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Abstract 

Background:  While machine learning (ML) algorithms may predict cardiovascular outcomes more accurately than 
statistical models, their result is usually not representable by a transparent formula. Hence, it is often unclear how 
specific values of predictors lead to the predictions. We aimed to demonstrate with graphical tools how predictor-risk 
relations in cardiovascular risk prediction models fitted by ML algorithms and by statistical approaches may differ, and 
how sample size affects the stability of the estimated relations.

Methods:  We reanalyzed data from a large registry of 1.5 million participants in a national health screening program. 
Three data analysts developed analytical strategies to predict cardiovascular events within 1 year from health screen-
ing. This was done for the full data set and with gradually reduced sample sizes, and each data analyst followed their 
favorite modeling approach. Predictor-risk relations were visualized by partial dependence and individual conditional 
expectation plots.

Results:  When comparing the modeling algorithms, we found some similarities between these visualizations but 
also occasional divergence. The smaller the sample size, the more the predictor-risk relation depended on the mod-
eling algorithm used, and also sampling variability played an increased role. Predictive performance was similar if the 
models were derived on the full data set, whereas smaller sample sizes favored simpler models.

Conclusion:  Predictor-risk relations from ML models may differ from those obtained by statistical models, even with 
large sample sizes. Hence, predictors may assume different roles in risk prediction models. As long as sample size is 
sufficient, predictive accuracy is not largely affected by the choice of algorithm.
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Background
Using cardiovascular disease (CVD) risk calculators is 
nowadays a daily routine in clinical practice when assess-
ing a patient’s CVD risk profile. Widely used CVD risk 
prediction models such as the Framingham 2008 CVD 
risk model were statistically estimated by fitting a Cox 
model with a relatively small number of coefficients [1] 

and it is fully transparent how predictors impact on pre-
dictions. Although coefficients in risk prediction models 
have no causal interpretation, understanding how and 
why predictions differ between persons is an essential 
prerequisite for their widespread use. Statistical mod-
els may be extended to accommodate more complex 
predictor-risk associations if needed, which introduces 
flexibility to a strictly formula-based model by adding 
non-linear functions for continuous predictors or by add-
ing interaction terms [2–4].

In machine learning (ML), explicit decisions on the 
model structure are intentionally avoided as it is believed 
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that an algorithm ‘learns’ about the necessary complex-
ity of the prediction model. Neural networks and extreme 
gradient boosting are two representatives of this way of 
‘algorithmic’ modeling [5, 6]. An important caveat of 
many ML algorithms is that the final model structure is 
non-transparent and predictions seem to be generated 
by a ‘black-box’. This impedes reproducibility as well as 
quantification of a particular predictor-risk relation. 
Recently, the development of techniques to increase the 
transparency of ML models has become a highly active 
field of research [7, 8]. Several techniques have been pro-
posed [9, 10], and some of them have been denoted as 
‘model-agnostic’ as they can be applied without knowing 
how a modeling algorithm arrives at predictions.

Standard statistical modeling and ML use distinct 
approaches to generate predictions and the phrase ‘mod-
eling culture’ was coined to describe these two fun-
damentally different paradigms of data analysis [11]. 
While several studies found similar predictive accuracy 
of prediction models developed under the paradigms of 
ML and standard statistical modeling [12, 13], none has 
shown how the choice of modeling paradigm may affect 
the interpretation of a predictor in a model at different 
data availabilities. Therefore, we aimed to visualize and 
compare the predictor-risk relation obtained by ML algo-
rithms and standard statistical models in cardiovascular 
risk prediction. Our second aim was to demonstrate the 
impact of sample size on the shape and stability of the 
estimated relations.

Methods
This study is reported according to the TRIPOD guide-
lines for model development and the checklist is pro-
vided as Additional file 1 [14].

Study design
To exemplify the assessment of predictor-risk relations in 
practice, we reanalyzed a large registry study previously 
used to validate and update existing cardiovascular risk 
prediction models [15, 16] which represented our maxi-
mum (full) data availability. We simulated poorer data 
availabilities by gradually reducing the sample size by 
random subsampling.

