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Abstract

Background: When applying secondary analysis on published survival data, it is critical to obtain each patient’s raw
data, because the individual patient data (IPD) approach has been considered as the gold standard of data analysis.
However, researchers often lack access to IPD. We aim to propose a straightforward and robust approach to obtain
IPD from published survival curves with a user-friendly software platform.

Results: Improving upon existing methods, we propose an easy-to-use, two-stage approach to reconstruct IPD from
published Kaplan-Meier (K-M) curves. Stage 1 extracts raw data coordinates and Stage 2 reconstructs IPD using the
proposed method. To facilitate the use of the proposed method, we developed the R package IPDfromKM and an
accompanying web-based Shiny application. Both the R package and Shiny application have an “all-in-one” feature
such that users can use them to extract raw data coordinates from published K-M curves, reconstruct IPD from the
extracted data coordinates, visualize the reconstructed IPD, assess the accuracy of the reconstruction, and perform
secondary analysis on the basis of the reconstructed IPD. We illustrate the use of the R package and the Shiny
application with K-M curves from published studies. Extensive simulations and real-world data applications
demonstrate that the proposed method has high accuracy and great reliability in estimating the number of events,
number of patients at risk, survival probabilities, median survival times, and hazard ratios.

Conclusions: IPDfromKM has great flexibility and accuracy to reconstruct IPD from published K-M curves with
different shapes. We believe that the R package and the Shiny application will greatly facilitate the potential use of
quality IPD and advance the use of secondary data to facilitate informed decision making in medical research.

Keywords: Individual patient data (IPD), Kaplan-Meier curve, Meta-analysis, R package, Shiny application, Survival
analysis

Background
Typical information used for meta-analysis of survival
data reported from clinical trials often includes a sum-
mary of outcomes for each arm, including but not limited
to hazard ratios and Kaplan-Meier (K-M) curves along
with the number of patients at risk [1]. When apply-
ing secondary analysis on such published survival data,
difficulties usually come from insufficient details in the
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reported data, which are often reported using aggregated
summary statistics. For example, when conducting the
meta-analysis on time-to-event data, it is possible that the
proportional hazard ratio assumption may not hold, and
alternative measures of the survival difference are needed
to avoid bias [2, 3]. In this case, it is of great importance
to obtain individual patient data (IPD), with which one
can not only perform the standard survival analysis, but
also can assess if the assumption of the original method
is appropriate in order to decide whether or not alterna-
tive methods should be applied [4]. Furthermore, one can
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undertake additional subgroup analyses not reported in
the aggregated data. For this reason, the IPD approach is
considered as the gold standard in data analysis.
However, researchers conductingmeta-analysis or other

secondary analyses may lack access to the IPD, partly
due to the confidentiality of clinical data. Therefore, a
method that is able to reconstruct IPD from published
K-M curves can greatly facilitate secondary analyses on
survival data. Several methods have been reported in the
literature. The iterative algorithm based on K-M estima-
tion method (referred to as “iKM” hereafter) proposed by
Guyot et al. [5] is a classic approach among many pro-
posed. It has been used in various secondary analyses.
For example, Satagopan et al. [6] used it to reconstruct
time-to-event data from a melanoma data set for evalu-
ating different treatment benefits according to biomarker
subgroups.Wei and Royston [7] developed a STATA func-
tion to apply the iKM algorithm with some adaptions
and applied it to reconstruct IPD from K-M curves from
multiple trials.
However, there are a few factors that limit the use of

the iKM method. First, external software is needed to
extract data points before using the iKM algorithm. The
original iKM method suggests a manual approach to pick
up a sufficient number of points from K-M curves via
mouse-clicks using the DigitizeIt software.
Second, the iKM method has restricted requirements

when picking up the points manually: (1) the survival
probability needed to decrease monotonically as time
increases, (2) the points where the number of patients at
risk are reported must be included, and (3) users need to
sort the data coordinates into time intervals determined
by the time points, at which the number of patients at risk
is reported. K-M curves in publication typically report the
number of patients at risk at several time points under
the x-axis. If the number of patients at risk is reported at
month 3, 6, and 9, then data coordinates need to be manu-
ally organized into the time intervals: [ 0−3), [ 3−6), [ 6−
9), and [ 9,+∞). The first two requirements are generally
hard to keep for a large amount of manual mouse-clicks
and the last one is also time consuming. Thus, it is impor-
tant to have a flexible function to perform these tasks
automatically.
Third, there is a numeric issue in the original iKM

method: estimation can be negative values in certain sce-
narios. Our examination reveals that this is due to a
boundary setup in the iterative process.
Finally, there is a lack of user-friendly software for clin-

