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Abstract

rRNA sequencing, QIME 2 and Calypso 7.14 tools.

had the strongest impact on microbiome composition.

Trial registration: NCT03167983.

Background: Dementia is an increasing public health threat worldwide. The pathogenesis of dementia has not been
fully elucidated yet. Inflammatory processes are hypothesized to play an important role as a driver for cognitive decline
but the origin of inflammation is not clear. We hypothesize that disturbances in gut microbiome composition, gut barrier
dysfunction, bacterial translocation and resulting inflammation are associated with cognitive dysfunction in dementia.

Methods: To test this hypothesis, a cohort of 23 patients with dementia and 18 age and sex matched controls without
cognitive impairments were studied. Gut microbiome composition, gut barrier dysfunction, bacterial translocation and
inflalmmation were assessed from stool and serum samples. Malnutrition was assessed by Mini Nutritional Assessment
Short Form (MNA-SF), detailed information on drug use was collected. Microbiome composition was assessed by 165

Results: Dementia was associated with dysbiosis characterized by differences in beta diversity and changes in taxonomic
composition. Gut permeability was increased as evidenced by increased serum diamine oxidase (DAO) levels and
systemic inflammation was confirmed by increased soluble cluster of differentiation 14 levels (sCD14). BMI and statin use

Conclusion: Dementia is associated with changes in gut microbiome composition and increased biomarkers of gut
permeability and inflammation. Lachnospiraceae NK4A136 group as potential butyrate producer was reduced in dementia.
Malnutrition and drug intake were factors, that impact on microbiome composition. Increasing butyrate producing
bacteria and targeting malnutrition may be promising therapeutic targets in dementia.
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Background

Dementia leads to disability and dependency among
older people worldwide and thereby has enormous phys-
ical, psychological, social and economic impact on pa-
tients, caregivers, families and society [1]. Alzheimer’s
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disease (AD) is the most common form of dementia ac-
counting for 60-70% of the cases [1]. In AD, pathologic
protein aggregates and neuroinflammation mediated by
microglia cells are involved in the pathogenesis, how-
ever, the exact mechanism is still unclear [2]. Microglia
maturation and function is critically dependent on
short-chain fatty acids produced by the gut microbiome
and therefore highlights the microbiome as a potential
diagnostic and therapeutic target in dementia [3]. During
ageing, the gut microbiome decreases in diversity, loses
beneficial taxa and facultative pathogens increase [4].
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Diet and the place of residence play an important role in
the shaping of the microbiome [5, 6]. Ageing is also as-
sociated with inflammation — often termed as “inflam-
mageing”. Inflammation is further associated with an
increase in gut permeability, mucosal inflammation and
bacterial translocation [2].

Since the main risk factor for developing dementia, es-
pecially AD, is ageing, it can be hypothesized that the
gut-brain axis is a possible link between age and disease
related dysbiosis and inflammation. Animal studies sug-
gest that AD is associated with changes in the gut
microbiome composition with a decrease in beneficial,
anti-inflammatory genera [7]. Furthermore, genetic alter-
ations in amyloid genes can influence microbiome com-
position in mice, pointing towards a vicious cycle in AD
development [8]. Recently studies from the USA have
identified a loss in species diversity and differences in
bacterial composition in the stool of AD patients com-
pared to matched controls [9]. A study from Japan has
also shown that gut microbiome composition is inde-
pendently and strongly associated with dementia [10].
Furthermore, it has been recently published that the
microbiome of dementia patients causes a dysregulation
of the anti-inflammatory P-glycoprotein pathway [11].

So far factors that may influence the composition of
the gut microbiome in patients with dementia have not
been studied in detail. Potentially influencing factors
could be malnutrition, which is common in dementia
and associated with disease severity, [12-14] or drug in-
take, since polypharmacy is a common problem in eld-
erly persons and the impact of drugs on the microbiome
has recently gained attention [15-17].

We hypothesize that dementia is associated with dys-
biosis, gut barrier dysfunction and inflammation and we
aim to identify external factors influencing microbiome
composition in dementia, such as nutrition and drug in-
take. To study this, we conducted a prospective con-
trolled cohort study in patients with dementia and age
matched controls.

