
Chen et al. 
BMC Medical Research Methodology          (2022) 22:195  
https://doi.org/10.1186/s12874-022-01672-z

RESEARCH

Machine learning is an effective method 
to predict the 90‑day prognosis of patients 
with transient ischemic attack and minor stroke
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Abstract 

Objective:  We aimed to investigate factors related to the 90-day poor prognosis (mRS≥3) in patients with transient 
ischemic attack (TIA) or minor stroke, construct 90-day poor prognosis prediction models for patients with TIA or 
minor stroke, and compare the predictive performance of machine learning models and Logistic model.

Method:  We selected TIA and minor stroke patients from a prospective registry study (CNSR-III). Demographic 
characteristics,smoking history, drinking history(≥20g/day), physiological data, medical history,secondary prevention 
treatment, in-hospital evaluation and education,laboratory data, neurological severity, mRS score and TOAST classifi‑
cation of patients were assessed. Univariate and multivariate logistic regression analyses were performed in the train‑
ing set to identify predictors associated with poor outcome (mRS≥3). The predictors were used to establish machine 
learning models and the traditional Logistic model, which were randomly divided into the training set and test set 
according to the ratio of 70:30. The training set was used to construct the prediction model, and the test set was used 
to evaluate the effect of the model. The evaluation indicators of the model included the area under the curve (AUC) of 
the discrimination index and the Brier score (or calibration plot) of the calibration index.

Result:  A total of 10967 patients with TIA and minor stroke were enrolled in this study, with an average age of 
61.77 ± 11.18 years, and women accounted for 30.68%. Factors associated with the poor prognosis in TIA and minor 
stroke patients included sex, age, stroke history, heart rate, D-dimer, creatinine, TOAST classification, admission mRS, 
discharge mRS, and discharge NIHSS score. All models, both those constructed by Logistic regression and those 
by machine learning, performed well in predicting the 90-day poor prognosis (AUC >0.800). The best perform‑
ing AUC in the test set was the Catboost model (AUC=0.839), followed by the XGBoost, GBDT, random forest and 
Adaboost model (AUCs equal to 0.838, 0, 835, 0.832, 0.823, respectively). The performance of Catboost and XGBoost 
in predicting poor prognosis at 90-day was better than the Logistic model, and the difference was statistically 
significant(P<0.05). All models, both those constructed by Logistic regression and those by machine learning had 
good calibration.

Conclusion:  Machine learning algorithms were not inferior to the Logistic regression model in predicting the poor 
prognosis of patients with TIA and minor stroke at 90-day. Among them, the Catboost model had the best predictive 
performance. All models provided good discrimination.
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Introduction
Stroke was the second leading cause of death world-
wide and the leading cause of mortality and disability in 
China [1, 2]. In previous studies in multiple countries, 
stroke recurrence rate 90 days after TIA/minor stroke 
was 18%-20% [3]. About 40% of stroke survivors have 
a poor prognosis (modified Rankin Scale [mRS] score 
≥3) between 1 month and five years after stroke [4]. In 
the past clinical work, both patients and medical work-
ers tend to pay more attention to the secondary preven-
tion of non-minor stroke patients, ignoring the poor 
prognosis of minor stroke. According to the data of the 
Third China National Stroke Registry (CNSR-III), TIA 
and minor stroke (a National Institutes of Health Stroke 
Scale (NIHSS) score≤5) account for about 73% of acute 
ischemic stroke cases. Therefore, it was essential to pre-
dict the prognosis of patients with TIA and minor stroke, 
find risk factors, identify high-risk patients, and accu-
rately carry out early intervention for patients with TIA 
and minor stroke. With the improvement of computer 
computing power, the advent of the era of big data, and 
the update of algorithms, machine learning has made 
good progress in disease prediction. However, there were 
few comparative studies on multiple tree model machine 
learning algorithms. This study used the CNSR-III data-
base to focus on factors related to the 90-day prognosis 
of TIA and minor stroke patients and compared the pre-
dictive performance of machine learning models and the 
Logistic model to provide references for related research 
and clinical work.

Method
Data availability statement
All anonymized data in this study could be shared by 
request from any qualified investigator.