ical researchers to use for this method. The published
functions [5, 6, 8] for the iKMmethod have at least one of
the following inconveniences: external digitizing software
is need for data extraction; users need to manually check
if data input is appropriate, or the auto process program
is not convenient or stable; or no accuracy assessment is

provided for users to directly evaluate the reconstruction
results within the same software.
To overcome the aforementioned limitations, we pro-

pose a two-stage modified-iKM approach, which provides
an improved, accurate, user-friendly, and stable workflow
to reconstruct IPD. In this approach, we not only relax the
restricted requirement for data input, but also improve the
robustness and stability of the original iKMmethod. More
importantly, we develop an all-in-one software platform
that allows clinicians and medical researchers to go from
a single K-M curve image directly to reconstructed IPD,
without using additional software to aid data extraction or
without manual treatment on the data before reconstruc-
tion. The software includes an R package and a web-based
Shiny application. Specifically, users can use either the
R package or the Shiny application to (1) extract data
coordinates from published K-M curves; (2) preprocess
extracted data points; (3) run themodified-iKM algorithm
to estimate the number of patients at risk, the number of
events, and the number of censored outcomes for each
pre-specified interval, and to reconstruct IPD; (4) pro-
vide graphs and statistical summary for users to evaluate
the accuracy of the reconstruction process; and (5) con-
duct survival analysis based on reconstructed IPD. The
R package is beneficial for users with some program-
ming skills, as they can perform the reconstruction of IPD
within R or expand their future research on the pack-
age. The advantages of the Shiny application are that it
has a point-and-click interface, does not require installing
any software, and can be used on any machine with an
internet browser. This feature is appealing for clinicians
and medical researchers who are not necessarily familiar
with statistical programming. Extensive simulations and
real-world data applications demonstrate that the pro-
posed method has high accuracy and great reliability in
the estimations of the parameters of interest, e.g., median
survival, hazard ratio, and survival probability.
Our work is of great importance because it not only

further supplements and strengthens the original iKM
algorithm, but it also provides a user-friendly, all-in-one
software available in different platforms to accommodate
the needs of researchers with or without statistical pro-
gramming familiarity. The availability of the two different
software platforms can further enhance quality extraction
of IPD for meta-analysis and other secondary analyses
using time-to-event data.

Implementation
The modified-iKM algorithm for IPD reconstruction is
a two-stage process, as shown in Fig. 1. Stage 1 aims to
extract quality data coordinates (time, survival probabil-
ity) from K-M curves. In Stage 2, the data coordinates are
preprocessed and IPD is reconstructed using the proposed
iterative algorithm.
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Fig. 1 The flowchart of IPD reconstruction from published K-M curves

Coordinates extraction in Stage 1
Data coordinates can be extracted from K-M curves
using the R package and Shiny application we develop
(details in the “Results” section). There are also a num-
ber of other software options available on Windows or
Mac operating systems to digitize the graphs. The com-
monly used software are DigitizeIt (http://www.digitizeit.
de/), ScanIt (https://www.amsterchem.com/scanit.html),
and Plot Digitizer (http://plotdigitizer.sourceforge.net/).
Extensive applications of real-world trial examples and
simulated K-M curves show that data extracted using
the different approaches yield comparable results dur-
ing IPD reconstruction in Stage 2 (more details in the
“Implementation” and “Simulation result” sections). We
provide video tutorials on how to extract data coordinates
using these tools in our Shiny application.
To ensure accuracy of estimation in Stage 2, it is crit-

ical to extract quality data coordinates in Stage 1. We
recommend the following when extracting data points:

1. Use Adobe Illustrator to separate the curves before
extracting data points, when there are multiple K-M
curves in the same figure and the curves are tangled
together. A video tutorial on this is included in the
“Shiny application” section.

2. Extract as many points as possible.
3. Make sure the data points extracted are as evenly

distributed as possible on the K-M curves.
4. Click on both the top and bottom points of the

vertical segment at points where survival probability
drops.

IPD reconstruction in Stage 2
The IPD reconstruction is carried out using the modified-
iKM algorithm, which is based on the K-M estimation
method [9] and improves upon the iKM algorithm [5]. We

provide an overview of the algorithm in this section and
delineate it in detail in AppendixModified-iKM algorithm
in details. LetTk and Sk denote the time and survival prob-
ability, respectively, at time k. The data points extracted in
Stage 1 are typically a N × 2 table, with each row being
(Tk , Sk), for k = 1, 2, ...,N , where N is the number of data
points extracted. The IPD reconstruction consists of two
main steps as follows:

1. Process the raw data.

a Sort the data by Tk .
b Make monotonicity adjustment by first using

Tukey’s fence [10] to detect and remove
unreasonable inputs, and then ensure that
survival probability decreases over time
(known as “force monotonicity” hereafter).

c Perform step control.