Three authors were given information on the available 
predictors, outcomes and the expected event rate and 
received development datasets of various sample sizes. 
These three data analysts represented different modeling 
cultures according to their personal experience and train-
ing and developed models following their favorite ‘mode-
ling paradigm’. In particular, CW (representing statistical 
modeling with generalized additive models), GD (ML 
with neural networks), and AA (ML with boosting) had 
to accomplish the following two tasks independently:

1)	 To develop an analysis strategy following their 
favorite paradigm. Depending on sample size amend-
ments to the analysis strategy were allowed.

2)	 To develop prediction models and to provide a pre-
diction tool for each of the models to facilitate indi-
vidual calculation of predictions as usually required 
for bedside use.

Using the provided prediction tools, GH and DD 
assessed the resulting predictor-risk relation and evalu-
ated predictive accuracy in an independent test set.

Study population
Our pseudonymized database comprised electronic 
health records from the Austrian preventive health 
screening program (1/2009–3/2014) including measure-
ments on the predictors included in the Framingham 
2008 CVD risk model and other known or assumed CVD 
risk predictors. These data were linked to data on hospi-
talizations (1/2008–3/2015) and causes of death (1/2009–
3/2015) from the same individuals to determine if a CVD 
event had occurred after the first health screening. Data 
preparation steps have been reported previously [15, 16], 
and relevant additions to the current work are detailed in 
Additional  file  2: Appendix  1. We applied the inclusion 
criteria of the Framingham 2008 CVD risk model, where 
individuals between 30 and 74 years who had no indi-
cation of CVD in the year prior to the health screening 
were included [1, 15, 16]. Moreover, we required partici-
pants to have at least 1 year of follow-up. The study pro-
tocol and the exempt from the need to obtain informed 
consent was approved by the Ethics Committee of the 
Medical University of Vienna (ECS 1232/2014).

Outcome
We used the occurrence of any cardiovascular event 
within 1 year after the health screening as our outcome 
variable. Cardiovascular events were defined in line with 
the Framingham 2008 CVD risk model as the diagnosis 
of any of: coronary heart disease (coronary death, myo-
cardial infarction, coronary insufficiency, angina), cere-
brovascular events (ischemic stroke, hemorrhagic stroke, 
transient ischemic attack), peripheral artery disease 
(intermittent claudication), or heart failure [1]. Appro-
priate ICD-10 codes (10th revision of the International 
Classification of Diseases) for CVD were used to iden-
tify cases [15, 16]. Further information on the identifica-
tion of CVD in our study cohort is detailed in Additional 
file 2: Appendix 1.

Predictors
Similar to the Framingham 2008 CVD risk model, we 
considered the following predictors: sex, age, total 
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cholesterol (mg/dl), HDL cholesterol (mg/dl), systolic 
blood pressure (BP, mmHg), hypertensive drug intake 
(yes; no), diabetes (yes; no), and smoking status (yes; 
no). Moreover, the electronic health records also con-
tained several other variables which we considered 
potentially relevant for cardiovascular risk predic-
tion according to domain experts. These were: blood 
glucose (mg/dl), triglycerides (mg/dl), diastolic BP 
(mmHg), BMI score (kg/m2), glucose in urine (positive; 
negative), protein in urine (positive; negative), waist 
circumference (categorical; too large: waist circumfer-
ence ≥ 102 cm for men or ≥ 88 cm for women; normal: 
< 102 cm for men or < 88 cm for women), self-assessed 
physical activity (none; occasionally; regularly), ratio 
of total cholesterol and HDL cholesterol, BP classes 

(categorical; ideal: < 120/80; normal: 120–129/80–85; 
still normal: 130–139/85–89; hypertension stage 1: 
140–179/90–109; hypertension stage 2: ≥180/110; iso-
lated systolic hypertension: ≥140/< 90), and BMI classes 
(categorical; < 18.5; 18.5–24.9; 25.0–29.9; 30.0–34.9; 
35.0–39.9; ≥40.0).

