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Abstract 

Background:  Recent high-throughput technologies have opened avenues for simultaneous analyses of thousands 
of genes. With the availability of a multitude of public databases, one can easily access multiple genomic study results 
where each study comprises of significance testing results of thousands of genes. Researchers currently tend to com-
bine this genomic information from these multiple studies in the form of a meta-analysis. As the number of genes 
involved is very large, the classical meta-analysis approaches need to be updated to acknowledge this large-scale 
aspect of the data.

Methods:  In this article, we discuss how application of standard theoretical null distributional assumptions of the 
classical meta-analysis methods, such as Fisher’s p-value combination and Stouffer’s Z, can lead to incorrect significant 
testing results, and we propose a robust meta-analysis method that empirically modifies the individual test statistics 
and p-values before combining them.

Results:  Our proposed meta-analysis method performs best in significance testing among several meta-analysis 
approaches, especially in presence of hidden confounders, as shown through a wide variety of simulation studies and 
real genomic data analysis.

Conclusion:  The proposed meta-analysis method produces superior meta-analysis results compared to the standard 
p-value combination approaches for large-scale simultaneous testing in genomic experiments. This is particularly 
useful in studies with large number of genes where the standard meta-analysis approaches can result in gross false 
discoveries due to the presence of unobserved confounding variables.

Keywords:  Meta-analysis, Fisher’s p-value combination, Empirical null distribution, Weighted Z statistic, Simultaneous 
hypothesis testing
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Background
In genomic experiments and association studies, meta-
analysis is a popular tool for pooling results from mul-
tiple experiments and research studies to reach an 
overall decision. Due to the rapid progress in technology, 
there has been major development of high-throughput 

genomic assays. It is now possible to analyze hundreds 
or thousands of genes at the same time. Thus, the par-
adigm of simultaneous inference has transformed a 
lot over the past few years. Moreover, huge number 
of available datasets in public repositories and data-
bases have enabled researchers to assimilate large-scale 
genomic information from multiple studies in the form 
of meta-analysis [1–3]. Since the sample sizes of indi-
vidual genomic experiments are generally small com-
pared to the number of genes resulting in loss of power 
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of statistical detection after adjusting for multiple test-
ing, meta-analysis of multiple genomic experiments has 
been recognized as the appropriate method in order to 
achieve adequate sample sizes and optimal power for 
statistical detection [4, 5]. Meta-analysis has also gained 
popularity as a powerful tool for combining results from 
multiple genome-wide association studies [6, 7]. How-
ever, current meta-analysis approaches cannot accom-
modate the new large-scale aspect of the underlying 
inference of genomic experiments. The traditional meta-
analysis methods, initially developed for combining 
results of significance testing from experiments involv-
ing only a few candidate genes, are still being applied to 
current large-scale experiments involving thousands of 
genes [8–10]. There are two main approaches for clas-
sical meta-analysis methods [11]. The first approach is 
to combine p-values of significance testing from multi-
ple studies, and the second approach is to combine the 
model-based effect sizes from different studies. While 
both the approaches have their own advantages and dis-
advantages, the p-value combination methods are more 
flexible as they require less assumptions from the com-
ponent studies and allows results from the component 
studies to be combined even when the individual effect 
sizes and standard errors are unavailable or are in dif-
ferent units. Some classical p-value combination meth-
ods include Fisher’s p-value combination [12], Stouffer’s 
Z-test [13], and the weighted variations of these meth-
ods [14]. In this paper we will focus on the meta-analysis 
methods of p-value combination.

One of the main assumptions of the classical p-value 
combination methods is that for a given gene, the p-val-
ues obtained from the component studies are individually 
uniformly distributed under the null hypothesis. How-
ever, as pointed out by Efron [15], in large-scale multi-
ple testing problems, the p-values may not be uniformly 
distributed. Consequently, this raises questions on the 
validity of the distributional assumptions of p-value com-
bined test statistics of the classical approaches of Fisher 
[12], Stouffer [13] and their variants. To apply these clas-
sical p-value combination approaches to large-scale sig-
nificance testing, one needs to ensure that all the p-values 
obtained from the individual studies are uniformly dis-
tributed. This is important in such large-scale hypothesis 
testing frameworks since the aims of these experiments 
differ from that of a traditional single hypothesis testing 
scenario. In a single hypothesis test, one aims to reject an 
uninteresting null hypothesis in favor of some interesting 
alternative hypothesis with high power, e.g., 90%. How-
ever, in a large-scale genomic experiment, the number 
of hypotheses can easily be as large as 10,000 because of 
the same number of genes involved. In that case, the aim 
is to identify a small subset of genes, usually much less 

than 10% of the total number of genes, which are of most 
significance and are carried forward for further investiga-
tion. Thus, it is not expected from a large-scale multiple 
hypotheses framework to reject 90% of the 10,000 null 
hypotheses involved, unlike that of a single hypothesis 
framework. Efron [15] points out that the advantage of 
having thousands of null hypotheses in place of a single 
null hypothesis is that one can estimate the null distri-
bution empirically and do not need to carry out testing 
based on some theoretical asymptotic null distribution. 
Empirical null distribution can be very useful in large 
observational studies since, unlike the theoretical null, it 
can take into account the additional variation and moder-
ate bias caused by some unobserved variables (e.g., batch 
effects [16] or unmeasured confounder effects). Moreo-
ver, the problems caused by ignoring the effects of unob-
served variables or potential confounders, and relying 
on theoretical null distribution for testing, can be aggra-
vated in meta-analysis of large-scale genomic studies as 
discussed in Sikdar et  al. [17]. In such a situation, even 
though a meta-analysis method has high power, it can 
lead to gross false discoveries of significant genes even 
after applying standard multiple testing correction tech-
niques [17]. Therefore, in order to reduce the false dis-
covery rate, it is essential to build meta-analysis methods 
involving large-scale hypothesis testing that are based on 
empirically adjusted null distribution rather than a theo-
retically assumed null distribution.

