of alarms (i.e. false
positive alarms) over the course of the year.
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of the beginning and end of the epidemic period. Hos-
pital staff-ILA reached the threshold earlier in the 2010/
2011, 2011/2012, and 2012/2013 seasons than ILI and at
the same time in the two earlier seasons (Figure 4). The
difference between the MEM results for ILA and ILI is
greatest in the 2012/2013 season; this is due to the
unusual dynamics in this season, which lack the charac-
teristic sharp peak of cases typically associated with sea-
sonal influenza (Figure 1).
Burden of disease
To determine how well the systems captured burden of
disease, we used the introduction of pH1N1 in a natural
experimental setting, where the UK was known to have
artificially elevated rates of primary-care presentations in
summer 2009 and decreased rates in winter 2009/2010
[1,11]. Using this setting, we compared the rates of hos-
pital staff-ILA and London-ILI with estimates of London
influenza cases from a mathematical model developed
by Birrell et al. [1], which adjusted ILI for levels of
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was set as the 95% quantile of the posterior predictive distribution, based
healthcare seeking behaviour using data on consultation
rates (Figure 5). Similar to the adjusted ‘true’ estimates,
hospital staff-ILA demonstrated a larger peak in winter
2009/2010 than in summer 2009, whereas the converse
was true for the unadjusted London-ILI, indicating that
ILA is likely to be more robust to presentation bias, and
hence a better measure of burden of influenza, than pri-
mary care presentations.
Discussion
Hospital staff-ILA data demonstrated seasonal trends in
influenza comparable to ILI, with potentially earlier
warning and measures of disease burden that were less
sensitive to community behaviours, when compared to
ILI presentations in the same region. Hospital staff-ILA
also provides information on both anticipated surges in
patient visits and absences in staff, which are critical in
ensuring patient safety in tertiary care settings. If incor-
porated into existing national surveillance systems, hos-
pital staff-ILA could support annual comparisons of
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burden of disease and earlier warning. On the local level,
this information has the potential for earlier warning for
hospitals to prepare their workforce. With appropriate
application, this novel surveillance system has the poten-
tial to alleviate gaps in current national influenza sur-
veillance highlighted by the WHO [31] and enhance
hospital preparedness.
While primary-care ILI surveillance is a sustainable

and longstanding system for estimating influenza dyna-
mics, it is susceptible to presentation bias, particularly
under certain scenarios e.g. pH1N1, which can affect the
estimated disease burden [1,11] and reduce comparability
between seasons and countries. The natural experiment
that occurred in the UK with the pH1N1 introduction,
where presentation bias was estimated through additional
studies and presentation was known to be too high in the
summer months and too low in the winter months of
2009, provided an opportunity to test the ability for the
hospital staff-ILA system to predict burden of disease.
Our data showed that hospital-staff ILA was unaffected
by this presentation trend and it provided more similar
estimates of ‘true’ disease burden, demonstrating that it
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is robust against such biases. While the UK may have
been unique in this ‘natural experiment’, it was not
unique with respect to greater pH1N1 disease burden in
the winter of 2009/2010 than the summer, which has
been observed amongst hospital staff in Hong Kong
where intensive surveillance based on confirmatory test-
ing occurred [32]. While modelling different data sources
is an effective and common method for dealing with
presentation bias, hospital staff-ILA has the potential to
provide an additional and currently overlooked data
source for this modelling, as well as provide a more con-
sistent, rapid assessment to estimate disease burden in
very early response and in particular gives hospitals more
accurate and more advanced warning. public health prac-
titioners in Europe have trialled a number of promising
surveillance methods, such as the Moving Epidemic
Method (MEM) [27] to allow greater comparability
between countries and Bayesian synthesis models to bet-
ter capture true burden [1] and severity [10] of illness.
Hospital staff-ILA could support these efforts through
providing information to enhance ‘real-time’ estimates of
burden, which could be utilised within and between
Time
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rue symptomatic cases (green) from Bayesian model, and estimated
model for April 2009 through January 2010. Model estimates from
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countries in MEM and Bayesian models. Additionally, it
may also provide information on a broader range of
illness severity, through assessment of number of days of
absence. This has the potential to save resources in situa-
tions such as pH1N1 where the disease is generally mild,
but it is a new introduction.
We observed a clear lead-time in increases in hospital

