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Abstract

Background: The goal of our study is to examine the impact of the lookback length when engineering features to
use in developing predictive models using observational healthcare data. Using a longer lookback for feature
engineering gives more insight about patients but increases the issue of left-censoring.

Methods: We used five US observational databases to develop patient-level prediction models. A target cohort of
subjects with hypertensive drug exposures and outcome cohorts of subjects with acute (stroke and gastrointestinal
bleeding) and chronic outcomes (diabetes and chronic kidney disease) were developed. Candidate predictors that
exist on or prior to the target index date were derived within the following lookback periods: 14, 30, 90, 180, 365,
730, and all days prior to index were evaluated. We predicted the risk of outcomes occurring 1 day until 365 days
after index. Ten lasso logistic models for each lookback period were generated to create a distribution of area
under the curve (AUC) metrics to evaluate the discriminative performance of the models. Calibration intercept and
slope were also calculated. Impact on external validation performance was investigated across five databases.

Results: The maximum differences in AUCs for the models developed using different lookback periods within a
database was < 0.04 for diabetes (in MDCR AUC of 0.593 with 14-day lookback vs. AUC of 0.631 with all-time
lookback) and 0.012 for renal impairment (in MDCR AUC of 0.675 with 30-day lookback vs. AUC of 0.687 with 365-
day lookback ). For the acute outcomes, the max difference in AUC across lookbacks within a database was 0.015
(in MDCD AUC of 0.767 with 14-day lookback vs. AUC 0.782 with 365-day lookback) for stroke and < 0.03 for
gastrointestinal bleeding (in CCAE AUC of 0.631 with 14-day lookback vs. AUC of 0.660 with 730-day lookback).

Conclusions: In general the choice of covariate lookback had only a small impact on discrimination and calibration,
with a short lookback (< 180 days) occasionally decreasing discrimination. Based on the results, if training a logistic
regression model for prediction then using covariates with a 365 day lookback appear to be a good tradeoff
between performance and interpretation.
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Background
Observational healthcare data consists of timestamped
data, which needs to be converted into features for a
prediction model. Due to the temporality of the observa-
tional data, it is possible to either fully preserve the tem-
poral nature of the data (‘temporal features’, for example
as a feature matrix per patient with rows corresponding
to medical events and columns corresponding to time
and the entries being the medical event value at the spe-
cific time) or create a summary of the patient’s history
(‘non-temporal features’, a feature vector per patient cor-
responding to medical events and the entries are the
values, for example binary values indicating the presence
or absence of an event in the patient’s history). Tem-
poral features can be used with classifiers such as neural
networks (deep learning) however, this is not possible
with many conventional classifiers (such as logistic re-
gression). In addition, there are difficulties when devel-
oping models using temporal data from healthcare
claims and electronic healthcare record databases as the
data come from a diversity of sources and are recorded
at irregular frequencies with data often sparsely repre-
sented. This can present issues to classifiers such as
neural networks when implementing the feature engin-
eering [1], especially if the data are not large. In this
paper we therefore focus on engineering non-temporal
features.
Converting observational data to non-temporal data

requires specifying a static lookback time where the
value of the medical event is observed during the look-
back period. It is possible to specify the lookback time,
such as 365 days prior to index which means only the
data recorded in the 365-days prior to index per patient
are used when constructing the features. Alternatively,
the lookback window can be specified to include all time
prior, meaning all data recorded prior to index are used
to construct the features. The benefits of using a longer
look back are that you have a more complete picture of

each patient, but there are multiple negative aspects in-
cluding: (i) you treat a recent illness the same as an ill-
ness experienced years ago, (ii) you may have issues with
left censoring as patients often do not have the same
length of complete lookback (iii) you may run into issues
when implementing the model in a new healthcare sys-
tem if the mean complete lookback is shorter and (iv) if
using all lookback time realistically patients have varying
lengths of lookback which hinders interpretation. Fig-
ure 1 represents a subject with left censoring (subject A)
and a subject without left censoring (subject B). For sub-
ject B there is no missing data in the feature construc-
tion, but for subject A the left censoring means we are
unable to observe her for part of the lookback time (ef-
fectively missing data).