2. Reconstruct IPD using an iterative algorithm adapted
from the iKM method.

a Estimate K-M parameters at each coordinate
(k ) including the number of patients at risk
(n̂k), number of patients censored (ĉensk), and
number of events(d̂k), k = 1, · · · ,N . In this
step, we modified the boundary setup for the
number of censored observations to prevent
abysmal estimations in some scenarios (more
details in Appendices Modified-iKM
algorithm in details-Robustness and stability
of the modified-iKM algorithm).

b Construct IPD using the parameters
estimated from Step (2a).

Tukey’s fence in Step (1b) is a nonparametric method
for outlier detection. It is calculated by creating a “fence”
boundary using TF =[Q1−k(Q3−Q1),Q3+k(Q3−Q1)],

http://www.digitizeit.de/
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where Q1 and Q3 are the first and third quartiles of the
data points, and k is a constant that takes common val-
ues of 1.5 or 3. We used k = 3 in our algorithm in
order to not accidentally delete useful data points. Any
point outside of TF is considered an outlier. The illus-
trative example in Appendix: Robustness and stability of
the modified-iKM algorithm shows that the use of Tukey’s
fence in Step (1b) improves the robustness of the algo-
rithm in the presence of outliers (Fig. 5 in Appendix).
Step (1c) safeguards the algorithm from a potential under-
estimation problem (details in Appendix: Modified-iKM
algorithm in details). Step (2a) enhances the stability of
the iterative algorithm. In Appendix: Robustness and sta-
bility of the modified-iKM algorithm, we demonstrate the
robustness and stability of the modified-iKM algorithm
using two data applications.
To assess the accuracy of the modified-iKM algorithm,

we employ several metrics and make them easily acces-
sible through our developed software. First, we provide
graphs to visualize the reconstructed results: (1) esti-
mated survival probability at each read-in time point using
the reconstructed IPD compared with the corresponding
read-in survival probabilities, and (2) estimated number
of patients at risk (when given) compared with reported
values. Second, we provide several summary statistics to
aid the accuracy assessment. One is the root mean square
error (RMSE), which measures the difference in survival
probabilities calculated using reconstructed data and orig-
inal data. Additionally, the mean absolute error and the
max absolute error are provided to assess the precision
of the estimation. Upon careful assessment of the empir-
ical distributions of the RMSE, max absolute error, and
mean absolute error for all of the real trial examples and
simulated curves considered later in this study, we rec-
ommend the following thresholds: RMSE ≤0.05, mean
absolute error ≤0.02, and max absolute error ≤0.05 to
indicate that the extracted data points are sufficiently
well-captured for subsequent analyses. Please note that
these recommendations are based on a limited number
of examples. In practice, users can use these thresh-
olds as a rule of thumb along with their own judgement
to determine if they need to re-extract the data points.
Third, we use the Kolmogorov-Smirnov test to compare
the distributions of the read-in and the estimated sur-
vival curves. A large p-value is desired, as it indicates
that there is a lack of statistical evidence to show the dis-
crepancy between the read-in and the estimated survival
curves.

Results
R package
To facilitate the use of the modified-iKM method, we
developed an R package called “IPDfromKM” with R ver-
sion 3.6.0. The package is available via the Comprehensive

R Archive Network (CRAN) at https://CRAN.R-project.
org/package=IPDfromKM. The package contains several
functions; the descriptions and objects returned for the
functions are presented in Table 1.We provide an example
for each of the functions below.

Extract data coordinates
The getpoints() function is used to extract data coordi-
nates from published K-M curves. The function has the
following arguments:

• f: the K-M curves in a bitmap image (e.g., .png, .jpeg,
.bmp, .tiff).

• x1: the actual label of the left-most points on x-axis.
• x2: the actual label of the right-most points on x-axis.
• y1: the actual label of the lowest point on y-axis.
• y2: the actual label of the highest point on y-axis.

For the image, the use of a .png file is highly recommend,
since it can shorten the processing time in R. In addition to
the image itself, two x-coordinates (x1 and x2) and two y-
coordinates (y1 and y2) are needed to decide the location
and scale of the coordinates system. Below is an example
to read in an image for data extraction, where 60 is the
rightmost label on the x-axis.