Starting with 2,159,616 individuals in the data base, 
we applied the inclusion criteria of Framingham 2008 
CVD risk model and excluded individuals with miss-
ing values in any of the Framingham predictors or 
other potential predictors or outcome (Fig.  1). The 
resulting data set comprised 1,543,400 individu-
als with 17 predictors, and was randomly split into 
a training set (1,028,739 individuals) and a test set 
(514,661 individuals).

Fig. 1  Flow chart of selection of individuals for this study. Abbreviations: BMI, body mass index; CVD, cardiovascular disease; HDL, high density 
lipoprotein
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Data availability: varying the sample size
To mimic analysis scenarios with various sample sizes 
available for model development, we defined five lev-
els of data availability as follows: the full dataset (N; 
n = 1,028,739), half of the dataset (N/2; n ≈ 513,370), 
one-tenth (N/10; n ≈ 102,874), one-twenty-fifth (N/25; 
n ≈ 41,150), and one-hundredth of the dataset (N/100; n 
≈ 10,287). For data availabilities of N/2, N/10, N/25 and 
N/100, the training set was split randomly into the cor-
responding number of approximately equally sized dis-
joint subsets. Hence, this resulted in two subsets at a data 
availability of N/2, and accordingly in ten, 25, and 100 
subsets at N/10, N/25 and N/100. The full dataset and 
each of the 137 subsets were treated just like they were 
separate studies and served as training sets for model 
development.

Data analysis
Statistical modeling with generalized additive models (GAM)
Logistic regression models are used to relate a binary 
outcome like the occurrence of a CV event to a set of 
predictors [17]. Similarly to linear regression, predictor 
values are combined through their weighted sum result-
ing in a so-called ‘linear predictor’. The linear predictor 
is then transformed by the logistic function to produce 
a probability that is naturally bounded between 0 and 
1. Generalized additive models (GAM) [18] transform 
continuous predictors via splines [2, 19] allowing for a 
smooth, flexible and non-linear representation of these 
predictors in the linear predictor [20]. To introduce even 
more flexibility, interaction (product) terms can be added 
to the model. Model building may also include stepwise 
variable selection to reduce the number of estimated 
coefficients in a model [3, 21].

ML with neural networks
Neural networks connect predictors to the outcome 
through a network [5]. The edges of this network are 
the so-called weights similar to coefficients in a logistic 
regression model. A so-called single-layer neural network 
consists of one layer, the ‘input layer’ of predictors, and 
is equivalent to a logistic regression model (SLNN-LR). 
The idea can be extended by introducing a second, ‘hid-
den’ layer with ‘hidden units’ between the input layer and 
the outcome (multi-layer neural network, MLNN). This 
introduces more flexibility and the possibility of complex 
interactions between predictors [5]. The number of hid-
den units can either be specified in advance or optimized 
using cross-validation.

ML with boosting
Boosting is a general concept in ML in which a sequence 
of weak models is estimated such that each additional 

element in the sequence improves on the inaccuracies 
of its predecessors [22]. With extreme gradient boosted 
trees (XGBoost), simple decision trees are used as the 
elements in that sequence [23]. The final prediction is the 
average of the predictions made by all trees. The number 
of trees, the number of branches in each tree and other 
characteristics of the trees are so-called hyperparameters 
of the model.

Predictive performance as requirement for interpretability
Predictive performance
The predictive performance of the final prediction mod-
els was assessed in the test set by the Brier score measur-
ing the accuracy of prediction [24], and by measures of 
discrimination and calibration. As age is the most impor-
tant predictor of cardiovascular events [16], the Brier 
score was also computed for different ages. Discrimina-
tion was quantified by the discrimination slope [25], the 
area under the receiver operating characteristic curve 
(AUROC) and the area under the precision-recall curve 
(AUPRC). Calibration was assessed visually by grouping 
the predicted probabilities by their permilles (1000-quan-
tiles) and plotting a loess smoother through the 1000 
observed risks corresponding to these 1000 groups 
defined by the permilles.