Study design and patients
The CNSR-III database was a nationwide prospective 
clinical registry of ischemic stroke or TIA in China 
based on etiology, imaging, and biological markers. 
The detailed study design of the CNSR-III trial has 
been described elsewhere [5]. Between August 2015 
and March 2018, the CNSR-III recruited consecutive 
patients with ischemic stroke or TIA from 201 hospi-
tals that covered 22 provinces and four municipalities 
in China. Written informed consent was obtained from 
the patients or their legal representatives. Clinical data 
were collected prospectively using an electronic data 

capture system by face-to-face interviews. Brain imag-
ing, including brain magnetic resonance imaging (MRI) 
and computed tomography (CT), were completed at 
baseline. Blood samples were collected and biomarkers 
were tested at baseline. The registry recruited consecu-
tive patients who met the following criteria: age >18 
years; ischemic stroke or TIA; within 7 days from the 
onset of symptoms to enrolment; Acute ischemic stroke 
was diagnosed according to the World Health Organi-
zation (WHO) criteria [6] and confirmed by MRI or 
brain CT. Patients who had silent cerebral infarction 
with no manifestation of symptoms and signs or who 
refused to participate in the registry were excluded. 
The study was conducted in accordance with the Dec-
laration of Helsinki (as revised in 2013). The study was 
approved by the ethics committee of Beijing Tiantan 
Hospital (No.: KY2015-001- 01) and all study centers 
gave ethical approval of the study protocol. Written 
consents were obtained from all participants or their 
legal representatives.

In this study, minor stroke was defined as an NIHSS 
score≤5. There were 15,166 patients in CNSR-III, and 
4086 patients with an NIHSS score >5 were excluded.

There were 11,080 patients with TIA and minor 
stroke (an NIHSS score≤5). 113 patients were excluded 
(Including patients whose mRS score was missing for 
90-day in the follow-up data). A total of 10967 patients 
were eligible for the study. Supplementary Figure  1 
shows a detailed flow chart for the study population 
selection from CNSR-III.

Baseline variables
For baseline variables, we investigated demographic 
characteristics (sex, age, BMI, race, family income/
monthly, education level, living conditions), smok-
ing history, drinking history (≥20g/day), physiological 
data (systolic blood pressure, diastolic blood pressure, 
heart rate), medical history (including stroke, hyper-
tension, diabetes, heart disease and lipid metabolism 
disorders),secondary prevention treatment, in-hospital 
evaluation and education (including swallowing func-
tion, Limb rehabilitation and stroke-related education), 
laboratory data, neurological severity (admission and 
discharge), mRS score (admission and discharge) and 
TOAST classification. Finally, a total of 44 variables 
were included as baseline variables for analysis (Supple-
mentary Table  1). Neurological severity was scaled by 
the National Institutes of Health Stroke Scale score.

Keywords:  Machine learning, 90-day poor prognosis, TIA and minor stroke, Prediction models
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Clinical outcomes
The clinical outcome of this study was poor prognosis at 
90-day. In this study, a poor prognosis was defined as the 
modified Rankin Scale (mRS) ≥ 3, and 0-2 was defined as 
a good prognosis

Classification algorithm
We used various machine learning techniques to predict 
poor prognosis at 90-day: CatBoost (CB) [7], XGBoost 
(XGB) [8], Gradient Boosting Decision Tree (GBDT) [9], 
Random forest (RF) [10], and AdaBoost (Ada) [11].

CB: CatBoost is an innovative ordered gradient boost-
ing algorithm, which uses ordered target-based statis-
tics for categorical features processing and permutation 
strategies to avoid prediction shift. Its base learner was 
an oblivious tree and each tree corresponds to a partition 
of the feature space. The model learns the feature space 
partition at each training iteration and finally obtains the 
aggregated data as a classification result [7].

XGB: XGBoost was a Boosting library developed by 
Chen Tianqi of the University of Washington in 2016. It 
has both a linear scale solver and a tree learning algo-
rithm. XGBoost was a second-order Taylor expansion 
of the loss function, and a regular term was added to the 
objective function to find the optimal solution as a whole, 
which was used to weigh the decline of the objective 
function and the complexity of the model, avoid overfit-
ting, and improve the model The efficiency of the solu-
tion [8].

GBTD: The decision tree used in GBDT was a regres-
sion tree. The goal of each training was to reduce the 
error of the last training and finally get the minimum 
error. The model uses the gradient descent method to 
reduce the error [9, 12].