Studies using administrative data and investigating
variations in the length of lookback period have been
conducted in the context of incidence and effect estima-
tion [2–4]. In a study of cancer cumulative incidence es-
timation the authors recommended using lookback of 2
or more years and discouraged the use of 1 year look-
back but caveated that it is not possible to provide gen-
eral recommendations as lookback period is dependent
on the characteristics of the cancer site and the available
data and the underlying research question [3]. A Korean
study using a cohort database and examining lookback
and estimating incidence of three gynecological diseases
(uterine leiomyoma, endometriosis, and adenomyosis)
found that as the lookback increased the proportion of
misclassified incident cases decreased but advised that
the optimal lookback for annual incidence depended on
the nature and the stage of the respective diseases [4]. A
comparative effect study using the Medicare beneficiary
database and evaluating the effect of statin initiation on
incidence of cancer recommended that a 3 year lookback
was best but if infeasible that all available lookback is
preferable to short fixed lookbacks [2]. Although these

Fig. 1 Left censoring and feature construction
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studies do not utilize the PLP methodology they illus-
trated that longer lookback reduces data noise for the
diseases examined.
Few studies have evaluated the impact of the selection

of the length of lookback time in the setting of predictive
ability [5–7]. In a Korean study with data from the Na-
tional Health Insurance Database evaluating in hospital
mortality for patients aged 40 and older who underwent
percutaneous coronary intervention the authors’ com-
pared comorbidity measurements (Charlson comorbidity
index, Elixhauser’s comorbidity, and comorbidity selec-
tion) using 3 years of inpatient records compared to
models using 1 year of inpatient records and concluded
the longer lookback period offered no improvement in
predictive capacity [6]. Evaluation of the impact of 1 year
vs. 2 year lookback in Charlson score for mortality
among elderly Medicare beneficiaries using claims data
reported nearly identical C-statistics [7]. An Australian
study using population based hospital data examined
prediction of hemorrhage in pregnancy among eight dif-
ferent chronic disease cohorts and evaluated six look-
back periods and concluded that although longer
ascertainment periods resulted in improvement of iden-
tification of chronic disease history it did not change the
resulting C-statistics [5]. These studies evaluated a lim-
ited set of outcomes (mortality and hemorrhage during
pregnancy). Based on the findings of these studies for

the outcomes evaluated lookback period did not materi-
ally impact the results.
The intent of this study is to evaluate the impact of

several lookback periods on the performance of models
predicting two acute and two chronic diseases. Multiple
databases are included in the study to investigate both
internal and external performance. This research may
help identify recommendations for the optimal lookback
period for these outcomes using administrative data. We
hypothesize that using a 365 days prior lookback will re-
sult in well performing prediction models that are more
transportable and interpretable across databases as this
is a trade-off between gaining a sufficient picture of each
patient’s health history while reducing issues with left
censoring.

Methods
We used the OHDSI PatientLevelPrediction framework
[8] and R package to develop and evaluate the prediction
models in this study (Table 1).

Data
We developed models using five US observational data-
sets. Each dataset has unique attributes. The IBM Mar-
ketScan® Commercial Claims and Encounters Database
(CCAE) which contains insurance claims for commer-
cially employed individuals and their dependents and

Table 1 Counts of population, percentage with outcome by database

Outcome Database Total Population (N) Outcome Percentage (%)

Stroke CCAE 688,011 0.9

Stroke OPTUM 555,849 2.3

Stroke MDCD 166,774 2.9

Stroke MDCR 46,696 4

Stroke Panther 1,667,849 1.8

Gastrointestinal bleeding CCAE 700,384 1.6

Gastrointestinal bleeding OPTUM 556,913 2.5

Gastrointestinal bleeding MDCD 178,419 3.6

Gastrointestinal bleeding MDCR 51,084 2.8

Gastrointestinal bleeding Panther 1,688,161 1.7

Renal impairment CCAE 721,671 1.8

Renal impairment OPTUM 536,981 4.2

Renal impairment MDCD 164,979 5.3

Renal impairment MDCR 49,495 5.2

Renal impairment Panther 1,608,521 4.2

Diabetes CCAE 587,205 3.1

Diabetes OPTUM 458,033 3.8

Diabetes MDCD 128,517 4.6

Diabetes MDCR 42,306 3.1

Diabetes Panther 1,294,517 2.6
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contains subjects less than or equal to the age of 65. The
Optum® De-Identified Clinformatics® Data Mart Data-
base – Socio-Economic Status – (Optum) is a similar
database to CCAE except that it also contains claims
from subjects with Medicare supplemental insurance
and thus does not have an upper age threshold. IBM
MarketScan® Medicare Supplemental and Coordination
of Benefits Database (MDCR) database contains claims
from subjects with Medicare supplemental insurance
and thus contains subjects 65 years and older. The IBM
MarketScan® Multi-State Medicaid Database (MDCD)
contains claims from subjects covered by Medicaid and
is primarily composed of women and children. The
Optum® de-identified Electronic Health Record Dataset
(Panther) dataset is an electronic health records (EHR)
and contains information derived from clinical Notes
using Natural Language Processing (NLP). All databases
were transformed to the Observational Medical Out-
comes Partnership Common Data Model version 5.3.1.
The use of IBM and Optum databases were reviewed by
the New England Institutional Review Board (IRB) and
were determined to be exempt from broad IRB approval.