Methods

Between July 2017 and March 2018 we recruited 25 pa-
tients with diagnosis of Alzheimer type (n =21) or
mixed type (Alzheimer type plus vascular type, n =4)
dementia with a Mini Mental State Examination
(MMSE) < 26 and 18 age and sex matched controls with-
out evidence of dementia and a MMSE >26 at the
Albert-Schweitzer Hospital Graz and at the University
Hospital Graz. Diagnosis of dementia was made by a
board-certified neurologist/psychiatrist and according to
ICD10 criteria including cerebral imaging and exclusion
of differential diagnosis by full laboratory workup. Par-
ticipants or their legal representative gave written in-
formed consent. We excluded participants with other
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forms of dementia, inflammatory bowel diseases, liver
cirrhosis or recent (<4 weeks) antibiotic or probiotic
treatment. The study (29-420 ex 16/17) was approved
by the ethics committee Ethic Committee of the Medical
University of Graz (IRB00002556) and has been regis-
tered at clinicaltrials.gov (NCT03167983) before the
study started. The study was performed according to the
Declaration of Helsinki and Good Clinical Practise
guidelines. Written informed consent was obtained be-
fore any study specific procedure was performed from
participants or their legal representatives (in case pa-
tients were not able to give written consent any more
due to the severity of cognitive dysfunction). Routine
blood biochemistry analysis including full blood count,
electrolytes, renal function, liver function, albumin and
total protein levels and inflammation parameter and a
detailed medical history was performed. Stool and serum
samples were collected for analysis of gut microbiome
composition and biomarkers of intestinal permeability,
inflammation and bacterial translocation. Serum samples
were collected after overnight fasting. Stool samples
were collected by the patients or caregivers in sterile col-
lection tubes either on the same day or the evening be-
fore the study visit. Samples were kept on 4°C until
arrival at the hospital and then frozen immediately at -
80 °C. Mini Nutritional Assessment Short Form [18] was
used to assess nutritional status.

Cognitive function

The Mini-Mental State Examination [19] and the clock
drawing test [20] were used to quantify cognitive func-
tion. We classified cognitive dysfunction according to
the German S3-guideline on Dementia 2016 as MMSE
0-9: severe; MMSE 10-19: moderate; MMSE 20-26:
mild; MMSE 27-30: no dementia [21].

Microbiome analysis

Total DNA was isolated from frozen stool samples using
MagnaPure LC DNA Isolation Kit III (Bacteria, Fungi)
(Roche, Mannheim, Germany) according to manufacturer’s
instructions including mechanic and enzymatic lysis [22].
Hypervariable regions V1-V2 were amplified in a target spe-
cific PCR using the primers 27F and R357 (27F-AGAGTT
TGATCCTGGCTCAG;  R357-CTGCTGCCTYCCGTA)
and sequenced with the Illumina MiSeq technique (Illumina,
Eindhoven, The Netherlands) [22]. Sequencing was done in
cooperation with the Core Facility for Molecular Biology at
the Center for Medical Research in Graz.

Gut permeability, inflammation and bacterial
translocation

Enzyme linked immunosorbent assays (ELISA) were used
to measure fecal and serum calprotectin, fecal and serum
zonulin, serum diamine oxidase (Immundiagnostic AG,
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Bensheim, Germany), soluble (s)CD14 (R&D Systems,
Minneapolis, USA), and lipopolysaccharide binding pro-
tein (LBP) (Hycult biotech, Uden, The Netherlands). All
assays were performed according to manufacturers’ in-
structions. Bacterial products (endotoxin, peptidoglycan
and bacterial DNA) were detected in serum using HEK-
Blue hTLR4, HEK-Blue hNOD2 and HEK-Blue hTLRY re-
porter cells (Invivogen, Toulouse, France), respectively as
published previously [23].

Statistical analysis

For microbiome analysis generated FASTQ files were
processed for analysis using Qiime2 [24] tools imple-
mented in Galaxy (https://galaxy.medunigraz.at). Denois-
ing (primers removing, quality filtering, correcting errors
in marginal sequences, removing chimeric sequences, re-
moving singletons, joining paired-end reads, and derepli-
cation) was done with DADA2 [25]. Taxonomy was
assigned based on Silva 132 database release at 99%
OTU level, trained using a Naive Bayes classifier. Se-
quences were blasted in the NCBI database for further
classification [26]. Features with a total sequence count
of less than 10 and/or present in less than two patient
samples were excluded from analysis. Chloroplast and
cyanobacteria filtering were performed to remove con-
taminants. The resulting mean sequencing depth was 41,
631 (range 21,774-53,719) reads per sample. In QIIME2,
“feature” is the observational unit and describes a se-
quence variant/operational taxonomic unit. Analysis was
done using the web-based software Calypso 7.14 (http://
cgenome.net/calypso/) [27]. For alpha diversity assess-
ment, data was rarefied with a sampling depth of 24,771
reads and Chaol index, Simpson reciprocal index and
Faith phylogenetic diversity were calculated to quantify
microbial diversity.