staff-ILA relative to London-ILI starting from October
(Figures 3 and 4), which was not associated with an
increase false positive signal in staff-ILA (Figure 2). We
believe that this trend in lead-time is real, as any general
working population will first report absent to work and
following this, will present to a healthcare setting. At the
local level, earlier lead time would result in a greater
ability for hospitals to prepare, which could provide
organisational resilience and increase patient safety. Sub-
optimal nurse-to-patient ratios have been shown to
increase patient mortality and adverse events [4,5,33],
and could be defined as low organisational resilience
when an acute cause, such as an epidemic, results in
such a problem. Ideally, hospitals should not just maintain
functionality under acute strain or shock (i.e., demonstrate
resilience), but rather be able to adapt to and provide for
increased demand; early warning, combined with a pre-
paredness plan would help facilitate this. However, NHS
hospitals currently rely on traditional surveillance systems
for early warning, which have a delay that would not be
incurred if surveillance was embedded in the healthcare
system. While the use of other data sources for ILI surveil-
lance, such as social media [16,17] and school absenteeism
[20,21] has also been shown to increase lead time in syn-
dromic surveillance, causes of peaks in social media and
reasons for absenteeism in schools have yet to be fully
understood. While our system of hospital staff-ILA re-
quires additional testing before fully incorporating into a
national surveillance system, it is clear that earlier predic-
tion of clinical staff absence through hospital-ILA surveil-
lance would enable hospitals to prepare for appropriate
staffing and skill mix.
In addition to social media and school-based absentee

reporting, a number of additional innovative ILI sentinel
sources have been explored, including pharmaceutical
sales, emergency department visits, and health helpline
calls [15], however, these suffer from presentation bias
that is not inherent in hospital-ILA monitoring. While
hospital staff-ILA may incur its own set of biases, for ex-
ample issues related to attending work when ill (‘present-
eeism’), which has been predominately observed amongst
medical doctors [34-36], these will be different from
presentation bias and are likely to be measurable, and
therefore hospital staff-ILA will provide a source of data
that may counter balance presentation biases. General
work absences for ILI surveillance have been explored
previously [37], however, focusing on hospital staff is
likely to be more effective than other workforces as it is
easily embedded in operational management, as observed
in Hong Kong [32]. It is also likely to be sustainable and
inexpensive as it would be embedded into standard HR
procedure, given that it would be tied to important finan-
cial activity (i.e., staff payment). Additionally, surveillance
of hospital staff-ILA would provide a large, diverse sample
with a known denominator. For example, in the UK the
NHS has been estimated to be the fifth largest workforce
in the world, employing approximately 1.7 million and
representing about 2% of the country’s population [38].
While the proposed system has many advantages,