R > points <- getpoints("filepath/

filename.png",x1=0,x2=60,y1=0,y2=1)

After the file is read into R, instructions will be pro-
vided in the R console to guide the extraction of data
points. Specifically, users will be guided to click on the
leftmost and rightmost points on the x-axis, and click on
the lowest and the highest points on the y-axis. Then they
can collect the data coordinates by mouse-clicking on the
curve. To get a desirable estimation, we suggest that users
follow recommendations 2-4 in the “Coordinates extrac-
tion in Stage 1” section. The data points extracted will
be returned as a two-column data set (e.g., points in the
example), and this data set can be used as the input of
the preprocess() function described in the “Process data
coordinates” section.
In the following text, we take the build-in data set

Radiationdata to demonstrate the use of the package to
preprocess raw data, reconstruct IPD, and conduct sec-
ondary analysis on the reconstructed IPD. The data set
was extracted from published K-M curves from a two-arm
randomized controlled trial [11] using ScanIt. This study
randomized 424 head and neck cancer patients to two
treatment groups: 213 in the radiotherapy group (referred
to as “radio”) and 211 in the radiotherapy plus cetuximab
group (referred to as “radio_plus”). The primary outcome
was the duration of locoregional control. There were 145
pairs of coordinates extracted for the radio treatment,
and 136 pairs for the radio_plus treatment. Coordinates
for each treatment were saved as a two-column table in

https://CRAN.R-project.org/package=IPDfromKM
https://CRAN.R-project.org/package=IPDfromKM
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Table 1 Overview of the user visible functions in IPDfromKM

Function Description Object returned

getpoints Extract raw data coordinates from published K-M
curves.

A data frame containing the x- and y- coordinates of the K-M curve of
interest.

preprocess Preprocess the read-in data coordinates. A list including cleaned data ready for reconstruction and a “riskmat”
table displaying the index of read-in points within each time interval.

getIPD Estimate the IPD. A list including the reconstructed IPD.

survreport Perform survival analysis on reconstructed IPD. K-M curve, cumulative hazard, times for targeted survival probabilities.

plot Plot the object returned by getIPD(). K-M curves and number at risk for both reconstructed IPD and read-in
data.

summary Summarize objects returned by getIPD(). Descriptive results for accuracy assessment and survival analysis on
reconstructed IPD.

Please consult the documentation (e.g., help(“preprocess”)) for function arguments and detailed return types

Radiationdata: the first column is for survival times, and
the second column is for survival probabilities reported
in percentages. Radiationdata also includes risk times
(in months): trisk = (0, 10, 20, 30, 40, 50, 60, 70) and the
number of patients at risk for each risk time point (nrisk).

Process data coordinates
To prepare data to reconstruct IPD, we first preprocess the
raw data points in an appropriate format. This can be done
using the preprocess() function. This function contains the
following arguments:

• dat: a two-column data set with the first column
being survival time, and the second the survival
probability extracted from a published K-M curve.

• trisk: a vector containing risk time points (i.e., time
points at which the number of patients at risk is
reported). This often can be found under the x-axis of
a K-M curve.

• nrisk: a vector containing the number of patients at
risk. This often can be found under the x-axis of a
K-M curve.

• maxy: the scale of survival probability. Set maxy=100
when the probabilities are reported in percentages
(e.g., 70%). Set maxy=1 when the probabilities are
reported using decimal numbers (e.g., 0.7).

R > names(Radiationdata)

[1] "radio" "radioplus" "trisk"

"nrisk.radio" "nrisk.radioplus"

R > Radiationdata$trisk

[1] 0 10 20 30 40 50 60 70

R > Radiationdata$nrisk.radio

[1] 213 122 80 51 30 10

R > Radiationdata$nrisk.radioplus

[1] 211 143 101 66 35 9

R > pre_radio <- preprocess

(dat=Radiationdata$radio,

trisk=Radiationdata$trisk,

nrisk=Radiationdata$nrisk.radio,

maxy=100)

R > pre_radio_plus <-preprocess

(dat=Radiationdata$radioplus,

trisk=Radiationdata$trisk,

nrisk=Radiationdata$nrisk.radioplus,

maxy=100)

The output of the preprocess() function is a class object
that can be used directly in the getIPD() function to con-
struct IPD.

Reconstruct IPD
After the raw data is processed using the preprocess()
function, we can use the getIPD() function to recon-
struct the IPD. The getIPD() function has the following
arguments:

• prep: the class object returned from the preprocess()
function.

• armID: an arbitrary label used as the group indicator
for the reconstructed IPD. Typically 0 for the control
group and 1 for the treatment group.

• tot.events: total number of events. Only available
for some published curves, and the default value is
NULL.

R > est_radio <- getIPD(prep=pre_radio,

armID=0,tot.events=NULL)

R > est_radio_plus <- getIPD(prep=

pre_radio_plus,armID=1,tot.events=NULL)

Accuracy assessment
To view the accuracy assessment results, simply call the
summary() function. Because of page limits, we show only
one example below.