The idea of drawing inference based on an empirical 
null distribution, instead of a theoretical null distribu-
tion, was recently adopted in the context of meta-anal-
ysis by Sikdar et al. [17] and later applied in You et al. 
[18]. The meta-analysis method of Sikdar et  al. [17], 
known as EAMA, modifies the classical Fisher’s p-value 
combination method for large-scale genomic studies 
by empirically adjusting the null distribution through 
an empirical Bayes framework where the amount of 
adjustment depends on the extent of discrepancy 
between the empirical and the theoretical null distribu-
tions. However, EAMA was only limited to the classical 
unweighted (equally weighted) Fisher’s p-value combi-
nation method which can perform poorly when there 
are large variations among the component studies of 
meta-analysis. Moreover, its performance can become 
unstable in certain situations as shown through simu-
lation studies in a later section. In this article we pro-
pose a meta-analysis method for large-scale genomic 
experiments that implements a weighted p-value 
combination approach while estimating the empirical 
null distribution parameters through a recently devel-
oped Bayesian approach by van Iterson et  al. [19] as 
opposed to the empirical Bayes approach of EAMA. 
Through a variety of simulated scenarios, we show that 
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our proposed empirical null adjusted meta-analysis 
method has robust performances and works best in 
reducing false discoveries among several competing 
approaches for large-scale genomic meta-analysis espe-
cially in the presence of hidden confounders. Moreover, 
we demonstrate the utility of the proposed meta-anal-
ysis approach through a meta-analysis of lung cancer 
genomic studies.

The rest of the paper is organized as follows. In the 
Methods section, we describe the popular p-value 
combination approaches, methods for empirical null 
estimation, and our proposed combination of empiri-
cal null adjusted meta-analysis of large-scale simulta-
neous significance testing. In the Results section, we 
construct various simulation settings to compare the 
performances of our proposed meta-analysis approach 
with that of the other competing approaches. We also 
illustrate our approach through an application on a set 
of lung cancer genomic studies. The article ends with a 
discussion and a conclusion section.

Methods
Meta‑analysis using weighted Z‑scores
Suppose there are K independent studies and G genes 
in each study. Here the idea is to detect the genes that 
are related to the outcome of interest based on the 
results from the K independent studies. In other words, 
for each gene j, we want to test the overall null hypoth-
esis Hj: gene j does not contribute to the outcome of 
interest across all K independent studies, j = 1, 2, …, G. 
The general principle in the meta-analysis framework is 
to combine the results for each gene across the K inde-
pendent studies to reach an overall decision for that 
gene.

In this section, we focus on a widely used weighted 
Z-score meta-analysis method based on p-values from 
independent studies [14], which is defined as follows: 
Suppose Ni denotes the sample size of study i, i = 1, 2, 
…, K. Let Δij and pij denote the direction of effect and 
the p-value for gene j from study  i, respectively, i = 1, 2, 
…, K; j = 1, 2, …, G. The weighted Z-score meta-analy-
sis method converts the direction of effect and p-value 
observed in each study for each gene into a signed 
Z-score, which is defined as

The signed Z-scores, for each gene, are then combined 
across studies in a weighted sum where the weights 
are proportional to the square-root of the sample size 
for each study [13, 14]. That is, for a gene j, the overall 
Z-score is defined as

Zij = Φ
−1

(

1 −
pij

2

)

× Δij for gene j in study i;i = 1, 2,… ,K ;j = 1, 2,… ,G.

where wi =
√
Ni ; i = 1, 2, …, K, j = 1, 2, …, G.

Finally, an overall p-value for the gene j is obtained as 
Pj = 2(1 − Φ(|−Zj|)), j = 1, 2, …, G.

Method for empirical estimation of null distribution
Suppose there are G null hypotheses (for example, cor-
responding to G genes) in a single study. Let the p-values 
corresponding to the null hypotheses be denoted as p1, 
p2, …, pG. Each p-value in the study can be converted into 
z-score as zj = Φ−1( pj), j = 1, 2, …, G. Theoretically, the 
null distribution of zj is N(0, 1), j = 1, 2, …, G.

However, the large-scale multiple testing situations 
enable us to estimate the null distribution of zj, j = 1, 2, 
…, G. In this section, we will discuss a Bayesian approach, 
named BACON [19], for estimating the null distribution 
empirically.

BACON assumes that the z-scores can be modeled by a 
three-component normal mixture, where one of the com-
ponents represents the empirical null distribution and 
the other two components represent two separate non-
null distributions. Here, the z-scores close to the central 
peak of the histogram are assumed to be generated from 
the null distribution, whereas those towards the left and 
right tails of the histogram are generated from the two 
different alternative distributions. The three-component 
normal mixture model is defined as follows:

where 
∑3

k=1 pk = 1 and φ(z, μk, σk) represent the density 
of N(μk, σk2), k = 1, 2, 3. This method uses a Gibbs sam-
pling scheme to estimate the parameters of the mixture 
distribution, assuming conjugate prior distributions for 
the parameters as given below:
µk | σk2 ∼ N

(

�k ,
σk

2

τk

)

 ; σk2~InverseGamma(αk, βk) and 
(p1, p2, p3)~Dirichlet(γ1, γ2, γ3), k = 1, 2, 3.