Agreement of predictions
Spearman’s rank correlation coefficients between predic-
tions in the test set obtained from the different analytical 
strategies were computed pairwisely. For data availabili-
ties of N/2, N/10, N/25 and N/100, the correlation coef-
ficients were averaged at each level of data availability.

Evaluation criterion: assessing the predictor‑risk relation
We chose partial dependence plots (PDPs) and individual 
conditional expectation (ICE) plots as model-agnostic 
techniques to illustrate the direct effect of each predic-
tor on the predictions of a model [9, 10, 23]. ICE plots 
show how predictions of a model result from varying the 
values of one predictor, keeping all other predictors fixed. 
For example, to construct an ICE plot for cholesterol, 
we used the combination of values of all other predic-
tors observed for a particular patient, varied cholesterol 
across its observed range, and connected the resulting 
risk predictions. This was repeated for all patients of a 
reference population. PDP plots were then computed by 
averaging the ICE predictions at each cholesterol value 
and connecting the averages. In some PDP plots we fixed 
some important predictors at predefined values, e.g., we 
set age to 40, 50, 60 and 70 years, and sex to ‘female’ or 
‘male’.

To reduce the computational burden, we generated a 
reference population of 10,000 individuals by randomly 
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selecting 1000 men and 1000 women from each of five 
age groups (defined as 30–38; 39–47; 48–56; 57–66; 
65–74 years) of the full training set. We then assigned 
weights to each sex-age group according to the corre-
sponding prevalence in the training set. We used these 
weights when averaging predictions for PDPs.

Results
Analytical strategies
Concerning standard statistical modeling with GAMs, 
restricted cubic splines were used to model continuous 
predictors [2]. We considered background knowledge 
from previous publications on the importance of par-
ticular predictors and on the plausibility of interactions 
between predictors [1, 15, 16]. For lower levels of data 
availability, we gradually reduced the complexity of the 
models to meet the rule of thumb that for each regression 
coefficient to be estimated, at least 10 events should be 
available in the training set. For example, we fitted sepa-
rate models for men and women at full data availability, at 
N/2 and at N/10. At data availabilities of N/25 and N/100, 
sex was a binary predictor in a combined model. Based 
on recent recommendations from Riley et al. (2020) [26], 
the number of observations at each data availability was 
sufficient for our considerations of flexibility. The sample 
size calculations, general information on the analytical 
strategies, more details on predictors used at each data 
availability are given in Additional file  2: Appendix  2 
and 3a. The risk equations estimated by GAMs based 
on full data availability for men and women are found in 
Additional file 3.

To adapt the analytical strategy using neural networks 
to data availability, the number of hidden units was speci-
fied such that for each weight in the network, at least 10 
events were available. At N/25 and N/100 this could not 
be achieved and some predictors were omitted based on 
prior assumptions about their low prognostic value fueled 
by background knowledge (Additional file  2: Appen-
dix 3b). Both SLNNs and MLNNs were considered as two 
different analytical strategies with different flexibilities.

For XGBoost, the analytical strategy was not altered 
depending on data availability. For each training set, 
5-fold cross-validation was performed to find the opti-
mal values for all hyperparameters based on AUROC. 
The optimal configuration of hyperparameters, which is 
found in Additional file 2: Appendix 3c, was then used to 
fit XGBoost on that training set.

Patients
Characteristics of individuals in the training and test sets 
at baseline were almost identical (Table  1, Additional 
file  2: Appendix  4). There were slightly more women 
(53.8%) than men (46.2%), and women had more favorable 

baseline characteristics; e.g., they exhibited lower preva-
lence of smoking or diabetes. Women also had higher 
HDL cholesterol, lower triglyceride values, and lower sys-
tolic and diastolic blood pressure. The primary endpoint 
was observed in 9770 (0.9%) and 4802 (0.9%) individuals 
in the full training set and in the test sets, respectively.