R > summary(est_radio)

The function read in 144 points from

the K-M curve, and 6 number

of patients at risk. Thus the read-in

points are divided into

6 time intervals.
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interval lower upper trisk nrisk

1 1 42 0 213

2 43 66 10 122

3 67 88 20 80

4 89 109 30 51

5 110 129 40 30

6 130 144 50 10

nrisk.hat censor.hat event.hat

213 8 83

122 10 32

80 19 10

51 16 5

30 17 3

10 9 1

The root-mean-square error between

estimated and read-in survival

probabilities is 0.004. The mean

absolute error between estimated

and read-in survival

probabilities is 0.003. The max

absolute error between estimated

and read-in survival

probabilities is 0.013.

The Kolmogorov-Smirnov test:

Test statistics D= 0.07639

p-value= 0.7948

Null hypothesis: distributions of the

read-in and estimated survival

probabilities are the same.

We see that our algorithm can accurately estimate the
numbers at risk and provide estimates on the number
of events at each risk time. The small values for RMSE
(< 0.05), mean absolute error (< 0.02), and max abso-
lute error (< 0.05), along with the large p-value of the
Kolmogorov-Smirnov test shows that the reconstructed
IPD is accurate. Additionally, we can use the plot() func-
tion to graph the survival curves from the reconstructed
IPD, and compare them with those generated using origi-
nal data points. The function takes the object returned by
getIPD() directly.

R > plot(est_radio)

R > plot(est_radio_plus)

The output using the plot() for the radio group is pro-
vided in Fig. 6 (Appendix: Figures returned for accuracy
assessment or secondary analysis), which shows three
graphs: (1) K-M curves based on reconstructed IPD and
read-in data points, respectively; (2) number of patients at
risk using the reconstructed IPD versus reported; and (3)
difference in survival probability at different time points
for the reconstructed IPD and the read-in data. When the

interval information is not available while reconstructing
the IPD, the second graph will not be shown.

Secondary analysis
If survival analysis is of interest, we can run the survre-
port() function, which includes the following arguments:

• ipd1: a three-column (i.e., time, status, treatment
indicator) table of IPD for treatment 1.

• ipd2: a three-column (i.e., time, status, treatment
indicator) table of IPD for treatment 2.

• arms: number of treatment arms (value of either 1 or
2).

• interval: the time intervals for which the
landmark survival probabilities are of interest. The
default is at every 6 months.

• s: the survival probabilities for which the
corresponding survival times are of interest, e.g, s=0.5
means that the median survival time is desired.

Researchers working with clinical data are often inter-
ested in the survival times at which survival probabilities
are specified (e.g., median survival time at which 50%
of patients survive). The example below shows the sur-
vival times for the pre-specified survival probability s =
(0.50, 0.75, 0.95). This function also returns K-M curves
and cumulative risk in a figure for both groups (Fig. 7 in
Appendix: Figures returned for accuracy assessment or
secondary analysis).

R > report <- survreport(ipd1=est_radio

$IPD,ipd2=est_radio_plus$IPD,

arms=2,interval=8,s=c(0.50,0.75,0.95))

R > print(report$arm1)

$survtime

time 0.95LCI 0.95UCI

survprob = 0.95 2.59 0.779 3.37

survprob = 0.75 5.73 4.680 7.55

survprob = 0.5 14.80 11.700 23.10

$survprob

Surv SE 0.95LCI 0.95UCI

time = 8 0.7688 0.0293 0.7135 0.8284

time = 16 0.5473 0.0348 0.4831 0.6200

time = 24 0.5061 0.0351 0.4417 0.5798

time = 32 0.4786 0.0358 0.4133 0.5543

time = 40 0.4550 0.0378 0.3866 0.5355

time = 48 0.4176 0.0430 0.3413 0.5110

Shiny application
To facilitate the use of the modified-iKM algorithm to
reconstruct IPD for a broader audience, who is not nec-
essarily familiar with statistical programming, we develop
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a user-friendly Shiny application, which is freely avail-
able at https://www.trialdesign.org/one-page-shell.html#
IPDfromKM. Compared with the R package, the Shiny
application does not require any installation, is not lim-
ited by the hardware of users’ computers, and comes
with a point-and-click feature such that no statistical
programming skill is needed to use it [12]. In addition,
we regularly maintain and update the application on the
server, thus users do not have to worry about software
updates. Whenever users have any questions, they can
contact the authors directly through the Shiny application
host website. Appendix: Long-term commitment of the
shiny application shows how users can directly contact the
authors.
The application has a straightforward interface with

three main panels: Data Extraction (used to extract
data points), Reconstruct Individual Patient Data (IPD)
(used to reconstruct IPD), and User Guide (providing
extensive tutorials). Overall, the app has the capability to
complete the following tasks:

1. Extract data points from published K-M curves.
2. Process extracted data points.
3. Reconstruct IPD using the modified-iKM algorithm.
4. Assess the accuracy of the reconstruction.
5. Perform survival analysis using the reconstructed

IPD.
6. Generate a concise report for the IPD reconstruction.
7. Provide an extensive user guide for understanding

the method and using the Shiny application.