Beta diversity and taxon comparison was done on an
unrarefied feature table after total sum scaling and
square root transformation. Redundancy analysis based
on Bray Curtis dissimilarity was used to compare beta
diversity between groups and to identify significant con-
founders. Differentially abundant taxa were identified
with  Analysis of Composition of Microbiomes
(ANCOM) [28]. This method accounts for compos-
itional constraints and reduces false discovery rates
while maintaining high statistical power during the de-
tection of differentially abundant taxa. This test utilizes
multiple taxon-to-taxon comparisons and infers differen-
tial abundance of a taxon based on the number of sig-
nificant group comparisons relative to other taxa (W-
value). Feature selection was performed using the super-
vised machine learning tool Linear Discriminant analysis
Effect Size (LEfSe) [29]. LEfSe is a tool to discover fea-
tures by way of class comparison, tests of biological
consistency and effect size estimation between two or
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more microbial communities. All analyses were per-
formed on feature, genus, family, class, order and
phylum level. Sequence data is publicly available at the
NCBI Sequence Read Archive (SRA
PRJNA608281).

All other statistical analyses were performed using
SPSS version 25.0 (SPSS Inc., Chicago, Illinois, USA)
and R [30] version 3.5.2 (packages: “mice”, “ggcorrplot”,
“psych”, “randomForest”, “fmsb”, “stats”, “robustHD”)
[31-37]. Tests (t-test or Mann-Whitney) were chosen
depending on the distribution of the data assessed by
Shapiro-Wilk normality test. Spearman rank correlation
with Benjamini-Hochberg correction for multiple testing
was used to assess strength and direction of linear rela-
tionships between variables. All statistical tests were 2-
sided, and p-values <0.05 were considered statistically
significant. Data are presented as median and 95% confi-
dence interval unless stated otherwise. Missing values
were imputed by multivariate imputation by chained
equations (package “mice”) [33] based on random forests
(package “randomForest”) [31]. Univariate and multivari-
ate RDA was performed to find out which variables ex-
plain the variance in microbiome composition. VIF
values were calculated to account for collinearity be-
tween the explanatory variables (package “fmsb”), [37]
explanatory variables were standardized for multivariate
RDA (package “robustHD”) [35]. Network analysis was
based on Spearman’s rho associations between taxa and
converting the pairwise correlations into dissimilarities
to ordinate nodes in a two dimensional PCoA plot.

accession:

Results

Patient characteristics

We recruited 25 patients with dementia (Alzheimer type
and mixed type) and 18 matched controls without cogni-
tive impairment in this prospective controlled cohort
study. From 2 dementia patients we were not able to
collect enough stool and blood samples to do the
intended analyses; therefore, they were excluded from
the final analysis. (Fig. 1) Dementia patients had a lower
body mass index (BMI) and erythrocyte count as well as
lower serum albumin and total protein levels compared
to controls. Accordingly, nutritional status according to
MNA-SF was significantly worse in dementia patients.
Within the dementia group, erythrocyte count (r =
0.669, p =0.002) and albumin (r =0.707, p <0.002)
showed a significant positive correlation with MMSE
and clock drawing test showed a weak positive correl-
ation with albumin (r =0.485, p =0.019). No significant
differences were found regarding age, gender, and other
routine biochemistry parameters. BMI did not correlate
with MMSE or clock drawing test results. Collinearity
analysis showed variance inflation factors (VIF) below 2
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Fig. 1 Patient flow chart

for MMSE, clock-drawing test, BMI, albumin and MNA-
SE.

Prescription drug intake was significantly different be-
tween dementia patients and controls. Dementia patients
took three times more prescription drugs compared to
controls. Antidepressants, laxatives, opioids, anti-
dementia drugs, sedatives, vitamin D and metamizole
were prescribed nearly exclusively in the dementia
group, whereas proton pump inhibitors (PPI), antihyper-
tensive drugs, statins, nonsteroidal anti-inflammatory
drugs (NSAIDS), paracetamol, antidiabetics, thyroid hor-
mones, calcium and magnesium supplements, anticoagu-
lation and phytotherapeutics were equally prescribed for
dementia patients and age matched controls. Laxatives,

sedatives, metamizole and paracetamol were usually pre-
scribed as needed, whereas the other drugs were pre-
scribed as fixed dose medication. Patient characteristics
are shown in Table 1.