Predictive performance
At full data availability, all analytical strategies yielded 
approximately equal predictive accuracies on the test set 
with respect to AUROC (range 0.8000 to 0.8029), AUPRC 
(range 0.03535 to 0.03624), Brier scores (0.0091 for all 
analytical strategies) and discrimination slopes (0.0156 to 
0.0164) (Fig.  2). These numbers indicate discrimination 
similar to widely used prediction models, but probably 
because of the short follow-up time and the consequently 
low event rate the average accuracy of event predic-
tion was only slightly improved compared to ‘prediction’ 
purely based on the observed event rate. For example, the 
Brier score without covariates was 0.0092 and only little 
higher than the values yielded by the models. Likewise, 
the discrimination slopes indicate that predicted prob-
abilities for persons who later developed a CVD were 
on average only slightly higher than those who did not 
develop CVD. The calibration plots were also similar with 
a slightly better calibration of extreme gradient boosted 
trees at higher predicted risk (Fig. 3).

At data availabilities of N/10 to N/100, SLNN and GAM 
achieved better performance measures than MLNN and 
XGBoost. At N/100, the analytical strategy devised for 
GAM involved only linear functional relations of predic-
tors with the log odds of the event, which was generally 
also the case with SLNN. Therefore, these strategies were 
more stable and less prone to overfitting than others. For 
example, MLNN yielded particularly poor performance 
for some subsets at N/100, specifically for the discrimi-
nation slope, the AUROC and the AUPRC. Brier scores 
increased with age as expected (Additional file 2: Appen-
dix 5). However, they did not substantially differ between 
analytical strategies or data availabilities. The predictive 
performances at N/2 and N/25 are shown in Additional 
file 2: Appendix 6.

Agreement of predictions
At full data availability predictions from all pairs of ana-
lytical strategies were highly correlated (≥0.97; Addi-
tional file 2: Appendix 7). At N/100, the mean correlation 
coefficients across the 100 subsets was still high (0.97) 
for predictions estimated by SLNN and GAM, but the 
MLNN predictions were quite different from those of 
the other strategies (mean correlation between 0.65 and 
0.84).
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Assessing predictor‑risk relation
For assessing and comparing the shape of the estimated 
predictor-risk relations by means of ICE plots, we focused 
on the predictors age, total cholesterol, BMI score and 

blood glucose. For demonstrational purposes we focused 
on women and for the latter three variables we addition-
ally fixed age at 40, 50, 60 and 70 years. The individual con-
ditional expected risk by age, and the individual expected 

Table 1  Baseline characteristics of individuals in the test set. Continuous variables are reported as mean (sd) and for categorical 
variables absolute numbers and percentages are given

Abbreviations: BMI body mass index, BP blood pressure, HDL high density lipoprotein

Test set
(n = 514,661)

Men
(n = 237,748; 46.2%)

Women
(n = 276,913; 53.8%)

Age (years) 49.9 (11.9) 50.1 (12.2)

Total cholesterol (mg/dl) 210 (41.9) 212 (41.6)

HDL cholesterol (mg/dl) 51.4 (14.9) 63.9 (17.2)

Cholesterol ratio (total cholesterol/HDL cholesterol) 4.38 (1.43) 3.54 (1.14)

Triglycerides (mg/dl) 146 (94.6) 108 (62.3)

Blood glucose (mg/dl) 98.3 (24.7) 92.7 (20.4)

Systolic BP (mmHg) 133 (17.3) 127 (18.7)

Diastolic BP (mmHg) 82.7 (10.1) 79.6 (10.4)

BP classes
  Ideal 25,964 (11.0%) 67,687 (24.4%)

  Normal 59,743 (25.1%) 74,538 (26.9%)

  Still normal 55,766 (23.5%) 52,224 (18.9%)

  Hypertension stage 1 56,417 (23.7%) 45,370 (16.4%)

  Hypertension stage 2 7200 (3.0%) 6264 (2.3%)

  Isolated systolic hypertension 32,658 (13.7%) 30,830 (11.1%)

Hypertensive drug intake
  Yes (vs. no) 32,731 (13.8%) 34,987 (12.6%)

Smoking status
  Yes (vs. no) 59,279 (24.9%) 58,164 (21.0%)