Typical input required to use the app includes the follow-
ing, where input 1 is for data extraction and inputs 2-6 are
for IPD reconstruction.

1. An image file (.png or .jpeg) containing the K-M
curve of interest.

2. A .csv or .txt file containing the coordinates extracted
from published K-M curves (for IPD reconstruction).
File templates are available in the Shiny application.

3. Risk time (trisk ).
4. Number of patients at risk (nrisk ).
5. Total number of patients reported (optional when

information for nrisk is provided).
6. Total number of events reported (optional, but

having it will improve accuracy).

We provide video tutorials on how to extract coordi-
nates using the Shiny application and other software, and
how to reconstruct IPD from extracted data coordinates.
The tutorial are accessible under the User Guide panel of
the Shiny application. In the following text, we show an
example of using the Shiny application to reconstruct IPD
for two treatment groups simultaneously.

We illustrate the use of the application using data for
the radio and radio_plus treatment groups introduced
in the R package examples. The data set saved in the
radio_radioplus.csv file has been provided in the app as a
template. As shown in Fig. 2, to input the data, we select
“Two” under Number of treatment groups and upload the
data file. We then type in available information includ-
ing risk times, number of patients at risk, and the total
number of patients for each group. When finishing data
input, we simply click the Begin Calculation button and
the results are shown on the right side of the app. There
are four tabs for displaying the results.
As shown in Fig. 2, the first tab Reconstructed IPD

shows the individual patient data reconstructed from the
data provided. The Accuracy assessment tab (Fig. 10 in
Appendix) shows two plots and a table. The first plot dis-
plays the comparison of K-M curves using the IPD and
original data set for each treatment group, followed by
a plot of the difference between survival probabilities.
The table shows the summary statistics such as RMSE
and Kolmogorov-Smirnov test statistics and p-values to
help assess the accuracy of the IPD reconstruction. Under
the Survival analysis tab (Fig. 11 in Appendix), K-M
curves and cumulative hazard functions are displayed for
both treatments. For each treatment, the landmark sur-
vival probabilities, corresponding standard error, and 95%
confidence interval (CI) are reported. Below the land-
mark probability tables, the application also provides the
critical survival times given pre-specified survival prob-
abilities. For example, we see that the median survival
time is 14.9 months for treatment 1 (radio group) and
24.5 months for treatment 2 (radio_plus group). A concise
report is available under theDownload report tab (Fig. 12
in Appendix).

Implementation example
We now illustrate the use of the modified-iKM method
for reconstructing IPD from K-M curves published for
a two-arm randomized controlled trial in non-small cell
lung cancer (NSCLC) patients [13]. This trial is known
as the POLAR trial, in which a total of 287 patients with
previously treated, advanced or metastatic NSCLC were
randomized to receive either atezolizumab or docetaxel.
The aim of this trial was to assess the efficacy of the
two drugs for patients with NSCLC, analyzed by PD-L1
expression levels on tumor cells and tumor-infiltrating
immune cells. Here, the baseline PD-L1 expression was
scored by immunohistochemistry in tumor cells (as the
percentage of PD-L1 expressing tumor cells TC3 (≥50%),
TC2 (≥5% and <50%), TC1 (≥1% and < 5%), and TC0
(<1%)) and tumor-infiltrating immune cells (as the per-
centage of tumor area: IC3 (≥10%), IC2 (≥5% and <10%),
IC1 (≥1% and <5%), and IC0 (<1%)). Overall survival
was estimated for all patients in five groups: TC3 or IC3

https://www.trialdesign.org/one-page-shell.html#IPDfromKM
https://www.trialdesign.org/one-page-shell.html#IPDfromKM