We considered the same hyper-priors as suggested by 
van Iterson et  al. [19]. The initial values are considered 
based on the median and median absolute deviation of 
the test statistics [19].

At each iteration the Gibbs sampling algorithm com-
prises of the following steps given that we have G genes 
resulting in G z-scores of the form zj  (j = 1, 2, …, G) and 
the associated outcome values yj (j = 1, 2, …, G):

1)	 The unobserved data is generated as: 
xjk ∼ Multinomial

(∼
π jk

)

 where πjk = pkφ(zj, μk, σk) 

Zj =
∑K

i=1 Zijwi
√

∑K
i=1 w

2
i

f (z) =
3

∑

k=1

pkφ(z,µk , σk)
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and ∼
π jk is the normalized proportion so that 

∑3
k=1

∼
π jk = 1.

2)	 The following quantities are calculated: 
ηk =

∑G
j=1 1

(

xjk �=0
) , sk =

∑G
j=1 yj1

(

xjk �=0
) , and 

s2k =
∑G

j=1 y
2
j 1

(

xjk �=0
).

3)	 Samples are generated from the posterior distribu-
tions as follows:

A total of 5000 iterations and a burn-in period of 2000 
iterations are recommended.

Proposed meta‑analysis method based on empirically 
modified weighted Z‑scores
In this section, we describe our proposed approach of 
an empirically adjusted meta-analysis that combines 
appropriately weighted modified z-values and computes 
multiple testing corrected p-values where the modifi-
cation involves transforming the raw z-values through 
an empirical correction of the null distribution. Follow-
ing are the detailed steps of our proposed meta-analysis 
method.

Considering K independent studies and G genes in 
each study, let zij denotes the signed z-score, obtained 
through transformation from p-value pij and direction 
of the effect estimates ∆ij as zij = �−1

(

1− pij
2

)

×�ij , 
i = 1, 2, …, K; j = 1, 2, …, G, as defined in the methods 
section. Since, these z-scores zij may not follow N(0, 1) 
under the null hypotheses, we empirically estimate the 
parameters of the null distribution of the z-scores using 
BACON. Let f̂0

(

µ̂B, σ̂
2
B

)

 denote the BACON estimated 
null distribution of the z-scores. Using the estimated 
null density, we define z̃ij = zij−µ̂B

σ̂B
 as the modified 

z-score for gene j from study i, i = 1, 2, …, K; j = 1, 2, …, 
G. The modified z-scores z̃ij s, expected to be standard 
normally distributed under the null hypotheses, are 
then meta-analyzed using the weighted Z-score method 
as follows:

for j = 1, 2, …, G; where wi =
√
Ni , and Ni is the sample 

size of the study i; i = 1, 2, …, K. The overall p-value for 
gene j is obtained as Pj = 2(1 − Φ(|−Zj|)), j = 1, 2, …, G. 
The final p-values, Pj s, are corrected for multiple testing 
using the Benjamini-Hochberg (BH) method [20].

pk ∼ Dirichlet(γk + ηk);µk | σk2 ∼ N
(

�kτk+sk
ηk+τk

,
σk

2+sk
ηk+τk

)

;

1
σk

2 ∼ Ŵ

(

αk + 1
2 (ηk + 1), 1

(

βk+ 1
2 τk (µk−�k )

2+ 1
2 s

2
k

)

)

Zj =
∑K

i=1 z̃ijwi
√

∑K
i=1 w

2
i

Alternative choices for empirical null adjusted p‑value 
combinations
In this section we discuss Fisher’s p-value combination, 
a popular alternative to the weighted Z-score combina-
tion, which directly combines the p-values instead of 
transforming them into z-values. In addition, we briefly 
discuss another potential choice for computing empiri-
cal null distribution through an empirical Bayes method 
that was first proposed by Efron [15] and subsequently 
adopted for meta-analysis in EAMA [17]. The reason for 
our discussion of these methods is that one can poten-
tially combine any of the two p-value/z-value combi-
nation approaches with any of the two empirical null 
computation algorithms and each such combination 
leads to a different empirical adjusted meta-analysis. We 
compare the performances of each such combination to 
our proposed meta-analysis method in our simulations.

We briefly discuss the Fisher’s p-value combination 
method [12] and the empirical Bayes method for estimat-
ing null distribution [15] as follows.

Fisher’s p‑value combination
Fisher’s method combines p-values across independent 
studies giving equal weights to all studies [12]. Assum-
ing K independent studies and G genes in each study, for 
gene j, the test statistic for the Fisher’s method is defined 
as

Under the null hypothesis that gene j does not contrib-
ute to the outcome of interest, the test statistic Fj follows a 
χ2 distribution with 2K degrees of freedom, assuming that 
the p-values pijs are independently uniformly distributed 
on the interval [0, 1] for each j; i = 1, 2, …, K; j = 1, 2, …, G.

Empirical Bayes method for estimating null distribution
Efron [15] used an empirical Bayes model for estimat-
ing the null distribution of the z-scores. The z-scores 
for the genes are classified into two classes – “uninter-
esting” if z is generated from the null distribution, and 
“interesting” if z is generated from the non-null distribu-
tion with respective densities f0(z) and f1(z). Also, let the 
prior probabilities of z belonging to the “uninteresting” 
or “interesting” classes be denoted as p0 and p1 = 1 − p0, 
respectively. The mixture density of the z-scores can be 
defined as f(z) = p0f0(z) + p1f1(z).