there are also some limitations. The age range of hos-
pital staff (20–68 years in our cohort) is not representa-
tive of the entire population. However, we found high
correlations between hospital-ILA and London-ILI, re-
gardless of age group with the exception of those youn-
ger than 1 year-old and older than 74 years, indicating
that alternative surveillance for infants and elderly is
necessary. For hospital staff-ILA surveillance to be
effective, complete cooperation and regular reporting
would have to be maintained, and therefore somewhat
standardised between organisations. Costs, feasibility
and comparability of a larger NHS wide or NHS sentinel
site system, would also have to be explored. In settings
similar to the ICHT, where physicians may be paid by
another entity, i.e., the University, HR does not always
obtain a record of absence. However, in our study, exclu-
sion of these staff did not affect our ability to detect
influenza, possibly because they represent a small por-
tion of hospital staff. Additionally, daily, electronic
reporting of staff illness, reason and type, would have to
be supported in order to get the maximum benefit from
the system. Currently, at ICHT many departments, espe-
cially patient facing clinical services report absences in
real-time; while, other departments, may only upload
their absences on the system on a weekly basis. How-
ever, during the initial months of the H1N1 pandemic,
ICHT reported staff absence daily without difficulty, sug-
gesting that with small changes real-time reporting
would be possible. For most larger NHS Trusts, staff
absences are directly reported into electronic systems
designed to capture this information, which would fur-
ther enable real-time reporting. There are likely to be
behavioural factors with respect to taking illness absence
that could differ between countries, and these would
require further exploration before direct comparisons
could be made. Presenteeism, or presenting to work
when ill, should be well understood in order to under-
stand biases within the data. Unfortunately, there were
not enough cases of inpatient influenza reported in these
time periods to examine correlation between inpatient
confirmed cases and syndromic hospital staff-ILA cases.
Lastly, our data included combined cold, cough and
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influenza absences, from nationally standardized cat-
egories, which were unavoidably combined due to the
addition of “influenza” combined with cough and cold
after 2009. These are less specific than traditional ILI
symptoms and could include other viral respiratory infec-
tions; however, even using ILI definitions, it is difficult to
differentiate between influenza and other seasonal
respiratory viruses based on symptoms alone. Given the
similarities in surveillance patterns between ILI and
hospital-ILA, it is highly likely that both systems are
measuring the same syndromes. Additionally, even if
influenza is not the primary cause of the ILA, a surge in
viral respiratory illness that renders people unable to
work is important to monitor and will have significant
public health and hospital resilience implications regard-
less of the viral pathogen. If a hospital-ILA surveillance sys-
tem were to be adopted, we would recommend improving
standardized illness categories and reporting of symptoms,
as well as, initiating voluntary confirmatory testing of
respiratory illnesses among hospital staff, which was
accepted by HCWs in Hong Kong [32] and is likely to be
adopted by a portion of HCWs in the UK.

Conclusions
While there has been significant focus on how to handle
pandemic extremes [39], improving monitoring and
planning for seasonal influenza is of great importance
[31]. At the community-level, hospital-ILA surveillance
has the potential to allow hospitals to better prepare for
severe influenza cases and staffing shortage with some
early warning. Nationally, hospital-ILA surveillance has
potential for earlier warning and to enhance our esti-
mates of influenza burden and severity year-to-year. It
may also contribute to rapid and cost efficient syndromic
vaccine effectiveness studies, such as those described
by Eames and colleagues [40]. We recommend that
healthcare and public health organisation investigate the
utility of this novel, new source of surveillance, as sup-
plementing current surveillance with hospital-ILA may
be an ideal method for addressing sensitivities of current
ILI systems [1,11,31] and increasing patient safety.

Additional files

Additional file 1: Figure S1. Weekly counts of hospital-ILA (blue) and
London-ILI in the community (red) from April 2008 to April 2013 (interactive
figure). Please use your mouse to ‘zoom in’, change plot type and view
numbers of cases.

Additional file 2: Figure S2. Scatterplot matrix illustrating correlations
between hospital staff-ILA and different age ranges for London-ILI. The
lower diagonal panels show a scatterplot for pairs of variables, and the
panels on the upper diagonal illustrate Spearman’s rank correlation for each
pair of variables. Reading across the top row shows that the correlation
between hospital staff-ILA and London-ILI is greatest for ILI in 15-64 year
olds, consistent with the age range of the hospital staff, while it is weakest
for the very young (<1 year old) and elderly (>75 years old); the first
column represents this pictorially. Adjacent correlations on the diagonal
shows correlations between age groups within London-ILI showing that
the correlation between different age groups in London-ILI is not that
different from hospital staff-ILA compared to each age group in
London-ILI.

Additional file 3: Figure S3. The cross-correlation of hospital staff ILA
and London ILI (log10 rates) by season. Correlations were calculated
between ILA at time t+lag and ILI at time t, and demonstrate that the
correlation is generally highest for a time lag of zero weeks.

Additional file 4: Figure S4. (a) Rates of hospital staff ILA and London
ILI per 100,000 over time, and a time series decomposition of these rates
into (b) trend, (c) seasonal and (d) remainder components, using STL
decomposition (see Supplementary Methods). Although the overall rate
of ILA is higher than ILI (as seen in the trend), the timing of increases and
decreases in rate is extremely similar for both seasonal and remainder
components.
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