Diabetes
  Yes (vs. no) 13,688 (5.8%) 11,006 (4.0%)

BMI score (kg/m2) 27.4 (4.69) 26.0 (5.68)

BMI classes
  < 18.5 866 (0.4%) 6546 (2.4%)

  18.5–24.9 75,942 (31.9%) 136,837 (49.4%)

  25.0–29.9 108,615 (45.7%) 78,301 (28.3%)

  30.0–34.9 37,675 (15.8%) 34,310 (12.4%)

  35.0–39.9 8229 (3.5%) 11,454 (4.1%)

  ≥ 40.0 6421 (2.7%) 9465 (3.4%)

Waist circumference
  Too large (vs. okay) 83,503 (35.1%) 96,416 (34.8%)

Physical activity
  None 26,347 (11.1%) 31,161 (11.3%)

  Ocassionally 101,706 (42.8%) 118,890 (42.9%)

  Regularly 109,695 (46.1%) 126,862 (45.8%)

Protein in urine
  Positive (vs. negative) 14,403 (6.1%) 16,267 (5.9%)

Glucose in urine
  Positive (vs. negative) 5481 (2.3%) 4294 (1.6%)



Page 7 of 12Wallisch et al. BMC Medical Research Methodology          (2021) 21:284 	

risk by total cholesterol, BMI and blood glucose condi-
tional on age were parallel for each modeling paradigm at 
full data availability (Additional file 2: Appendix 8). This 
justifies averaging of those individual effects for interpre-
tation on a population level with PDPs, which are shown 
in Fig. 4. By construction, SLNN, GAM and MLNN result 
in smooth PDPs. XGBoost produced PDPs with steps, 

which can be explained as resulting from the implicit use 
of ensembles of classification trees by the algorithm.

The estimated relative log-odds of a cardiovascular 
event for women were linearly increasing with increasing 
age for all four analytical strategies (Fig. 4). GAM, MLNN 
and XGBoost detected a slightly U-shaped effect of total 
cholesterol for women aged 50, 60 and 70 years. This 

Fig. 2  Brier Score, discrimination slope, AUROC and AUPRC of the models (SLLN-LR (red), GAM (rose), MMLN (violet), XGBoost (blue)) fitted at full 
data availability, data availability of N/10 and N/100, evaluated in the test set. Abbreviations: GAM, generalized additive models; MLNN, multi-layer 
neural networks; SLNN-LR, single-layer neural network/logistic regression; XGBoost, extreme gradient boosted trees
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indicates, e.g., that CVD risk was the lowest with choles-
terol values around 200 mg/dL for 60-years old women. 
However, at 40 years GAM exhibited PDPs indicating an 
increasing effect. For blood glucose all modeling para-
digms identified a linear effect on the predicted log-odds, 
except for GAM which predicted an increased risk for 
very low blood glucose levels. Over a wide range of BMI 
values PDPs were fairly constant indicating no associa-
tion of BMI with CVD risk. Only XGBoost identified a 
slightly increased risk with BMIs lower than 18 kg/m2, 
which was unnoticed by other modeling paradigms. Tri-
glycerides and the diastolic blood pressure did not affect 
CVD risk predictions (Additional file  2: Appendix  9), 
only XGBoost estimated an increased risk with increas-
ing diastolic blood pressure for 40-year old women. For 
increasing HDL cholesterol the risk generally decreased 
as expected. Mens’ PDPs were basically similar to those 
of women but were slightly shifted upwards towards 
higher CVD risk (Additional file 2: Appendix 9).

Figure 5 compares PDPs for total cholesterol in women 
between modeling paradigms at different data avail-
abilities. At a data availability of N/10 only XGBoost still 
reproduced the slightly U-shaped trend of total choles-
terol identified at full data availability, however, with less 
accuracy. The shapes of the PDPs already differed con-
siderably between different subsets, where the highest 
variability was observed for MLNN. At N/100, SLNN and 
GAM achieved similar results, whereas MLNN produced 
highly variable PDPs. Similar comparisons for all data 
availabilities were done for age, and for total cholesterol, 
blood glucose and BMI at ages of 40, 50, 60 and 70 years 
in Additional file 2: Appendix 10–13.