Following Bayes theorem, the a posteriori probability 
of belonging to the “uninteresting” class given z can be 
defined as

Fj = 2
∑K

i=1

{

−log
(

pij
)}

, j = 1, 2, . . . ,G
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The aim is to estimate the null density, f0, from the cen-
tral peak of the histogram of the z-scores. Assuming the 
null density, f0 is N(δ0, σ0

2), where the mean δ0 is not nec-
essarily 0 and standard deviation σ0 is not necessarily 1, 
for all z-scores close to 0, we can write

The parameter δ0 can be estimated as argmax(f(z)) and 

σ0 can be estimated as 
[

− d2

dz2
log

(

f (z)
)

]− 1
2

δ̂0
 . However, the 

estimate of σ0 obtained by directly differentiating the 
spline estimate of log(f(z)) can be unstable. Therefore, one 
more smoothing step is applied where a quadratic curve, 
a0 + a1xk + a2x

2
k is fitted by ordinary least squares to the 

estimated log(fk) values, for xk within 1.5 units of the maxi-
mum δ0, which yields σ0 = [−2a2]

− 1
2 . This approach of 

estimating the null distribution is called “central-match-
ing” approach. More details about this approach can be 
found in Efron [15] and Efron [21]. This empirical Bayes 
method of estimating null distribution is referred to as EB 
method from now on.

Note that, incorporating EB adjustment into Fisher’s 
p-value combination approach leads to the previously 
mentioned EAMA method [17]. Following this approach, 
one can also apply EB adjustments to the weighted 
Z-scores method as well as BACON adjustments to Fish-
er’s p-value combination where each combination gives 
rise to a different meta-analysis method. The last two 
meta-analysis methods, namely, EB adjusted weighted 
Z-score and BACON adjusted Fisher, are also new and 
have not been explored before in the literature. In this 
article we are implementing them for the first time and 
will explore their performances as competing candidates 
to our proposed meta-analysis method in various simula-
tion settings in the next section. We will also compare the 
performance of EAMA in that section.

Results
Simulation studies
To evaluate the performance of our proposed method, 
we simulated continuous gene expression datasets for 
multiple independent experiments. We considered three 
simulation settings – setting 1, setting 2, and setting 3. In 
setting 1 we assumed there exists no hidden variable or 
confounder in the data. For setting 2, we assumed pres-
ence of a hidden variable which acts as a confounder, and 
in setting 3 we assumed presence of a hidden variable 
which does not act as a confounder. Details of the data 
generation method are described below.

P
(

“uninteresting"| z
)

= p0f0(z)

f (z)

log
(

f (z)
)

= −1

2

(

z − δ0

σ0

)2

+ constant

We considered 10 independent experiments, i.e. 
K = 10 and two groups of subjects. The total number of 
genes in each experiment was 10,000, i.e. G = 10,000, 
out of which 1000 genes were assumed to be differen-
tially expressed between the two subject groups. The 
log expression value, Yjlm, for the gene j, subject m in 
group l was generated using a linear model as given 
below.

where nl denotes the number of subjects in each group 
,l = 1, 2. Here, μ denotes the general mean effect, αj 
denotes the effect due to the gene j, βl denotes the effect 
due to the group l, (αβ)jl denotes the interaction effect 
between the gene j and group l, γjlm denotes the effect of 
a hidden variable or confounder, which remains unac-
counted during an analysis, on the gene j, subject m in 
the group l, while ejlm denotes the error term.

For all simulations, we set μ = αj = βl = 0, for all j, l for 
simplicity. The interaction terms (αβ)jl were generated 
as: For j ≤ 400, (αβ)j1 =  − 4, (αβ)j2 = 4; for 401 ≤ j ≤ 1000, 
(αβ)j1 = 4, (αβ)j2 =  − 4; and for j > 1000, (αβ)j1 = (αβ)j2 = 0. 
Generation of the interaction terms in this way ensures 
that only the first 1000 genes were differentially expressed 
between the two subject groups.

We considered four sets of correlated genes in 
each experiment as follows: S1 = {j : 1 ≤ j ≤ 1000}, 
S2 = {j : 4001 ≤ j ≤ 5000}, S3 = {j : 5001 ≤ j ≤ 5200}; and 
S4 = {j : 8091 ≤ j ≤ 9100} and S =

⋃4
u=1 Su . We generated 

correlated expression levels of the genes in the four clus-
ters through the generation of the error terms, ejlm, as

Here, e(1)jlm were independently generated from N(0, 1). 
We considered the same value of e(1)jlm for all the genes 
belonging to the same cluster. e(2)jlm were generated inde-
pendently from N(0, 22); j = 1, 2, …, G, l = 1, 2, m = 1, 2, 
…, nl.

With the above choices of the parameters of the linear 
model, we generated datasets for the following three sim-
ulation settings:

Setting 1: In this setting, we assumed that there does 
not exist any effect of hidden variable or confounder. 
So, γjlm = 0 for all j, l, m.
Setting 2: In this setting, we assumed that there 
exists an effect of hidden variable which acts 
as a confounder. Here, we generated γjlm as 
γjlm = ujlmI(sjlm = 1), where sjlm were generated from 
Bernoulli(0.4) and ujlm were generated depending 

Yjlm = � + �j + �l + (��)jl + �jlm + ejlm ; j = 1, 2,… ,G, l = 1, 2,m = 1, 2,… , nl

ejlm =

⎧

⎪

⎨

⎪

⎩

1
√

2
e
(1)

jlm
+

1
√

2
e
(2)

jlm
if j ∈ S

e
(2)

jlm
otherwise

j = 1, 2,… ,G, l = 1, 2,m = 1, 2,… , nl
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on the gene, subject and also the experiment as fol-
lows:

         Here, the effect of the hidden confounder varied 
between the two groups of subjects, according to the dif-
ferent groups of genes and over different experiments.