Gut microbiome composition

Alpha diversity using Chao 1 index (Fig. 2a), Simpson
reciprocal index (Supplementary figure S1A) or Faith
phylogenetic diversity (Supplementary figure S1C) was
not significantly different in dementia patients compared
to age matched controls. Redundancy Analysis (RDA)
showed clear clustering of dementia patients compared
to controls (Variance 34.3, F=1.31 p =0.003). (Fig. 2b)
Alpha diversity also did not change significantly with

Table 1 Patient characteristics. Data are given as median and 95% confidence interval unless stated otherwise

Dementia patients (n = 23) Controls (n =18) p-value
Age (years) 88 (73,85) 75 (74;76) ns.
Gender (f/m) (n) 15/8 11/7 ns.
BMI (kg/m?2) 24.8 (22.6; 25.9) 28.1 (25.2;31.0) p =0.028
MMSE 16 (13;21) 29 (30;30) p <0.0001
Clock drawing test 3 (0:5) 7 (7.9 p <0.0001
Number of prescription drugs 9 (6;11) 3014 p <0.0001
MNA-SF 10 (9;12) 14 (14;14) p < 0.0001
Leukocytes (10°/L) 6.6 (6.2,83) 6.1 (5.4;7.5) n.s
Erythrocytes (10'/L) 45 (4.04.7) 47 (44;5.7) p =0028
Thrombocytes (10°/L) 220 (216;248) 216 (205;222) n.s
Hemoglobin g/dL 132 (12.7,144) 14.1 (13.3;14.7) n.s
Creatinine (mg/dL) 0.9 (0.8;1.0) 0 (0.9,1.1) n.s
Bilirubin (mg/dL) 06 (0.50.9) 0.6 (0.5,0.6) ns
Albumin (g/dL) 39 (37,41 4.4) p =0.006
total protein (g/dL) 7.0 (6.8;7.3) 75 (7.3,7.6) p=0014
CRP (ma/l) 5@3G11) 2(1.2:34) ns.

BMI body mass index, MMSE Mini mental state examination, MNA-SF Mini Nutritional Assessment Short Form, CRP C reactive protein
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increasing degree of dementia. (Fig. 2c and supplemen-
tary figure S1B and D) RDA showed clear clustering of
different stages of dementia (Variance 94.7, F=1.2 p =
0.001). (Fig. 2d) Linear discriminant analysis of effect
size (LEfSe) identified one family, 5 genera and 7 fea-
tures to differ between patients with dementia and con-
trols. For example, the features Clostridium
clostridioforme, Anaerostipes hadrus and Bacteroides
dorei were associated with dementia; Lachnospiraceae
bacterium MC-35, another Lachnospiraceae sp., and the
genus Lachnospiraceae NK4A136 group were associated
with health. (Fig. 3a) Analysis of Composition of Micro-
biomes (ANCOM) confirmed that from the taxa identi-
fied by LEfSe to discriminate between dementia and
control, one uncultured Lachnospiraceae feature as well
as the genus Lachnospiraceae NK4A136 group were sig-
nificantly less abundant in stool of dementia patients.
Additionally, the feature Eubacterium rectale was also
less abundant in stool of dementia patients (Fig. 3b).

When looking at different stages of dementia, LEfSe
identified one class, 3 orders, 3 families, 18 genera and
20 features, being associated with severity of cognitive
impairment. Most notably, three Lachnospiraceae spe-
cies with the corresponding genus Lachnospiraceae
NK4A136 group and the genus Lachnospira were associ-
ated with health; Faecalibacterium prausnitzii was asso-
ciated with mild dementia; moderate dementia was
associated with Lactobacillus amylovorus and the corre-
sponding higher taxonomic levels (the genus Lactobacil-
lus, the family Lactobacillaceae and the order
Lactobacillales). Severe dementia was associated with
several potential pathogens (e.g. Clostridium clostridi-
forme, Streptococcus salivarius) (Fig. 4a) From these dis-
criminating taxa, ANCOM analysis identified the feature
C. clostridioforme and the genus Eisenbergiella to in-
crease with severity of cognitive impairment and the
family Lactobacillaceae to be highest in patients with
moderate cognitive impairment. (Fig. 4b).