RF: RF was an integrated supervised learning method, 
which consists of multiple decision trees corresponding 
to different sub-data sets. Calculate the results for each 
tree, and get the average of the predicted results. This 
approach allows reducing variance in decision trees [10, 
13].

Ada: The basic idea of the AdaBoost algorithm was 
to classify a group of weak learners through weighted 
majority voting (or sum). It takes into account the mis-
takes of previous weak learners and repeatedly updates 
the data [11, 14, 15].

Data preprocessing
Missing value processing: Continuous variables were 
filled using linear imputation, and categorical variables 
were filled using mode. Most of the 44 variables had 
no missing values, and 4 variables had missing values 
greater than 5%. We examined the distribution of the 

laboratory data after imputation of the variables used in 
the modeling and found no significant difference in the 
distribution of the data before and after imputation (Sup-
plementary Tables 1 and 3).

Feature selection
Logistic regression was used for feature selection in our 
study. Logistic regression was the most commonly used 
model for characterizing the relationship between a 
dependent variable and one or more explanatory vari-
able. LR models had a long and well-known theoretical 
and computational background, and their regression 
parameters and language were generally accepted. In the 
training set, we used univariate logistic analysis to com-
pare baseline characteristics of 90-day prognosis. The risk 
factors selected by univariate analysis were included in 
multivariate analysis using stepwise regression method. 
Variables with P < 0.05 were used as predictors for the 
establishment of the 90-day poor prognosis prediction 
model in this study.

Statistical analysis
Continuous variables were expressed as the mean ± 
standard deviation, and classification variables were 
expressed as a percentage. After data preprocessing, the 
good prognosis group (mRS≤2) and the poor prognosis 
group (mRS≥3) were randomly grouped according to 
a ratio of 70:30, divided into a training set and test set, 
repeated five times. The test set was only used for model 
testing. We use GridSearch CV for 5-fold cross-valida-
tion tuning in the training set. After tuning each model 
to the optimum in the training set, we performed model 
evaluation on a clean test set to test the predictive perfor-
mance of the five models established in this study. Sup-
plementary Table  2 showed the parameters involved in 
each model in this study. Data analysis application SAS 
software (SAS9.4) and Python software (Python v3.6.8) 
completed. When comparing the predictive performance 
of different models in this study, the comparison and 
evaluation were mainly conducted from the two aspects 
of discrimination and calibration. In this study, the dis-
criminative index was the area under the curve (AUC). 
The higher the AUC value, the higher the discriminative 
degree of the model. The calibration index of this study 
adopts Brier score [16] (scoring range was 0 ~ 1). The 
closer the Brier score was to 0, the better the calibration 
of the model. Two-sided probability values <0.05 were 
considered statistically significant.

Result
Demographic and clinical characteristics
A total of 15166 patients were registered to the cohort 
during the study period. After excluding 4086 patients 
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with NIHSS score >5 and 113 patients with missing clini-
cal outcomes(90-day mRS), 10967 patients were finally 
included (Supplementary Figure 1).

The mean age of the 10967 patients was 61.77±11.18 
years and 30.68% were female (Supplementary Figure  1 
and Table 1). The training set included 7676 patients and 
the test set included 3291 patients. We performed fea-
ture selection in the training set (n=7676). First, we per-
formed univariate analysis in the training set and found 
that 28 variables (P<0.05) differed between patients 
with and without a poor functional outcome at 90-day 
(based on 44 baseline variables). They were demograph-
ics (including sex, age, family income/monthly and edu-
cation level), smoking history, drinking history (≥20g/
day), physiological data (systolic blood pressure and 
heart rate),medical history (including stroke, hyperten-
sion, diabetes and heart disease), secondary prevention 
treatment, in-hospital evaluation (swallowing function, 
Limb rehabilitation), laboratory data, neurological sever-
ity (admission and discharge), mRS score (admission and 
discharge) and TOAST classification. Table 1 showed the 
total population and baseline data for both groups.