Study population
We extracted data for patients who are newly treated
with a hypertensive medication to predict four outcomes
occurring from 1 day to 365 days after their first pre-
scribed hypertensive treatment.
The target population was new users of hypertensive

medications and the eligibility was defined as first time
exposure to one or more hypertensive medications on or
after 2013 with at least one diagnosis of hypertensive
disorder in the 365 days prior to the index drug expos-
ure. We excluded subjects with a prior diagnosis of any
of the outcomes evaluated. We required subjects to have
at least 365 days of continuous observation prior to the
index date. See Additional file 1 for the codes and logic
used to define the target population. The 365 days mini-
mum prior observation is a standard criterium when
analyzing observational data, as this ensures there is data
for each patient [9]. In addition, as the target population
was newly treated patients, the minimum prior observa-
tion reduces the chance of a patient with a history of
hypertensive treatment being incorrectly included when
they first are observed in the database even though they
have a long history of hypertensive treatment (as this
will not be observed in the data). The impact of the
minimum prior observation is investigated via a sensitiv-
ity analysis (we investigated 0 days and 730 days prior
observation requirements) see Additional file 2.
Two of the outcomes were acute health conditions

(stroke and gastrointestinal bleeding) and two were
chronic health conditions (diabetes and renal impair-
ment) from 1 day after index until 365 days after index.

Eligibility for the outcome populations included the first
occurrence of gastrointestinal bleeding or stroke or dia-
betes or renal impairment. See Additional file 1 for the
codes and logic used to define the outcome populations.

Candidate predictors
Candidate non-temporal features were engineered
from the administrative claims data that exist on or
prior to the target index date and followed a stan-
dardized feature construction process [8]. These vari-
ables were demographics, visit type, binary indicators
of medical events and counts of record types. The
demographics included gender, race and ethnicity
(where available), age in 5-year groups (0–4, 5–9, 10–
14,…, 95+) and month at the target index date. Binary
indicator variables were created for medical events
based on the presence or absence of each within the
clinical domains of conditions, drugs, and procedures
within several time periods: 14, 30, 180, 365, 730
days, and all time prior to index. As binary covariates
are the presence or absence of records for various
conditions or drugs during time intervals, missing
values will not be contained in the covariates. This is
because when a patient does not have a condition re-
corded, we cannot distinguish whether it is due to
the patient having the condition but not having it re-
corded (missing) or them not experiencing the condi-
tion. Therefore, missing records for condition, drugs
or procedures are treated as the patient not having
the condition, drug, or procedure. Left censoring may
result in missing records. Age and gender are
mandatory in the OMOP common data model
(CDM) [10], so are never missing. If a database con-
tains race/ethnicity it will be recorded for all patients.
The published best practices for model development

were followed [8]. To enable full transparency and im-
plementation by other researchers using different data
all the definitions, analysis code, and prediction models
are available in the OHDSI github repository: https://
github.com/ohdsi-studies/PredictionCovariateLookback.

Development and validation of prediction model
In this study we focused on developing logistic regres-
sion with LASSO regularization (LASSO logistic regres-
sion) binary classifiers [11]. LASSO logistic regression is
a good classifier to use when there is a large number of
covariates. We used a test/train split with cross valid-
ation design to develop each model. Data for the whole
population were split into a 20 % test dataset and 80 %
training dataset. The training dataset was used to learn
the model (the optimal regularization hyper-parameter
was selected using 10-fold cross validation using the
train data) (Fig. 2). The test dataset was used to intern-
ally validate the model.
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As the test/train split can impact performance, we re-
peated the process by developing 10 models per < look-
back period, database, outcome > combination using
different test/train splits. In total we developed 1400
models as we investigated 7 lookback periods (14 days,
30 day, 90 days, 180 days, 365 days, 730 days, and all
days prior to index), 5 databases and 4 outcomes and re-
peated the test/train split 10 times. This provided a dis-
tribution of performance estimates for each < lookback
period, database, outcome > combination.
To evaluate each model’s performance we calculated

discrimination using the area under the receiver operat-
ing characteristic curve (AUC) metric and calibration
using the calibration intercept and slope. As model de-
velopment was repeated 10 times (using different test/
train splits) a mean AUC and confidence interval were
calculated for internal performance estimates.
To investigate the impact of the lookback period on

external validation performance, the 10 models per <
lookback period, database, outcome > were inspected
and the model with the highest internal discrimination
was externally validated across the other four databases.
Model complexity was also investigated in addition to

performance, based on the number of predictors selected
into the model. This enabled the investigation of
whether the lookback has any impact on model
complexity.