Setting 3: In this setting, we assumed that there exists 
an effect of hidden variable which does not act as 
confounder. Therefore, we considered a simulation 
setting where the distribution of the hidden variable 
does not differ between the two subject groups. We 
generated γjlm as γjlm = ujlmI(sjlm = 1), where sjlm were 
generated from Bernoulli(0.4) distribution and ujlm 
were generated as ujlm~N(5 + i, 0.012); i = 1, 2, …, K; 
m = 1, 2, …, nl; l = 1, 2.

We considered different choices for the sample sizes 
of the experiments and the two groups in each experi-
ment in our simulations which will be discussed in the 
later sections.

After generating the data for the three simulation set-
tings in each experiment, we used the ‘limma’ package in 
Bioconductor for testing for differential expression for 
the genes between the two subject groups [22]. The raw 
p-value and direction of effect for each gene, obtained 
from ‘limma’, were stored. We applied our proposed 
method (BACON-adjusted weighted Z-score) to identify 
the significant set of genes. For comparison, we applied 
EB adjusted weighted Z-score method, EAMA, BACON-
adjusted Fisher method, along with standalone Fisher’s 
method and weighted Z-score method without any 
empirical adjustments to identify the significant genes. 
A gene is identified as differentially expressed if the BH 
adjusted p-value is less than 0.05.

The performance of our proposed method and all the 
other methods in comparison were assessed using four 
measures, namely, sensitivity, specificity, false discovery 
rate (FDR) and false non-discovery rate (FNR) based on 
500 independent Monte-Carlo iterations. We compared 
the performances of all the methods mentioned above 
under the following simulation scenarios for the three 
settings:

Unequal sample sizes of the two subject groups
When the number of samples in the two groups were 
unequal, we considered the total effective sample size for 

uj1m ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N
�

−1 + i, 0.012
�

for j ≤ 400

N
�
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6 + i, 0.012
�
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N
�

9 + i, 0.012
�

for j > 1000

; i = 1, 2,… ,K ;m = 1, 2,… , n2

the experiment as 4
1

n1
+

1

n2

 . In this simulation scenario, we 

considered n1 = 30 and n2 = 70 in each experiment. 
Therefore, the total effective sample size for experiment i 
is Ni = 4

1
n1

+ 1
n2

= 84 , i = 1, 2, …, K. Table 1 shows the FDR 

values for our proposed method and all the other meth-
ods in comparison, for the three simulation settings.

We observe that in setting 1, where there exists no 
hidden variable or confounder, all methods, including 
our proposed method, have reasonably small FDR val-
ues. But in setting 2, where there exists a hidden effect 
of a confounder, the Fisher’s and weighted Z-score 
methods without any empirical adjustments perform 
very poorly with extremely high FDR values. In the 
presence of a hidden variable which does not act as con-
founder in setting 3, all methods performed similarly, 
except EAMA which had slightly higher FDR (0.11) 
compared to the other methods. Figure  1 shows the 
sensitivity, specificity, and FNR values of our proposed 
method and all the other methods in comparison, for 
the three simulation settings. We observed that all the 
methods have very similar sensitivity and FNR values in 
all settings. The specificity values of all methods, except 
the Fisher’s and weighted Z-score methods without any 
empirical adjustments, are also similar in all settings. 
The Fisher’s and weighted Z-score methods have low 
specificity values in setting 2 in the presence of hidden 
confounder.

Table 1  FDR of our proposed meta-analysis method (BACON 
adjusted Weighted Z) and the other methods in comparison with 
unequal sample sizes of the subject groups

Setting Method FDR

1 Fisher 0.05

EAMA 0.05

BACON adjusted Fisher 0.05

weighted Z 0.05

EB adjusted weighted Z 0.06

BACON adjusted weighted Z 0.05

2 Fisher 0.83

EAMA 0.06

BACON adjusted Fisher 0.02

weighted Z 0.90

EB adjusted weighted Z 0.05

BACON adjusted weighted Z 0.04

3 Fisher 0.05

EAMA 0.11

BACON adjusted Fisher 0.06

weighted Z 0.05

EB adjusted weighted Z 0.02

BACON adjusted weighted Z 0.05
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Varying sample sizes of experiments
In this simulation scenario, we considered varying sample 
sizes of the experiments. We considered Ni = Ni − 1 + 10, 
i = 2, …, K and N1 = 80. The subjects were equally divided 
between the two groups. Table  2 shows the FDR values 
for the three simulation settings under this scenario.

The results were very similar to what we observed 
before with varying sample sizes in the subject groups 

for all methods in all three settings, where the Fisher’s 
method and weighted Z-score method, without empirical 
adjustments, had very high FDR values in setting 2, and 
the FDR of EAMA was slightly high (0.12) in presence of 
a hidden variable which does not act as confounder. The 
sensitivity, and FNR values were similar for all methods 
in all settings, while the specificity values of the Fisher’s 
method and weighted Z-score method, without empirical 

Fig. 1  Performances of the meta-analysis methods in terms of sensitivity, specificity, and FNR with unequal sample sizes of the subject groups. This 
figure shows the average sensitivity, specificity, and FNR values over 500 independent Monte-Carlo iterations of the proposed method and all the 
other methods in comparison. Results are shown for all three simulation settings. The sample sizes of the two subject groups in each experiment 
are 30 and 70
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adjustments, were very low in setting 2 (supplementary 
Fig. 1).