Discussion
We visualized the relations between individual predic-
tors and the estimated CVD risk that were obtained 
when model estimation followed different paradigms. We 

Fig. 3  Calibration of the models (SLLN-LR, GAM, MLNN, XGBoost) fitted at full data availability, data availability of N/10 and N/100, evaluated in the 
test set. The visualization across the full range of predicted risk is found in Additional file 2: Appendix 6. Abbreviations: GAM, generalized additive 
models; MLNN, multi-layer neural networks; SLNN-LR, single-layer neural network/logistic regression; XGBoost, extreme gradient boosted trees
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found some similarities between the visualized predictor-
risk relations but also occasional divergence. The smaller 
the sample size, the more the predictor-risk relation 
depended on the modeling paradigm, and also sampling 
variability played an increased role, resulting in possibly 
implausible predictor-risk relations in some models and 
samples.

The role of ML as new modeling paradigm for predic-
tion in cardiology has been discussed controversially in 
recent years. While some studies embraced the flexibil-
ity of computer-intensive methods which often showed 
increased predictive performance [27–31], others have 
pointed at possible pitfalls in comparative studies such 
as irrelevant increase in predictive power and the focus 
on discriminative ability while neglecting calibration 
[13, 32]. It was also pointed out that large data sets are 
needed to observe a benefit in predictive performance 

from making prediction rules more complex [33]. Deo 
and Nallamothu see the future of prediction tasks in 
ML, but mention a number of limitations, in particular 
if ML is applied to electronic health records [34]. How-
ever, the full potential of standard statistical modeling is 
likely not exploited as many developments to increase 
flexibility of statistical models such as modern algorithms 
for variable selection or for explicitly incorporating non-
linear predictor-risk relations in the model structure are 
still underused [2–4]. The GAM already reaches a cer-
tain level of complexity but can still be mathematically 
described by means of a risk equation (Additional file 3). 
The other models cannot be written down as a math-
ematical equation and need implementation in interac-
tive software, e.g. through web access. Some software 
packages such as R and RStudio allow for straightforward 
implementation of a web entry form, irrespective of what 

Fig. 4  Partial dependence of estimated risk on a age, b total cholesterol, c blood glucose, d BMI, showing how average predictions vary with these 
variables when keeping fixed all other predictors. Black: overall; red: at age fixed at 40 years and sex set to female; yellow: 50 years, female; green: 
60 years, female; blue: 70 years, female. Dotted lines: single-layer neural networks/logistic regression; dashed-dotted lines: generalized additive 
models; dashed lines: multilayer neural networks; solid lines: extreme gradient boosted trees. All models were fitted at full data availability
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type of modeling paradigm was used. For models fitted 
in other software, user access may not be implemented 
so easily.

Our study is characterized by a number of novel ideas 
that go beyond simple data analysis. First, we made use of 
expert knowledge from each modeling culture to develop 
analytical strategies in a preferred modeling paradigm 
tailored to the data availabilities, and compared how 
the different model paradigms induced different inter-
pretations. The multidisciplinary nature of our team 
with experts from both modeling cultures is a particular 
strength of our study. Hence, we were able to perform 
a fair and transparent comparison of analytical strate-
gies. To best mimic the practical situation of analyzing 
observational studies for predictive research, our study 
protocol strictly separated the development of the ana-
lytical strategies based on the available knowledge at dif-
ferent data availabilities from data analysis. In developing 

these strategies, background knowledge played different 
roles. We designed this study to resemble a competition 
of experts adapting their favorite tools to the modeling 
question at hand rather than letting a single data analyst 
compare different default implementations. In this way 
we have set a new standard for comparison studies.