Results
This study examined model performance over seven
lookback periods (14, 30, 90, 180, 365, 730, and all time
prior to index) for two chronic (diabetes and renal im-
pairment) and two acute (stroke and gastrointestinal
bleeding) outcomes in subjects newly treated with hyper-
tensive medications across five US databases.

Figure 3 shows the internal and external validation dis-
crimination (mean AUC) across the databases for all
four models. The rows correspond to the different out-
comes and the columns correspond to the database used
to develop the model. There was generally a positive
correlation between covariate lookback and AUC, but
differences were observed across outcomes. Additional
file 6: Fig. 5 shows similar trends for the discrimination
metric area under the precision recall curve (AUPRC)
but the values are lower as the precision is impacted by
the outcome rareness.

The two chronic illnesses, diabetes (top row) and renal
impairment (third row), show an increasing AUC over
the lookback periods up to 365 days (14, 30, 90, 180
days) and then remained stable or improved marginally
in CCAE, MDCD, Optum, Panther, and MDCR (renal
impairment only). The mean AUC for diabetes models
results from MDCR illustrated a continuous increase.
The external AUCs for renal insufficiency occasionally
decreased in performance when an all-time prior look-
back is used. Although the AUC differed across look-
backs, the max difference in AUC across lookbacks
within a database was < 0.04 (0.593 with 14-day lookback
in MDCR vs. 0.631 with all-time lookback in MDCR) for
diabetes and 0.012 for renal impairment (0.675 with 30-
day lookback in MDCR vs. 0.687 with 365-day lookback
in MDCR).
For the acute illnesses, the mean AUC for stroke

(fourth row) was relatively stable across the lookbacks
and for gastrointestinal bleeding (second row) it in-
creased slightly up until a 365/730 day lookback and
then decreased. The max difference in AUC across look-
backs within a database was 0.015 (0.767 with 14-day
lookback in MDCD vs. 0.782 with 365-day lookback in
MDCD) for stroke and < 0.03 for gastrointestinal bleed-
ing (0.631 with 14-day lookback in CCAE vs. 0.660 with

Fig. 2 Model development and internal and external validation process
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730-day lookback in CCAE). Additional file 3 shows all
numeric results for the internal and external validation
discrimination across all cohorts and databases. Add-
itional file 4 includes additional metrics specifically
intercept and slope metrics by lookback days for internal
and external validated models.
The mean number of predictors in internally validated

models by lookback days in the chronic outcome cohorts
(diabetes and renal impairment) increase with lookback
time and the largest number of predictors were observed
in CCAE and the smallest number of predictors were
found in MDCR (Additional file 5: Fig. 4). The acute
outcome cohorts (stroke and gastrointestinal bleeding)

illustrate the same pattern of mean number of predictors
as the chronic outcome cohort models however overall
fewer numbers of predictors are included in the final
models.
The sensitivity analyses varying the prior lookback

days did not result in changes in internally validated
model performance. Full results for the sensitivity ana-
lyses can be accessed in Additional file 2.

Discussion
The objective of this study was to provide empirical evi-
dence into the impact that the choice of non-temporal
feature lookback windows has on model performance by

Fig. 3 Mean AUC across two chronic (Diabetes and Renal Impairment) and two acute (Gastrointestinal bleeding and Stroke) cohorts over five US
databases. The database at the top was used to train the model. Colors and shapes indicate the database used to compute the AUC. The shaded
area indicates the range of AUCs observed across the 10 replications
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investigating two acute and two chronic disease out-
comes across five databases.
The main findings of our results are that the impact of