Determining predictors of poor prognostic outcome
In the training set, the risk factors selected by the uni-
variate analysis were included in the multivariate analy-
sis. Multivariate Logistic regression results showed that 
sex, age, stroke history, heart rate, D-dimer, creatinine, 
TOAST classification, admission mRS, discharge mRS 
and discharge NIHSS score were related to the 90-day 
poor prognosis (P<0.05). The above factors can be used 
as predictive indicators to build a predictive model. In 
TOAST classification, LAA was set as a control variable. 
In laboratory indicators, D-dimer and creatinine were 
risk factors for a poor prognosis of 90-day (OR=1.051, 
OR=1.003, respectively). Compared with males, females 
were risk factors for a poor prognosis of 90-day (OR= 
1.226),other factors were showed in Table 2 below.

Predictive performance of different models
In the training set, We used the multivariate Logis-
tic regression model as a feature selection method, and 
determined 10 variables as predictors to establish differ-
ent prediction models. Five tree model classifiers, namely 
CB, XGB, GBDT, RF and Ada, were trained on the train-
ing data set repeated 5 times, and 5-fold cross-valida-
tion was performed to adjust the optimal parameters. 
Finally, the five optimal models adjusted training sets will 
be evaluated in test sets. The results of AUC, accuracy, 
PPV, NPV, F1-score, and Brier score in the test set were 
showed in Table 3. Compared with other machine learn-
ing classifiers, and the CB model had the highest AUC 
of 0.839, followed by XGB, GBDT, RF, and Ada models 

(0.838, 0, 835, 0.832, 0.823, respectively). The AUC of all 
machine learning classifiers was higher than the Logistic 
model (AUC=0.822). Supplementary Figure  2 showed 
the ROC curve and the area under the curve (AUC) of 
each machine learning classifier in test sets compared 
with the Logistic model. The prediction performance 
of the CB and XGB model was better than the Logistic 
model, and the difference was statistically significant 
(P<0.05). Figure  1 showed ROC curve and calibration 
plots of CB and XGB models on test sets. In terms of 
calibration, CB, XGB, and GBDT had the best calibration 
(Brier scores were all 0.047), and the Ada model had the 
worst calibration (Brier score=0.159) (Table 3). In addi-
tion, Supplementary Figure 3 showed calibration plots of 
each model on test sets. SHAP values for the two models 
(the CB model and the XGB model) were assessed in the 
test set, and are shown in Fig. 2, respectively.

Discussion
Machine learning (ML) methods have gained increas-
ing popularity in medical research. Machine learning-
based algorithms may be used for screening, diagnostic, 
or prognostic purposes. ML methods have been tested 
in several medical conditions to predict a future health 
state in cardiovascular medicine. This study aimed two-
fold: On the one hand, the training set of this study was 
used to discover the related factors of poor 90-day prog-
nosis in patients with TIA and minor stroke, which pro-
vided reference for related research and clinical work. On 
the other hand, factors found in training sets were used 
as indicators for predicting poor patient prognosis at 
90-day. 90-day poor prognosis prediction models for TIA 
and minor stroke patients were constructed, and the pre-
diction performance of the ML algorithm and the Logis-
tic model was compared.

There were two significant findings of this study:

	(1).	 We performed univariate and multivariate analy-
ses of patients with TIA and minor stroke in the 
training set and found that the 90-day prognosis 
prediction of patients with TIA and minor stroke 
was determined by many factors: sex, age, stroke 
history, heart rate, D-dimer, creatinine, TOAST 
classification, admission mRS, discharge mRS, 
and discharge NIHSS score.

	(2).	 The discrimination and the calibration of each 
model were good. The discrimination (AUC) 
between the CB model and the XGB model was 
better than the Logistic model (P<0.05), and CB 
model has the best prediction performance.

In previous studies, the prognosis of stroke was 
affected by factors such as stroke severity (NIHSS score) 
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Table 1  Baseline data for the total population and for both groups

Total
N=10967

mRS(0-2)
N=10234(93.32)

mRS(3-6)
N=733(6.68)

P value

Demographics

  Female, n (%) 3365(30.68) 3077(30.07) 288(39.29) <0.0001

  Age, mean (SD) 61.77±11.18 61.38±11.03 67.21±11 .79 <0.0001

Family income/monthly, n (%) 0.0108

  <700 Yuan 565(5.15) 525(5.13) 40(5.46)

  700~1500Yuan 1511(13.78) 1424(13.91) 87(11.87)

  1501~2300Yuan 2344(21.37) 2181(21.31) 163(22.24)