Stadlbauer et al. BMIC Geriatrics (2020) 20:248 Page 6 of 13
P
Agathobacter sp,
Lachnospiraceae bacterium MC-35
= Lachnospiraceae sp,
‘g Ruminococcaceae UCG-014 sp,
© Agathobacter
Lachnospiraceae NK4A136 group
Erysipelotrichaceae UCG003
Bacteroides dorei
o Anaerostipes hadrus
= Clostridium clostridioforme
§ Ruminococcus torques group
Lachnoclostridium
Clostridiales vadin-BB60 group
0 1 2 3 4
LDA score (log10)
B R 3
) ° @ 0.04- U
3 o — 0.04-
c c [0)
© = =
2 006- = =3
2 d o
% % 0.03 5,0.03-
- -t (o]
g £ ®
0.04- : <
[0) o .
T o 0.02 S 0.02-
5] - =z
= g 3
1S | T © Q
3 002 T £ 001- . S 0.01-
_.CI_.} H n e = °
o o o
S £ 3
z = I : £
S5
T 0.00- ® 0.00- == 5 0.00- C
1 1 1 1 © 1 1
control dementia control dementia - control dementia
Fig. 3 a Features selected by Linear discriminant analysis Effect Size (LEfSe) to discriminate between dementia patients and controls. b
Differentially abundant taxa between dementia and controls

\

Association of drug intake and nutrition on microbiome
composition

While some drugs were nearly exclusively prescribed in
dementia patients (for details see supplementary table S1),
other drugs were equally prescribed between dementia
and control subjects. To understand how drug use may in-
fluence microbiome composition irrespective of the dis-
ease, we studied the effect of drugs that were equally
prescribed in dementia patients and healthy controls on
diversity measures and taxonomic composition: namely
PPI, antihypertensive drugs, statins, thyroid hormones and
NSAIDS. Paracetamol, antidiabetics and calcium and
magnesium supplements were taken by less than 15% of
the cohort and therefore these drugs were not included
into the analysis. None of the drugs influenced alpha di-
versity (Chaol, Simpson, Faith phylogenetic diversity).

Statins, but none of the other drugs had a significant im-
pact on beta diversity (RDA, Variance 35.58, F 1.36, p =
0.003). LEfSe identified several features, genera, families,
orders and classes being associated with use or non-use of
each drug. ANCOM identified several of these taxa as well
as some taxa that were not discriminative on LEfSe to be
differentially abundant taxa between drug user and non-
user. For details see supplementary tables S2—6. Interest-
ingly, PPI use was associated with increased abundance of
oral bacteria (e.g. Streptococcus salivarius) whereas statin
and antihypertensive drug use was associated with in-
creased abundance of bacteria known to produce butyrate
(e.g. Faecalibacterium sp.).

Since malnutrition was present in 74% of dementia pa-
tients but in none of the control persons, microbiome
composition in malnourished versus non-malnourished
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patients was very similar to the results obtained when
comparing dementia versus controls. LEfSe identified
the feature Ruminococcaceae UCG-014 sp with the cor-
responding genus Ruminococcaceae UCGO14 and the
genus Lachnospiraceae NK4A136 group to be associated
with normal nutritional state. These taxa were also
found to be associated with healthy controls. The genus
Eubacterium hallii group was associated with dementia.
(supplementary table S7) ANCOM confirmed the feature
Ruminococcaceae UCG-014 sp. and the genus Lachnos-
piraceae NK4A136 group to be differentially abundant
between malnutrition and normal nutrition.

Gut barrier dysfunction, inflammation and bacterial
translocation

We assessed intestinal permeability by serum diami-
nooxidase (DAO) and fecal zonulin; inflammation by C-
reactive protein, serum lipopolysaccharide binding pro-
tein (LBP), soluble CD 14 (sCD14) and fecal calprotectin

as well as bacterial translocation by endotoxin, peptido-
glycanes and bacterial DNA in serum. Patients with de-
mentia had higher DAO levels and sCD14 levels,
indicative for an association with increased gut perme-
ability and increased endotoxin load. (Table 2).

PPI use was associated with significantly increased fae-
cal calprotectin levels (PPI use: 92.5 ng/ml (50.2; 120.5);
PPI non-use: 28.1 ng/ml (20.8; 47.9); p = 0.008). Antihy-
pertensive use was associated with significantly increased
CRP levels (antihypertensive use: 6 mg/dl (3; 11); antihy-
pertensive non-use 1.3 mg/dl (1;4); p = 0.016), suggesting
complex relations between disease, drug use and
inflammation.