Liu et al. BMCMedical ResearchMethodology          (2021) 21:111 Page 8 of 22

Fig. 2 IPD reconstruction of two treatments using the Shiny application

patients, TC2/3 or IC2/3 patients, TC1/2/3 or IC1/2/3
patients, and TC0 or IC0, and intention to treat for both
atezolizumab and docetaxel treatments. The five pairs
of K-M curves in the POLAR trial are shown in Fig. 8
(Appendix: Original K-M curves in the POLAR trial).
To apply our method and assess its accuracy, we extract

raw data points from the K-M curves, reconstruct IPD
from the points extracted, use the reconstructed IPD to
calculate the median overall survival (OS) and hazard
ratio, and compare them with the published results. As
shown in Table 2, the point estimates for the median OS
and HR are close to reported values based on raw data.
Considering that the reconstructed IPD data may not be

independent and that data extraction may bring up extra
variation in the reconstruction process, it is of interest to
see how the variability of test statistics based on the recon-
structed IPD impacts the hypothesis testing of interest.
We evaluated this by conducting hypothesis tests using
the reconstructed IPD from the five pairs of K-M curves
in the POLAR trial and six additional pairs of simulated
K-M curves (generated in “Simulation result” section).
As shown in Table 3 (Appendix: Discussion on variabil-
ity of test statistics), our method, with reconstructed IPD,
reaches the same conclusion as that using the true IPD,
indicating that results based on reconstructed IPD are
reliable. Moreover, we further investigated the variability
of statistics of interest (e.g., hazard ratio) between using
true IPD and using reconstructed IPD, through bootstrap
confidence intervals. As shown in Table 4 (Appendix: Dis-
cussion on variability of test statistics), the variability of
statistics based on reconstructed IPD is comparable to

that based on true IPD. The examinations on the variabil-
ity of test statistics in our study are limited. Future studies
are warranted to further investigate this aspect. In terms
of software used, we see that the data points extracted
using our function from the IPDfromKM package have
competitive performance to those extracted using Digi-
tizeIt and ScanIt. In practice, users can use the software
of their choice as long as they follow the instructions
to carefully extract data points. Nevertheless, the all-in-
one feature of our software greatly streamlines the data
extraction, IPD reconstruction, and subsequent data anal-
ysis, making it a superb choice for users who wish to do
everything within one platform.

Simulation result
To further assess the accuracy of the estimations using
the modified-iKM algorithm, we conducted a simula-
tion study with six trials that each had both control and
treatment groups. The sample size for each of the 12
groups was 200. We generated the underlying survival
time (Ti, i = 1, · · · , 200) using the Weibull distribution
with the survival function S(t) = exp(−λtγ ), where λ and
γ are the scale and shape parameters, respectively [14].
When γ > 1, the survival curve has an increasing hazard;
when γ = 1, the survival curve has a constant hazard; and
when γ < 1, the survival curve has a decreasing hazard.
In the simulation, the scale parameter was specified

such that the mean survival E(X) = λ�(1 + 1/γ ) was 12
months for treatment groups, and 6 months for control
groups. We assume 36 months of recruiting time, and a
maximum of 24 months of follow-up. The censoring time
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Table 2 Estimates of median overall survival (OS) and hazard ratio using the modified-iKM algorithm based on data extracted using
different software (R: R package IPDfromKM, D: DigitizeIt, S: ScanIt), in comparison to published results (Report) in the POLAR trial

Median OS Hazard Ratio

Group Arm n Report R D S Report R D S

1 Atezolizumab 24 15.5 15.5 15.5 15.5 0.49 0.48 0.46 0.45

Docetaxel 23 11.1 11.1 11.1 11.1

2 Atezolizumab 50 15.1 15.3 15.3 15.3 0.54 0.54 0.56 0.53

Docetaxel 55 7.4 7.6 7.4 8.1

3 Atezolizumab 93 15.5 15.3 15.5 15.7 0.59 0.59 0.58 0.59

Docetaxel 102 9.2 9.3 9.2 9.6

4 Atezolizumab 51 9.7 9.7 9.7 9.5 1.04 1.06 0.99 1.03

Docetaxel 41 9.7 9.7 9.7 9.8

5 Atezolizumab 144 12.6 13.3 12.4 12.3 0.73 0.72 0.70 0.72

Docetaxel 143 9.7 9.7 9.7 9.8

Group 1: TC3 or IC3; 2: TC2/3 or IC2/3; 3: TC1/2/3 or IC1/2/3; 4: TC0 or IC0; 5: all patients. The value of n refers to sample size

was generated by the minimum value of the time gen-
erated from exponential distribution with parameter λ∗
and the maximum follow-up time. The value of λ∗ was
set such that the censor rate was either 30% or 60%. K-
M curves were then generated by the survfit() function
from the survival R package. The number of patients at
risk was reported every 3 months (20 intervals), or every
10 months (6 intervals), or not reported at all (no risk
information). The simulated trials represented diverse sit-
uations that mimicked K-M survival curves obtained from
real trials.
We used the IPDfromKM package, DigitizeIt, and ScanIt