  >2300Yuan 3894(35.51) 3657(35.73) 237(32.33)

  Unknown 2653(24.19) 2447(23.91) 206(28.10)

Education level, n (%) 0.0264

  college or above 1021(9.31) 967(9.45) 54(7.37)

  high school 2242(20.44) 2100(20.52) 142(19.37)

  junior school 3229(29.44) 3061(29.91) 168(22.92)

  primary school 2175(19.83) 2017(19.71) 158(21.56)

  illiteracy 730(6.66) 643(6.28) 87(11.87)

  Unknown 1570(14.32) 1446(14.13) 124(16.92)

smoking history, n (%) 3509(32.00) 3346(32.69) 163(22.24) <0.0001

Drinking history(≥20g/day), n (%) 1558(14.21) 1485(14.51) 73(9.96) 0.0007

Physiological data, mean (SD)

  Systolic blood pressure 149.67±21.87 149.43±21.75 153.00±23.22 <0.0001

  Heart rate 75.24±11.19 75.12±11.16 76.91±11.49 <0.0001

medical history, n (%)

  Stroke 2317(21.13) 2085(20.37) 232(31.65) <0.0001

  Hypertension 6865(62.60) 6366(62.20) 499(68.08) 0.0015

  Diabetes 2532(23.09) 2323(22.70) 209(28.51) 0.0003

  Heart disease 1383(12.61) 1267(12.38) 116(15.83) 0.0067

secondary prevention treatment, n (%)

  Anti-platelet 10637 (97.61) 9938(97.73) 699(95.88) 0.0019

  Anticoagulation 905(8.30) 805(7.92) 100(13.72) <0.0001

  Antidiabetic 2721(24.97) 4767(46.88) 355(48.70) 0.0014

  Expansion treatment 1526(14.01) 1400(13.77) 126(17.28) 0.0081

swallowing function, n (%) 273(2.84) 208(2.32) 65(9.73) <0.0001

Limb rehabilitation, n (%) 7466(68.08) 6913(67.55) 553(75.44) <0.0001

Laboratory data, mean (SD)

  FBG 6.34±2.53 6.31±2.51 6.73±2.76 0.0002

  Creatinine 73.01±29.79 72.80±28.57 75.91±43.27 0.0091

  D-dimer 1.39±2.37 1.36±2.29 1.89±3.24 <0.0001

  C-reactive protein 5.84±21.96 5.47±21.26 10.99±29.49 <0.0001

  Triglycerides 1.69±2.83 1.70±2.91 1.655±1.09 0.0069

Neurological severity

  admission NIHSS score, median (IQR) 2(1-4) 2(0-4) 3(2-4) <0.0001

  Discharge NIHSS score, mean (IQR) 1(0-2) 1(0-2) 3(1-6) <0.0001

Admission mRS, mean (IQR) 1(1-2) 1(1-2) 2(1-3) <0.0001

Discharge mRS, mean (IQR) 1(0-1) 1(0-1) 3(1-4) <0.0001

TOAST classification, n (%) <0.0001

  LAA, n (%) 2509(22.88) 2268(22.16) 241(32.88)

  CE, n (%) 573(5.22) 520(5.08) 53(7.23)

  SAO, n (%) 2561(23.35) 2458(24.02) 103(14.05)

  ODC, n (%) 128(1.17) 117(1.14) 11(1.50)

  UND, n (%) 5196(47.38) 4871(47.60) 325(44.34)

Abbreviations: NIHSS National Institutes of Health Stroke Scale, FBG Fasting blood glucose, TOAST The Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria, 
LAA Large-artery atherosclerosis, CE Cardioembolism, SAO Small-vessel occlusion, ODC Stroke of other determined etiology; and UND:stroke of undermined etiology 
[17], IQR Interquartile range, SD Standard deviation
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[18, 19], age [18–21], sex [20–22], and comorbidities [22–
24]. In this study, the 90-day prognosis of TIA and minor 
stroke patients were determined by many factors. Such as 
sex, age, stroke history, heart rate, D-dimer, creatinine, 
TOAST classification, admission MRS, discharge MRS , 
and discharge NIHSS score.