Multivariate and network analysis of potential factors
influencing microbiome composition in dementia

To understand the main drivers of dysbiosis in dementia
we further performed univariate and multivariate RDA
to assess the association of clinical variables and
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Table 2 Biomarker for gut barrier dysfunction, inflammation and bacterial translocation, Data are shown as median and 95%

confidence interval

Dementia patients (n = 23) Controls (n =18) p-value
Serum diaminooxidase (U/ml) 20.8 (9.7;29) 112 (84;13.8) 0.025
Fecal zonulin (ng/ml) 338 (31.2,57) 55.1 (40.8; 76.7) n.s
C-reactive protein (mg/L) 511 2(1.234) n.s
Serum lipopolysaccharide binding protein (ug/ml) 179 (16.1; 18.6) 20.0 (14.6; 21.3) ns
Soluble CD 14 (ug/ml) 24(19;3.0) 18(17;2.1) 0022
Fecal calprotectin (ng/ml) 315 (266; 85.8) 49.0 (18.2; 66.3) n.s
Endotoxin (EU/ml) 0.26 (0.0; 0.33) 0.25 (0.09; 0.53) n.s
Peptidoglycan® (ng/mL) 0.96 (0.26; 1.66) 0.42 (0.30;1.05) ns.
Bacterial DNA (UM) 0.06 (0.00;1.46) 0.7 (0.0; 1.29) ns

peptidoglycan was only measurable in 12% of the samples, therefore median and confidence interval only for the positive samples are shown. CD cluster of

differentiation, EU endotoxin units

biomarkers with microbiome composition. RDA showed
that BMI, albumin, total protein, sCD14, statins, NSAI
Ds, number of drugs, MNA-SF, MMSE, clock-drawing
test, sex, number of drugs were explanatory variables for
microbiome composition in controls compared to de-
mentia and between different stages of cognitive dys-
function (p <0.1) (supplementary table S8). To the final
multivariate RDA model explanatory variables with p <
0.1 in the univariate analysis were included and variables
with VIF > 2 in multicollinearity analysis were excluded.
(Table 3) In the multivariate model BMI and statin use
were the remaining significant explanatory variables for
differences in microbiome composition between demen-
tia and control groups and between the groups of de-
mentia severity in the dementia group only. (Table 3)
Network analysis also illustrates the overlap between fac-
tors influencing microbiome composition: Genera asso-
ciated with dementia (red) overlap with genera
associated with no statin intake (yellow) and BMI
(green), whereas genera associated with health (blue)
overlap with genera associated with statin intake (pur-
ple). (Fig. 5a) When performing network analysis in the
subgroup of dementia patients only, the overlaps are less
clear, but again genera associated with severe dementia
(red) overlap with genera associated with no statin in-
take (yellow) and genera associated with mild dementia
(blue) overlap with genera associated with statin intake
(purple). The association with BMI is less pronounced in
the dementia subgroup. (Fig. 5b).

Discussion

Our cross-sectional controlled pilot cohort study shows
that dementia is associated with changes in microbiome
composition including a reduction in bacteria known to
produce short chain fatty acids (SCFA) and increased
biomarkers of gut permeability and inflammation. Fur-
thermore, we could show that both malnutrition and
drug intake are factors associated with microbiome

composition in dementia. This study therefore supports
the concept of a disrupted gut-brain axis in dementia.
The concept of a disrupted gut-brain axis in dementia
has recently emerged. Several animal studies show that
induction of dysbiosis by antibiotics, irradiation or

Table 3 Multivariate RDA to identify the most important
explanatory variables for microbiome composition changes