Since in many biological experiments the sample sizes 
are lower, we reduced the sample sizes of the experi-
ments and compared the performances of the methods. 
We considered Ni = Ni − 1 + 6, i = 2, …, K and N1 = 20. The 
FDR values for the three settings are shown in Table 3.

In setting 1, the FDR values of all the methods, except 
EAMA, were similar, where EAMA tends to have slightly 
high value (0.09). In setting 2, the performances of the 
Fisher’s method and the weighted Z-score method, with-
out empirical adjustments, were consistently poor in the 
presence of hidden confounder. Additionally, the perfor-
mance of the EB-adjusted weighted Z-score method gets 
worse with higher FDR (0.13). In setting 3, the FDR val-
ues of all the methods were similar. The sensitivity, speci-
ficity, and FNR values of all methods were very similar to 
what we observed before (supplementary Fig. 2).

Additionally, we considered a simulation scenario 
where different set of genes were differentially expressed 
across the experiments. We considered 500 genes as dif-
ferentially expressed in the first five experiments and a 
separate set of 500 genes as differentially expressed in 
the remaining five experiments. This resulted in a total 
of 1000 genes as differentially expressed in at least one 
experiment. The sample sizes of the experiments were 
Ni = Ni − 1 + 6, i = 2, …, K and N1 = 20. All the other 
choices of the parameters were same as before in all three 
settings. Supplementary table 1 shows the performances 

of all the methods in all three settings based on 500 
Monte-Carlo iterations. We observed very similar perfor-
mances of all the methods as we observed in the previ-
ous scenario with same genes as differentially expressed 
across experiments.

Reduced differential expression between the subject groups
In this scenario, we considered a reduced magnitude in 
differential expression of the genes between the two sub-
ject groups. To achieve this, the interaction terms were 
generated so that the absolute differences in the log 
expression values of the 1000 differentially expressed 
genes between the two groups was two and for all the 
remaining genes was zero. Additionally, we considered 
varying sample sizes of the experiments as we previously 
observed differences in performances of the methods 
under this scenario. We considered Ni = Ni − 1 + 10, i = 2, 
…, K and N1 = 80. The results are shown in Table 4.

In setting 1, all methods perform well, except EAMA, 
which had slightly high FDR (0.09). Both EB adjusted 
weighted Z and our proposed method performed similar, 
however, the former had a slightly high FDR (0.06) in set-
ting 1. In setting 2, where there exists an effect of hidden 
confounder, huge differences in the performances can be 
observed. Specifically, Fisher’s method and the weighted 
Z-score method without any empirical adjustments had 
very poor performances with low sensitivity and speci-
ficity values, and high FDR and FNR values. EAMA had 

Table 2  FDR of our proposed meta-analysis method (BACON 
adjusted Weighted Z) and the other methods in comparison with 
unequal sample sizes of the experiments

Setting Method FDR

1 Fisher 0.05

EAMA 0.06

BACON adjusted Fisher 0.05

weighted Z 0.05

EB adjusted weighted Z 0.03

BACON adjusted weighted Z 0.05

2 Fisher 0.89

EAMA 0.05

BACON adjusted Fisher 0.03

weighted Z 0.90

EB adjusted weighted Z 0.06

BACON adjusted weighted Z 0.04

3 Fisher 0.05

EAMA 0.12

BACON adjusted Fisher 0.05

weighted Z 0.05

EB adjusted weighted Z 0.03

BACON adjusted weighted Z 0.05

Table 3  FDR of our proposed meta-analysis method (BACON 
adjusted Weighted Z) and the other methods in comparison with 
reduced and unequal sample sizes of the experiments

Setting Method FDR

1 Fisher 0.06

EAMA 0.09

BACON adjusted Fisher 0.06

weighted Z 0.05

EB adjusted weighted Z 0.02

BACON adjusted weighted Z 0.05

2 Fisher 0.68

EAMA 0.03

BACON adjusted Fisher 0.03

weighted Z 0.86

EB adjusted weighted Z 0.13

BACON adjusted weighted Z 0.05

3 Fisher 0.05

EAMA 0.06

BACON adjusted Fisher 0.05

weighted Z 0.05

EB adjusted weighted Z 0.06

BACON adjusted weighted Z 0.05
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low sensitivity and high FNR values, and the BACON-
adjusted Fisher method had low sensitivity value. But 
both EB-adjusted weighted Z and our proposed method 
performed similarly. In setting 3, in presence of hidden 
variable which does not act as confounder, all methods 
had very similar performances.

Overall, summarizing from all the simulation results, 
we find that our proposed BACON adjusted weighted 
Z-score method has been the most consistent in 

maintaining the high levels of sensitivity and specificity 
while maintaining low or acceptable levels of false posi-
tive and false negative. Although EB-adjusted weighted 
Z is a good competitor of BACON adjusted weighted 
Z in terms of sensitivity, specificity, and FNR values, 
there exist instances in presence of hidden confounder 
(Table 3, and supplementary table 1) where EB-adjusted 
weighted Z has unacceptable FDR values that are much 
higher than the nominal type-I error rate.