In this study, we found that the risk of 90-day poor 
prognosis was higher for older TIA and minor patients, 
and the risk of 90-day poor prognosis was higher for 
females than for males. The human body’s natural aging 
process was irreversible with age Therefore, age and 
sex were non-intervention factors. In addition, the pro-
portion of stroke history in the poor prognosis group 
was significantly higher than that in the good prognosis 
group, suggesting that stroke history was a predictor of 

the 90-day poor prognosis. Previous studies had shown 
that high heart rate was an independent risk factor for 
stroke and cardiovascular and cerebrovascular events. 
Patients with high a heart rate had a significantly higher 
incidence of stroke and adverse cardiovascular and cer-
ebrovascular outcomes [25–28]. This study found that 
TIA and minor patients with high heart rate levels had 
a higher risk of poor prognosis at 90-day. This might be 
related to the high level of heart rate that increased myo-
cardial oxygen consumption and reduces cardiac reserve. 
It was also possible that the excessive activation of sym-
pathetic nerves damages the cardiovascular system 
through multiple mechanisms, leading to a poor progno-
sis of stroke patients at 90-day. This study suggested that 
the heart rate level was related to the 90-day poor prog-
nosis prediction for patients with TIA and minor stroke.

This study found that a high level of creatinine at 
admission was associated with a poor prognosis at 
90-day, and patients with a high creatinine level were 
at higher risk of a poor prognosis at 90-day. In recent 
years, studies found a specific correlation between cre-
atinine and nerve damage, but there were few clini-
cal correlations between creatinine and nerve damage 
and stroke prognosis [29]. Unlike previous studies [30], 

this study suggested that early detection of creatinine 
was of great significance for the prognosis prediction 
of patients with TIA or minor stroke. Although the 
D-dimer levels were elevated in patients with ischemic 
stroke, the relationship with a poor prognosis was 
unclear. Elevated D-dimer levels may be related to 
several factors [31]. (1) The level of D-dimer in stroke 
patients was positively correlated with the infarct vol-
ume; (2) The high level of D-dimer was an indica-
tor of systemic hypercoagulability. (3)D-dimer could 
activate inflammation. (4) The high level of D-dimer 
could indicate that the thrombus has a higher toler-
ance for endogenous fibrinolytic system thrombolysis. 
(5) D-dimer levels were high, often accompanied by 

Table 2  Association between predictors and poor functional 
outcome in multivariable analysis (In the training set)

Abbreviations: OR Odds ratio, NIHSS National Institutes of Health Stroke Scale, 
TOAST The Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria, LAA 
Large-artery atherosclerosis, CE Cardioembolism, SAO Small-vessel occlusion, 
ODC Stroke of other determined etiology; and UND Stroke of undermined 
etiology [17], IQR Interquartile range, SD Standard deviation

β OR P 95%CI

Sex,female 0.2034 1.226 0.0296 1.020~1.472

AGE 0.0405 1.041 <0.0001 1.033~1.050

Stroke history 0.3114 1.365 0.0011 1.132~1.647

Heart rate 0.0156 1.016 <0.0001 1.008~1.023

D-dimer (μg/ml) 0.0496 1.051 <0.0001 1.026~1.076

Creatinine (μmol/L) 0.00349 1.003 0.0045 1.001~1.006

TOAST classification - - <0.0001

  LAA - -

  CE -0.2002 0.819 0.2868 0.566~1.183

  SAO -0.6574 0.518 <0.0001 0.398~0.674

  ODC -0.0435 0.957 0.9080 0.458~2.001

  UND -0.2310 0.794 0.0244 0.649~0.971

Admission mRS 0.1471 1.159 <0.0001 1.074~1.250

Discharge mRS 0.8289 2.291 <0.0001 2.077~2.527

Discharge NIHSS score 0.1495 1.161 <0.0001 1.114~1.210

Table 3  Test sets result of machine learning models and the Logistic model on 90-day stroke outcome prediction

a LR Logistic regression model

Model Auc(95%CI) Accuracy(95%CI) PPV(95%CI) NPV(95%CI) F1-score(95%CI) Brier score(95%CI)

CB 0.839(0.823,0.854) 0.942(0.938,0.947) 0.660(0.605, 0.716) 0.951(0.948,0.954) 0.404(0.382,0.427) 0.047(0.044,0.050)