lookback is highly dependent on the healthcare outcome
investigated. In the outcomes investigated in this study
the differences in AUC values across lookbacks were
generally small for renal insufficiency and stroke, indi-
cating the choice of lookback makes little impact in dis-
crimination for some outcomes. A lookback of 365 days
was a reasonable trade-off between maximizing discrim-
inative ability, minimizing the model complexity, and in-
creasing interpretation. Specifically, interpretation is
nebulous when using all time prior lookback because it
can vary by patient in a database (i.e., a patient may be
observed for 2 years or 20 years) so the results are more
interpretable when using a shorter lookback, such as 365
days or 180 days where many subjects will have at least
this length of lookback. Use of a distinct well defined
time period, e.g. 365 days may improve model transport-
ability because databases have different observation pe-
riods (some databases may have 1–5 years of
observation per patient, others may have 10–50 years
observation). The real ‘all time prior’ can therefore
differ across databases, but 365-day lookback is likely
found in most databases. If model development time
is restricted then using a 365 day lookback is reason-
able because it makes little impact on performance
(for these outcomes and model methodology), but if
time is unrestricted and small gains in discrimination
are valuable, then multiple lookbacks (or more
advanced lookbacks) should be evaluated. This study
found that lookback can make an impact if it is too
short, but in general the lookback didn’t make a big
impact on discrimination or calibration. Models
developed using covariates with a 1-year lookback
seemed to perform similarly to the model with the
maximum lookback therefore we recommend using
the 365 day lookback setting. In future work multiple
or adaptive lookbacks, i.e. lookbacks varying by the
type of covariate (condition vs. drug exposure) could
be investigated.

Overview of previous work
Studies of lookback periods have been conducted in the
context of incidence estimation/phenotype development,
effect estimation, with a limited number of studies in the
context of prediction [2–7]. Incidence estimation and ef-
fect estimation studies all advise that longer lookback re-
duces data noise for the diseases and data sources
evaluated [2–4]. The findings from the relatively few
prediction studies stated that for the outcomes evaluated
that lookback period did not materially impact the
model discrimination but did improve identification of
the disease history [5–7].

Strengths and limitations
This study examined the impact of lookback period for
two acute and two chronic outcomes on prediction
model discrimination using administrative claims data.
The data sources used afforded large sample sizes and
long observation periods resulting in good precision and
the ability to evaluate several lengths of lookback period.
There are different ways to address left-censoring in-

cluding: (1) reduce the lookback period and include all
patients, (2) reduce the lookback for just the left-
censored, (3) remove patients with insufficient lookback
or (4) impute the missing data for left-censored patients.
In this study we effectively focus on a combination of
first two approaches as the other approaches can cause
generalizability issues or are computationally expensive
[12].
Our study developed 1400 models focusing on two ex-

amples of chronic and acute outcomes, utilizes US ad-
ministrative claims data, and uses a single prediction
algorithm, the LASSO logistic regression. There is no
guarantee that the trends observed in this study would
generalize across all outcomes, models and data. There-
fore, future research should focus on evaluation of add-
itional outcomes, utilize alternative types of data
sources, and evaluate additional prediction algorithms.
The reason for the difference in performance between
models with different lookbacks was not investigated
and is an interesting area of future work. In this study,
models were developed using a single fixed lookback
(e.g., all condition/drugs shared the same lookback for a
specific lookback setting). This choice was made to
clearly measure the impact of length of lookback and
due to only using one time period being a commonly re-
ported modelling approach [13, 14]. However, combin-
ing multiple lookbacks or making the lookback adaptive
to the condition/drug may lead to improved model per-
formance and our results can be used as a benchmark
for more advanced lookback heuristic methods.
Our study predicts new onset of illness and utilizes

365 days prior observation time to apply a washout win-
dow to confirm the absence of the illness and therefore
it is possible that our study could suffer from inform-
ative presence [15] and could include data from sicker
patients. Therefore, we include results from two sensitiv-
ity analyses where the minimum required previous ob-
servation was set to 0 days and set to 730 days in order
to assess the impact of informative presence.
The algorithms used to identify the four outcomes

likely are prone to some misclassification, although we
performed no formal evaluation of the operating charac-
teristics. We did inspect cohort definitions and charac-
teristics using the CohortDiagnostics R package [16]
prior to execution of the PLP models. Our study evalu-
ated seven lookback periods but none in combination
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and thus it is possible that combinations of lookback pe-
riods could result in model discrimination improvement.
Model performance utilizing different lookbacks may
not be generalizable to alternative target and outcome
populations, data sources, and prediction algorithms.

Conclusions
The impact of lookback period was evaluated and the re-
sults of our study suggest for the two chronic outcomes
evaluated that a lookback of at least 365 days be evalu-
ated and that for the acute outcomes evaluated that a
lookback of < = 365 days was sufficient to optimize
model discrimination. We found lookback can have an
impact on model discrimination if it is too short, but in
general lookback did not impact discrimination or cali-
bration. Logistic regression models developed using co-
variates with a 1-year lookback performed similarly to
models with the maximum lookback and therefore we
recommend a well defined lookback period (365 days) as
opposed to all time lookback because all time varies
among patients in observational databases as people can
have variations in prior observation time. In future work
multiple or adaptive lookbacks could be investigated.
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