Lung cancer data
We considered five lung cancer gene expression datasets, 
namely Bhattacharjee [23], GSE11969 [24], GSE29016 [25], 
GSE30219 [26], and GSE43580 [27]. These datasets were 
previously normalized and processed by Hughey JJ et  al. 
[28] which are available at [29]. Each dataset had normal-
ized gene expression levels for 7200 genes for participants 
with different types of lung cancer. We aimed to identify 
the set of differentially expressed genes between the par-
ticipants with Adenocarcinoma (AD) and Squamous 
cell carcinoma (SQ). Four of the datasets (GSE11969, 
GSE29016, GSE30219, and GSE43580) had information on 
the smoking status, gender, and age of the participants. All 
participants with missing covariates were removed from 
the analysis. Table 5 shows the characteristics of the par-
ticipants for the two cancer types in each dataset.

We tested for differential expression of the genes 
between AD and SQ participants using the ‘limma’ pack-
age in Bioconductor [22], adjusting for the available 
covariates, for each dataset separately. The raw p-val-
ues and the direction of the effects of the genes were 
stored for the meta-analysis. We applied our proposed 
meta-analysis method to identify the set of differentially 
expressed genes between AD and SQ lung cancer partici-
pants. The empirically estimated null distribution of the 
z-scores, using BACON [19], had mean − 0.34 and stand-
ard deviation (SD) 1.91. This suggests that the empiri-
cally estimated null distribution of the z-scores is much 
deviated from the theoretical null distribution, N(0, 1). 
After multiple testing correction with BH method [20], 

Table 4  Performances of our proposed meta-analysis method 
(BACON adjusted Weighted Z)  and the other methods in 
comparison under reduced differential expressions between 
subject groups and varying experiment sample sizes

Setting Method Performance assessment measure

Sensitivity Specificity FDR FNR

1 Fisher 1.00 0.99 0.05 0.00

EAMA 1.00 0.99 0.09 0.00

BACON adjusted Fisher 1.00 0.99 0.05 0.00

weighted Z 1.00 0.99 0.05 0.00

EB adjusted weighted 
Z

1.00 0.99 0.06 0.00

BACON adjusted 
weighted Z

1.00 1.00 0.05 0.00

2 Fisher 0.44 0.13 0.95 0.34

EAMA 0.40 1.00 0.003 0.34

BACON adjusted Fisher 0.40 1.00 0.02 0.06

weighted Z 0.55 0.01 0.94 0.84

EB adjusted weighted 
Z

1.00 1.00 0.04 0.00

BACON adjusted 
weighted Z

1.00 1.00 0.02 0.00

3 Fisher 0.99 1.00 0.05 0.00

EAMA 0.99 1.00 0.02 0.00

BACON adjusted Fisher 0.99 1.00 0.02 0.00

weighted Z 1.00 1.00 0.05 0.00

EB adjusted weighted 
Z

1.00 1.00 0.03 0.00

BACON adjusted 
weighted Z

1.00 1.00 0.02 0.00

Table 5  Characteristics of the Adenocarcinoma (AD) and Squamous cell carcinoma (SQ) participants in each of the five lung cancer 
datasets

Dataset Cancer type
N (%)

Smoking status
N (%)

Gender
N (%)

Age
years (mean ± SD)

AD SQ Never Former Current Female Male

Bhattacharjee (N = 81) 60 (74.1) 21 (25.9) – – – – – –

GSE11969 (N = 125) 90 (72.0) 35 (28.0) 46 (36.8) – 79 (63.2) 45 (36.0) 80 (64.0) 62.3 ± 9.6

GSE29016 (N = 47) 36 (76.6) 11 (23.4) 10 (21.3) – 37 (78.7) 23 (48.9) 24 (51.1) 67.3 ±11.0

GSE30219 (N = 145) 84 (57.9) 61 (42.1) 10 (6.9) 68 (46.9) 67 (46.2) 24 (16.6) 121 (83.4) 62.3 ± 9.1

GSE43580 (N = 144) 72 (50.0) 72 (50.0) 28 (19.4) 20 (13.9) 96 (66.7) 27 (18.8) 117 (81.2) 59.5 ± 9.0
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we identified 2957 differentially expressed genes between 
AD and SQ participants at 5% significance level.

For comparison, we also applied the naïve weighted 
Z-score method as well as our previously proposed 
method, EAMA, to identify the set of differentially 
expressed genes. The naïve weighted Z-score method 
identified 4922 differentially expressed genes, while 
EAMA identified 1505 differentially expressed genes, 
at BH adjusted p-value cutoff of 0.05. A Venn diagram 
showing the overlap of the number of differentially 
expressed genes identified by our proposed method with 
the other two methods in comparison is given in Fig. 2. 
All the genes identified by EAMA were also identified 
by both our proposed method and the naïve weighted 
Z-score method. Additionally, all the genes identified by 
the proposed method were also identified by the naïve 
weighted Z-score method. Identification of so many 
differentially expressed genes by the naïve weighted 
Z-score method indicates possibility of high gross false 
discoveries. EAMA identified much lesser number of 
genes compared to our proposed method at the same 
BH adjusted p-value cutoff, which might reflect a situa-
tion where EAMA has lower sensitivity and/or high non 
false discovery rate, similar to setting 2 in Table  4. We 
also checked the performances of the methods without 
adjusting for the covariates in the studies, assuming they 
are hidden. The pattern of performances of the methods 
were very similar to what we observed after adjusting 
for the observed covariates, where the naïve weighted 
Z-score method identified a large number of differentially 
expressed genes and EAMA identified much lesser num-
ber of genes compared to our proposed method. Note 
that, even after adjusting for the observed covariates, 

there still might exist potential hidden confounders 
underlying these studies which remained unaccounted 
for in all our analyses. We proceed with the results 
adjusting for the covariates with the aim to account for all 
possible covariates effects that have been observed.