XGB 0.838(0.822,0.853) 0.943(0.939,0.947) 0.664(0.595,0.734) 0.952(0.949,0.955) 0.423(0.394,0.452) 0.047(0.044,0.050)

GBDT 0.835(0.820,0.850) 0.942(0.938,0.946) 0.648(0.589,0.707) 0.951(0.948,0.954) 0.403(0.377,0.428) 0.047(0.044,0.050)

RF 0.832(0.815,0.849) 0.940(0.937,0.943) 0.659(0.595,0.723) 0.946(0.944,0.949) 0.326(0.303,0.348) 0.048(0.045,0.051)

Ada 0.823(0.810,0.837) 0.941(0.938,0.945) 0.636(0.570,0.702) 0.951(0.949,0.953) 0.395(0.366,0.424) 0.159(0.157,0.161)

LRa 0.822(0.813,0.831) 0.941(0.938,0.945) 0.685(0.635,0.735) 0.947(0.944,0.951) 0.348(0.320,0.376) 0.048(0.046,0.051)
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Fig. 1  Calibration plots for prediction of stroke outcome at 90-day on test sets: A the Catboost model, B the XGBoost model

Fig. 2  SHapley Additive exPlanations (SHAP) plots, ranking plot of shap values on test sets. The blue to red color represents the feature value (red 
high, blue low). The x-axis measures the impacts on the model output (right positive, left negative). (A) the Catboost model, (B) the XGBoost model
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venous thrombosis of the lower extremities. However, 
D-dimer had the advantages of high in  vitro activa-
tion tolerance and long half-life and rarely increased 
in the blood-brain barrier of healthy people [32]. This 
study suggested that high levels of D-dimer were asso-
ciated with a poor prognosis at 90-day. Patients with 
high D-dimer levels were at high risk of poor prognosis 
at 90-day. Previous studies had also showed that higher 
D-dimer levels could predict the prognosis of acute 
myocardial infarction [33]. In short, the early detection 
of changes in patients’ creatinine and D-dimer levels 
has important application value in predicting the out-
come and prognosis of TIA and minor stroke patients. 
At present, studies had showed that TOAST classifica-
tion was related to the severity and prognosis of stroke 
patients [34]. This study suggested that TOAST clas-
sification was correlated with the prognosis predic-
tion of TIA or minor stroke patients. Therefore, early 
determination of the TOAST classification of TIA and 
minor stroke patients was of great significance for sec-
ondary prevention and predicting the poor prognosis 
of patients. NIHSS score was currently the most com-
monly used scale for acute ischemic stroke in the world. 
The NIHSS score was closely related to the patient’s 
cerebral infarction volume, location, and other factors. 
It could be used to efficiently and effectively evaluate 
the degree of neurological impairment in patients with 
acute ischemic stroke. Patients discharged from the 
hospital with a high NIHSS score were generally more 
severely ill and had a larger brain tissue infarction vol-
ume, which had a lot to do with the poor prognosis of 
patients [35]. In addition, this study showed that the 
mRS score at admission and discharge was related to 
the 90-day prognosis of patients with TIA and minor 
stroke, and the higher the score, the higher the risk of 
adverse prognosis.

All six models showed good discrimination in this 
study (AUC>0.80), which was consistent with previ-
ous studies [36–39]. Among them, the CB model had 
the highest prediction performance, followed by XGB, 
GBDT, RF, Ada, and Logistic (AUC were 0.839, 0.838, 
0.835, 0.832, 0.823, and 0.822, respectively), where CB 
and XGB were better than the Logistic model, the dif-
ference was statistically significant (P<0.05). Conven-
tionally, AUC values>0.70 were considered to represent 
moderate discrimination, values>0.80 good discrimina-
tion, and values>0.90 excellent discrimination. In terms 
of calibration, the Brier score of each model was bet-
ter, and the CB, XGB and GBDT models have the best 
correction effect (Brier score=0.047). In addition, Sup-
plementary Figure  3 showed calibration plots of each 
model on test sets. It can be seen that the calibration 

curves of each model were better, especially the CB 
model and the XGB model, indicating that there was no 
overfitting on test sets.