Variable

Control versus Dementia

Severity of dementia

BMI

Total protein

Variance = 33.18
F=129

P =0.006
Variance = 29.19
F=1.14

Variance = 33.18
F=129

P =0.008
Variance = 29.19
F=1.14

P =0.067 P =0.070
soluble CD14 Variance = 29.06 Variance = 29.06

F=113 F=113

P=0072 P =0.079
Statins Variance = 32.06 Variance = 32.06

F=125 F=125

P =0.009 P =0.014

Clock-drawing test

Variance = 25.89
F=1.01
P=0376

Variance = 25.89
F=1.01
P=0374

Age Variance = 25.88 Variance = 25.88
F=1.01 F=1.01
P =0427 P =0.409

Sex Variance = 27.63 Variance = 27.63
F=1.08 F=1.08
P=0.137 P =0.154

NSAIDS Variance = 28.17 Variance = 28.17

F=1.10
P =0.098

F=1.10
P =0.107

BMI body mass index, NSAIDS non-steroidal anti-inflammatory drugs
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germ-free conditions negatively impact on cognitive
function and plaque deposition as recently reviewed by
Ticinesi et al. [38] Recently, in patients with dementia a
reduction in diversity of the microbiome has been de-
scribed, however data on taxonomic microbiome com-
position are varying between different studies from
different geographical locations [9, 10, 39]. We describe
altered beta diversity and distinct taxonomic changes in
dementia in a European cohort. Alpha diversity data in
dementia so far are conflicting, since a lower alpha di-
versity has been observed in the study from the USA [9],
whereas in the Japanese study a lower alpha diversity
was observed in the control group [10] but we found un-
changed alpha diversity of the gut microbiome between
European dementia patients and healthy age matched
controls. Microbial diversity depends on many factors,
especially in elderly, where the microbiome is likely to
be less stable [40]. Elderly people are more often ex-
posed to microbial community-altering events, such as
infections and concomitant antibiotic use, polypharmacy
or hospital stays. Therefore, elderly controls may not be
healthy in a strict sense and selection of the control co-
horts may account for the different findings in different
studies. Differences in analysis techniques [41] and also
in geographic location [42] may be further factors that
impact on diversity and composition of the gut
microbiome.

When looking at taxonomic differences, abundance of
Eubacterium rectale, an uncultured Lachnospiraceae sp.

and Lachnospiraceae NK4A136 group was lower in de-
mentia patients compared to controls. LEfSe also identi-
fied the family Lachospiraceae with its genus
Lachnospiraceae NK4A136 and several Lachnospiraceae
species to be associated with health. Eubacterium rectale
is a well-known butyrate producing bacterium [43] and
has already previously been associated with cognitive de-
cline [44]. Members of the Lachnospiraceae family have
been linked to obesity on the one hand and protection
from colon cancer in humans on the other hand, likely
due to the association of many species within the group
with the production of butyric acid, a SCFA that is im-
portant for host epithelial cell growth and integrity [45].
Mild dementia was also associated with another butyate
producer — F. prausnitzii [46]. Increasing the number of
butyrate producing bacteria in dementia may therefore
be a promising therapeutic approach, since SCFA such
as butyrate are critically involved in microglia matur-
ation and function [2, 3]. Data from animal and human
pilot studies support this concept. A dietary intervention
with bilberry anthocyanin extract was able to increase
Lachnospiraceae NK4A136 group abundance and im-
prove gut barrier function in ageing rats [47]. An ex-
ploratory pilot study in patients with dementia showed
that a multispecies probiotic can increase the abundance
of butyrate producing bacterial strains [48]. We also
found that the abundance of C. clostridioforme and the
genus Eisenbergiella increased with increasing cognitive
impairment. C. clostridioforme has mainly been
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described as a human pathogen [49] but has also been
described to be associated with vegetarian diet [50]. The
genus Eisenbergiella was recently found to be increased
in long lived adults [51]. Therefore these findings are
difficult to interpret in the context of cognitive dysfunc-
tion. The family Lactobacillaceae was differentially
abundant in different stages of dementia, with the high-
est abundance in moderate dementia and a lower abun-
dance in mild dementia and severe dementia. LEfSe also
revealed the bacterium L. amylovorus and the corre-
sponding genus Lactobacillus, the family Lactobacilla-
ceae and the order Lactobacillales to be associated with
moderate dementia. This finding is also difficult to inter-
pret, since Lactobacillus sp. in general were already more
than 100 years ago associated with longevity by the No-
bel prize winner Elie Metchnikow in 1907 [52] and sev-
eral studies using different Lactobacillus sp. have been
conducted with varying success in neurodegenerative
diseases [53]. Lactobacillus amylovorus has been de-
scribed as a novel probiotic strain that is able to reduce
ammonia levels and may therefore be associated with
cognitive function [54].

Our study also shows that dementia is not only associ-
ated with dysbiosis but also associated with markers of
increased gut permeability (DAO) and markers of in-
flammation (sCD14). Ageing itself has been associated
with an increase in gut permeability, mucosal inflamma-
tion and bacterial translocation — often termed as
“inflammageing” [2]. Increased calprotectin levels in
stool as a sign of intestinal inflammation have been ob-
served in a pilot study [55]. Another study in dementia
showed a decrease in previously elevated zonulin levels
after probiotic treatment as a possible hint towards a
causal link between dysbiosis and gut permeability in de-
mentia [48]. Although we did not find any differences in
stool zonulin and calprotectin levels, we found an in-
crease in DAO levels which has been proven to be a
valuable serum biomarker of gut barrier dysfunction
[56-59]. Also, Ginko biloba, a commonly used phy-
totherapeutic drug in dementia, was able to reduce DAO
levels in an animal model of alcoholic liver disease, indi-
cating both the validity of DAO as a permeability bio-
marker and that gut hyperpermeability may be a
modifiable and relevant therapeutic target [60]. We fur-
thermore found elevated sCD14 levels in dementia as a
marker of endotoxemia and inflammation. Recent
in vitro data suggest that the altered stool microbiome
composition in dementia directly modulates intestinal
epithelial homeostasis via the anti-inflammatory P-
glycoprotein pathway [11].