In order to identify biological pathways associated with 
the significant list of genes identified by all three meth-
ods, we performed functional annotation analysis using 
the software, called DAVID [30, 31]. Some of the top 
pathways overrepresented in the significant list of genes 
include cell cycle, DNA replication, pathways in cancer, 
and p53 signaling pathway, which has been frequently 
found to be associated with lung cancer [32–34]. We also 
identified the pathways overrepresented in the signifi-
cant list of genes identified only by our proposed method. 
Pathways related to lung cancer, such as non-small cell 
lung cancer and Foxo signaling pathway [35], were sig-
nificantly overrepresented in our gene list.

Discussion
Meta-analysis is a popular tool for combining hypothe-
sis testing results from multiple studies. It is extensively 
used in genomic studies, clinical studies, psychological 
studies, and other social sciences applications. The field 
of genomic experiments have undergone major changes 
in the past few years with the advent of modern high-
throughput technologies. One such change is that thou-
sands of genes can be analyzed simultaneously nowadays 
which, in turn, leads to simultaneous testing of thousands 
of hypotheses. While combining such large-scale multi-
ple hypotheses testing results from multiple studies, the 
traditional meta-analysis approaches involving p-value 
combinations fail to make use of the large-scale aspect 

Fig. 2  Venn diagram showing the number of differentially expressed genes identified by the meta-analysis methods. This figure shows the overlap 
between the number of differentially expressed genes, significant at BH-adjusted p-value cutoff of 0.05, identified by the proposed method, the 
naïve weighted Z-score method and EAMA
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of the data. For instance, large-scale hypotheses testing 
allows empirical estimation of the parameters of null dis-
tributions without having to rely on some theoretically 
set null parameters. However, such provisions of empiri-
cally adjusting the null distributions are not accommo-
dated by the classical p-value combination methods. A 
possible consequence of relying only on theoretical null 
distributions can be gross false discoveries and inaccurate 
inference from meta-analysis. As discussed in this article, 
this problem becomes more profound whenever there is 
a possibility of presence of some unobserved variables 
or unmeasured confounders. In this article we discussed 
some recent developments in estimating empirical null 
distributions and proposed ways for incorporating such 
empirical null distributions in meta-analysis of large-
scale genomic experiments. Finally, we proposed an 
empirically adjusted weighted p-value combination 
approach which estimates the empirical null distribution 
parameters through a Bayesian framework. We demon-
strated its robustness and superiority over other meta-
analysis approaches through a wide variety of simulation 
settings that mimic large-scale genomic testing experi-
ments. We also applied our proposed method in meta-
analysis of multiple lung cancer gene-expression studies 
to obtain biologically meaningful results. Although we 
mostly focused on microarray studies in this article, our 
proposed method can be easily applied for meta-analysis 
of expression data from other platforms (e.g., next-gener-
ation sequencing) or other type of genomic studies (e.g., 
DNA methylation, SNP data) as long as one can obtain 
p-values for each genomic feature from multiple studies.

The proposed method assumes a common null dis-
tribution across all studies, which is estimated empiri-
cally instead of relying on a theoretical null distribution. 
There exist meta-analysis methods that do not neces-
sarily assume a common null distribution to account for 
between studies variability. However, such methods are 
primarily model-based approaches, e.g., random effects 
model, which is a different category of meta-analysis that 
requires information on the individual effect sizes and 
their corresponding standard errors to obtain a measure 
of between-study variability [36]. In many situations, the 
individual effect size estimates and the corresponding 
standard errors are not available. Therefore, in this arti-
cle, we have focused on those meta-analysis methods that 
require only p-values from individual studies.

In this article we aimed at improving the meta-analysis 
method of large-scale genomic testing studies by modi-
fying the classical p-value combination methods through 
empirical adjustments. These classical p-value combi-
nation methods aim to test for significance of a gene in 
at least one of the component studies and the method 
proposed in this article is based on the same principle 

of significance testing. There exists another approach of 
meta-analysis of significance testing results that focuses 
on testing for significance of a gene in the majority (e.g., 
70%) of the component studies. There have been some 
recent p-value combination methods that aimed for this 
second type of meta-analysis [11, 37]. Since these meth-
ods test hypotheses which are conceptually different 
from the hypotheses we are testing and have a different 
aim, we have not discussed them in this article. Neverthe-
less, the empirical adjustments, which we applied in our 
meta-analysis method, can also be extended to the meta-
analysis methods of the second type if the main aim is to 
find significant genes in the majority of component stud-
ies. In future, we plan to pursue this approach of empiri-
cal adjustments to the second type of meta-analysis.

Conclusion
In this article, we have highlighted the drawbacks of the 
classical p-value combination methods for significance 
testing in large-scale genomic experiments. These clas-
sical p-value combination methods rely on a theoretical 
null distribution which can be different from the true 
null distribution especially in the presence of confound-
ing variables in large observational studies. We have 
proposed a robust meta-analysis approach of p-value 
combination which modifies the p-values through the 
computation of an empirical null distribution. Our pro-
posed meta-analysis approach can account for the effects 
of unobserved variables and confounders and has been 
shown to perform better than the classical p-value com-
bination methods and other competing meta-analysis 
techniques. Overall, we believe that our proposed meta-
analysis approach can help in accurate identification of 
truly significant genes by combining the findings of mul-
tiple large-scale genomic experiments.
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