In previous studies, when comparing ML models and 
the traditional Logistic model, ML models were superior 
to logistic model likely due to the features instead of the 
algorithm itself [36, 40–42], because different models 
often use different predictors. In addition to the predic-
tors, the characteristics of the algorithm are also impor-
tant factors to consider when selecting a model suitable 
for medical application. Unlike most of previous studies 
in machine learning, this study used the same features 
selected by the logistic model. Our finding at ML mod-
els outperformed logistic model in that circumstance. 
In recent years, many studies had used SHAP value to 
explain the "black boxes", and its core idea is to calculate 
the marginal contribution of features to the model out-
put. Although the degree of contribution and the impact 
on outcome variables can be seen in the SHAP plot, in 
clinical studies, there is a lack of quantitative explana-
tions for the specific impact of each clinical variable. 
Logistic regression, as a traditional statistical model, has 
the advantage of being able to explain the relationship 
between variables and outcomes well compared to pure 
machine learning algorithms for feature selection. In the 
process of feature selection, traditional logistic regres-
sion can use its confidence interval and OR indicator to 
specifically represent the relationship between predictors 
and outcomes, making up for the problem of machine 
learning “black boxes”.

This study showed that compared with the Logistic 
model, the CB model showed the highest AUC. This 
result showed that the CatBoost algorithm can well pre-
dict patients with poor 90-day prognosis from TIA and 
minor stroke patients. CatBoost was a new integrated 
algorithm based on decision tree gradient lifting devel-
oped by researchers and engineers of Yandex in Russia. 
Previously, the two mainstream algorithms in the Boost-
ing family were XGBoost and LightGBM, and accord-
ing to official evaluation, the new CatBoost member 
model in the Boosting family had better performance 
than the above two algorithms. It was also consistent 
with the results of this study. CatBoost’s success might 
have been explained by its ability to process categorical 
features and model feature combinations. Additionally, 
CatBoost’s new capacity in undertaking feature com-
binations increased its nonlinear modeling abilities. In 
addition, although the LR algorithm performed well, it 
may also be because we used the stepwise regression 
method to screen the characteristic variables. Perhaps 
the CatBoost algorithm will be more convenient when 
there are more feature variables, a larger amount of 
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data, or even multivariate heterogeneous data, and the 
performance difference between the two algorithms 
will be greater. As an emerging algorithm, CatBoost 
has unique advantages. It competes with any leading 
machine learning algorithm and handles categorical 
features automatically, requiring less hyperparameter 
tuning, enhancing model stability and reducing the pos-
sibility of overfitting.

As our analysis showed, machine learning mod-
els, especially CatBoost algorithm, showed promis-
ing results in predicting poor outcome in patients with 
90-day TIA and minor stroke. Due to the particularity 
of clinical research, it is extremely important to select 
variables based on prior knowledge, and to use stepwise 
regression with more interpretability for features selec-
tion. Although our study used only 10 predictors for 
modeling, the machine learning model, especially the 
CB model, showed better predictive performance with-
out sacrificing accuracy. And due to the low cost of the 
number of features, it is more convenient to perform 
external verification and input into Clinical Decision 
Support System (CDSS) for clinical practical application 
prediction in the future. The knowledge-driven model 
of combining new algorithms in machine learning may 
complement the purely data-driven approach of previ-
ous research in the field of machine learning for disease. 
I believe that our research can be applied to electronic 
health records to provide services for doctors, health 
care workers.

This study has several limitations. First, although the 
ML algorithm could have high accuracy and AUC perfor-
mance, especially CB models, we still need more external 
validation to check the robustness of ML model. Second, 
it could be combined with a better selection algorithm to 
improve accurate prediction In the future. Third, imag-
ing and omics data were not included in this study, which 
may limit the predictive performance to some extent. 
Fourth, this study performed a single imputation of miss-
ing values, which will inevitably lead to certain bias, but if 
the missing values are deleted, certain selection bias can-
not be avoided; Since mehtods of directly testing missing 
at random is not available yet, we are not confident to 
state that variables with >5% missing values are missing 
at random [43]. Nevertheless, we believe that the selec-
tion bias would be minimized in this study as the baseline 
characteristics between included and excluded patients 
were largely comparable.

We will further explore the adaptation conditions of 
different models for ischemic stroke and conduct com-
prehensive studies on the development of predictive 
models and predictive performance to provide a more 
comprehensive reference for establishing a perfect prog-
nosis prediction of ischemic stroke.
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