Our study was characterized by a large sample, with 
which all analytical strategies led to very similar results 
with respect to predictive performance. In practice, often 
less data is available for modeling. Therefore, another fea-
ture of our study was the use of simulation to investigate 
behavior with smaller samples. In particular, we employed 
subsampling to simulate a more unfavorable events-
predictors ratio and demonstrated how our results are 
affected. With smaller data sets, flexible approaches such 
as MLNN or XGBoost are at higher risk of overfitting. 
This is remarkable as in both analytical strategies, over-
fit was thought to be controlled by reducing the number 

Fig. 5  Partial dependence of estimated risk on total cholesterol, showing how average predictions vary with total cholesterol while keeping all 
other predictors fixed. Red: age fixed at 40 years and sex set to female; yellow: 50 years, female; green: 60 years, female; blue: 70 years, female. The 
models (SLNN-LR, GAM, MLNN, and XGBoost) were fitted at a full data availability b data availability of 1/10 and c data availability of 1/100. In c 10 
out of 100 models were randomly selected
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of predictors at smaller data availabilities (MLNN) or by 
cross-validation (XGBoost). Another aspect of our study 
was to demonstrate how the black box of ML models can 
be opened to explain why a model arrives at a particular 
result [35]. Lack of explainability of an ML model may be 
an important obstacle to its bedside use, in particular if 
consistence with clinical expertise is unclear. Among a 
variety of tools that were developed to ‘explain’ the predic-
tions of ML models, PDP and ICE plots are attractive as 
these techniques can also be applied with statistical mod-
eling paradigms such as GAMs, allowing head-to-head 
comparisons. Some other model-agnostic techniques 
have been proposed and reviewed recently [36], but were 
not considered here. XGBoost often produced wiggly 
PDPs with steps and local peaks that are not rationally 
interpretable. Our investigation revealed that data availa-
bility (sample size) is the decisive factor also for stable and 
reliable interpretation of the role of predictors in a model. 
Likewise, it affected the agreement between the predic-
tions from the different analytical strategies – while at 
high data availabilities, the predictions from all methods 
were highly correlated, this was no longer the case with 
smaller but still realistic sample sizes, corroborating the 
study of Li et al. [37].

Despite these strengths, our study has limitations. 
First, because of the specific outcome in our study, 
which occurred in about 1% of the participants in 
the health screening during the follow-up period of 1 
year, we did not compare methods in  situations when 
events are more common. We expect that our results 
generalize to situations with similar event frequen-
cies, as the number of events is more important than 
sample size in risk prediction modeling. Moreover, the 
number of potential predictors for inclusion was lim-
ited, and with a higher number of potential predic-
tors, the pre-specification of the complexity allowed in 
GAMs may become difficult. On the other hand, also 
ML approaches may suffer from an increased dimen-
sionality of the predictor space, as they must counter 
overfitting with heavier regularization, and comput-
ing time may become an issue as well. We also did not 
consider using the time-to-event outcome, which may 
have increased event rates but had brought along new 
difficulties, as generalizations of SLNN, MLNN and 
XGBoost suitable for survival-type outcomes are still 
in their infancy. Lastly, we included only selected ana-
lytical strategies in our comparisons, in particular in 
the field of ML, and ignored some others that are often 
used in practice such as random forests. Our aim was 
not to make a wide comparison of ML methods but to 
use methods that the collaborators in this study were 
most familiar with, guaranteeing that these methods 
were employed with appropriate expertise. Moreover, 

the methods considered here can be considered as rep-
resentative for novel and more traditional approaches.

The analytical paradigm under which cardiovascular 
risk prediction models are developed may be largely 
irrelevant for predictive accuracy of the obtained mod-
els and probably also for any conclusions on the role 
of predictors in these models if certain conditions are 
met. These conditions comprise a sufficient sample size 
[38, 39], a flexible enough modeling approach [3], and 
strict separation of the development of an analytical 
strategy from data analysis. At lower data availabilities, 
more flexible approaches are at higher risk of overfit-
ting, which leads to less accurate predictions and less 
generalizable models. Visualizations such as those 
exemplified in this work are an indispensable tool to 
make complex models more transparent and to uncover 
implausible predictor-risk relations.
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