In our cohort, dementia patients, although not different
regarding age and gender from our controls, received 3
times more prescription drugs. Although some of these
drugs were only prescribed on demand, this finding is still
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striking. The known consequences of polypharmacy are
among others, cognitive impairment, a higher risk of falls
and non-compliance, but interventions to reduce polyphar-
macy are difficult [61, 62]. Drug-microbiome interactions
are increasingly recognized. A population based deep se-
quencing study revealed, that proton pump inhibitors (PPI)
were associated with the most profound microbiome
changes, followed by statins, antibiotics, laxatives and beta
blockers [17]. It has been shown experimentally that not
only classic antimicrobials but also many other human-
targeted drugs have an extensive impact on human gut bac-
teria [15]. We recently showed that PPI are one of the main
drivers of dysbiosis in liver cirrhosis [63, 64]. We therefore
assessed the association of prescription drugs with gut
microbiome composition. As expected, effects on overall
community structure (alpha and beta diversity) were small.
Each drug class was associated with distinct associations
throughout different taxonomic levels between users and
non-users. PPI use was associated with higher abundance of
oral bacteria in the stool and statins and antihypertensive
use was associated with an increase in SCFA producing bac-
teria. Due to the small sample size, the results have to be
interpreted with caution and can only serve as pilot data that
need to be explored in larger cohorts. Additionally, we
assessed the impact of drug intake on markers of gut perme-
ability, bacterial translocation and inflammation. We found
that PPI use was associated with increased intestinal inflam-
mation. This has been previously described in the context of
other diseases [65-67] and we have recently linked dysbiosis,
gut permeability and intestinal inflammation to adverse out-
come in patients with liver cirrhosis who use PPI [63]. Anti-
hypertensive use was associated with slightly, but
significantly elevated CRP levels, which is most likely due to
the underlying disease and not to the drug itself, since arter-
ial hypertension is associated with elevated CRP levels [68]
and therefore validates the relevance of our findings al-
though sample size is small.

Malnutrition is common in dementia and nutrition
care is an integral part of dementia care [69]. Although
all patients in our dementia cohort were treated accord-
ing to nutritional support standards that include oral nu-
tritional supplements in patients with MNA-SF <9,
MNA-SF and laboratory parameters showed that more
than three quarter of the dementia patients in our study
were malnourished. It is therefore impossible from this
cross-sectional pilot study to distinguish if malnutrition
or dementia are the starting point of dysbiosis. This
could only be answered by longitudinal studies. In gen-
eral, malnutrition has been associated with differences in
microbiome composition, such as loss of bifidobacteria,
however, most studies were performed in malnourished
children and not in elderly people [70].

In order to identify the drivers of dysbiosis we per-
formed multivariate analyses with all variables and
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excluded variables that showed high collinearity to
understand the driver of dysbiosis. We found that BMI
and statin use were the strongest influencing factors,
underpinning the notion that malnutrition and prescrip-
tion drug use drive microbiome composition in demen-
tia. Also network analysis supports the close association
of these factors. However, due to the small sample size,
the results of our multivariate analysis have to be inter-
preted with caution and can be seen as hypothesis gen-
eration only. The results need to be confirmed in larger
studies.

Our study has some limitations: First, the single center
approach and the sample size limit the generalizability of
the data. A combination of all studies on gut micro-
biome in dementia would be desirable, however, due to
the lack of standards in sequencing techniques this
would not be technically feasible. Second, we could not
perform the gold standard analysis of gut permeability —
the differential sugar absorption test — because of the
cognitive impairment of our patients, who were not able
to follow the instructions of the test. We overcame this
by using a panel of serum and stool markers that do not
require compliance with test instructions for the partici-
pants. And third, this study only provides cross-sectional
data and can therefore not answer any questions regard-
ing causality or cause-effect relationship between
cognitive dysfunction dysbiosis and malnutrition. A lon-
gitudinal study is in planning.

Conclusion

In summary this study provides evidence that structural
changes in microbiome composition in dementia are as-
sociated with malnutrition and prescription drug use
and that biomarkers of gut permeability are increased in
dementia. Further studies to move from associations to
causality in understanding the gut-brain axis in dementia
are necessary. Increasing butyrate producing bacteria
and targeting malnutrition seems to be promising thera-
peutic approaches to treat dementia related dysbiosis.
The effect of microbiome modulating strategies on cog-
nitive function needs to be addressed in future studies.
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