software to extract the coordinates of the curves, then
we used the preprocess() and getIPD() functions from the
IPDfromKM package to process the raw data and obtain
IPD. We compared the estimated IPD with the true IPD
generated. We first examined the accuracy of the three
software packages in the coordinates extraction by com-
paring the estimated number at risk to the true number at
risk. Figure 3 shows the results for two simulated curves.
As demonstrated, modified-iKM accurately estimated the
number of patients at risk, regardless of software used to
extract data points, as long as a study reported the num-
ber of patients at risk, under both low and high censoring
rates. Without reported numbers at risk, estimation can-
not be accurate, as previously noted in the literature [5].
Thus, reporting this information in published studies is
highly recommended.
Figure 3b shows the mean absolute error of the estima-

tion for the number of patients at risk when the reported
number at risk was available (i.e., the case with 6 or 20
time intervals in the trial), where the error was determined
by (estimated value − true value). The data extracted
yielded comparable results for the different software.

The results were more accurate with more time inter-
vals provided. For instance, when there was information
for 20 intervals, the mean absolute error was less than 2
regardless of censoring rate. When the censoring rate was
large (e.g., 60%), the estimation using information from six
intervals had greater error.
Next, we used the reconstructed IPD to conduct stan-

dard survival analysis to evaluate the performance of our
method. Figure 4a shows the estimated median survival
times and the one-year survival probability. The difference
between the estimated and truemedian survival times was
within 5% in most cases. Figure 4b shows the comparison
between the true hazard ratio and estimated hazard ratios
on the log scale. The hazard ratios and corresponding
standard deviations were almost identical in most cases,
regardless of which software was used to extract the data
coordinates.

Conclusion
In this work, we introduce the R package IPDfromKM,
and its accompanying Shiny application, to reconstruct
IPD from published K-M curves based on the proposed
modified-iKM algorithm. There are several improvements
in the modified-iKM algorithm in comparison to the orig-
inal iKM method. First, we provide a function for users to
extract data points from K-M curves directly. This enables
the all-in-one feature of our software, which stream-
lines the process of IPD reconstruction without requir-
ing extra software to obtain the raw data coordinates.
Our real-world examples and simulated examples show
that data points extracted using the IPDfromKM package
yield competitive results to those extracted using Digi-
tizeIt and ScanIt as long as points extracted are carefully
extracted.
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a

b
Fig. 3 Accuracy assessment in terms of the number of patients at risk
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a

b
Fig. 4 Survival analysis on the reconstructed IPD and the true data
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Second, our procedure to preprocess raw data coordi-
nates is flexible and accurate. The original iKM method
does not have a function for preprocessing raw data
coordinates, and users need to manually check the mono-
tonicity assumption and sort the extracted data points.
Stagopan et al.[6] published a function that can automati-
cally preprocess the raw data coordinates. However, their
function tends to be unstable. For example, the function
simply deletes points that have a larger survival probability
than the points right before them, which introduces addi-
tional errors into the extracted data points. The function
also trims data points at the tail of a K-M curve. This can
be detrimental, as the K-M curve often has a long hori-
zontal tail. If data points were trimmed at the tail, it would
be less likely to reliably estimate the number of censored
observations occurring at the end of the trial. The pre-
process() function from the ReconstructKM package pub-
lished on GitHub [8] can preprocess the data coordinates
but it also requires manual check for monotonicity and
the curve endings. To overcome these limitations, we pro-
posed a flexible and accurate algorithm to preprocess the
raw data coordinates extracted from K-M curves and the
algorithm is easily implemented by using the preprocess()
function from the IPDfromKM package or by uploading
the data to the Shiny application. Moreover, the use of
Tukey’s fence improves the robustness of reconstruction
in Stage 2 in the presence of outliers.
Third, in the estimation stage, we refine the boundary

setup in the iterative procedure to prevent abysmal esti-
mations, which greatly improves the stability of the iKM
method.
Finally, we demonstrate through simulation that the

variability of statistics of interest is comparable to that
based on the true IPD and that the conclusion based on
reconstructed IPD is the same as that based on the true
IPD in hypothesis testing. These findings show that the
IPD reconstructed using our method is reliable. In the
R package and the Shiny application, we provide several
approaches to evaluate the accuracy of the algorithm with
an easy-to-use function, with which the quality of the
reconstructed IPD is easily assessed.
Despite the strengths of the modified-iKM algorithm

and its accompanying software, there are a couple of chal-
lenges or limitations worth mentioning. First, when there
are tangled lines with a lot of censoring markers, even
with the help of software such as Adobe Illustrator, it is
still challenging to separate out each K-M curve for dig-
itizing. Second, while the modified-iKM algorithm can
accurately estimate the survival probabilities, the number
of events, and the number of patients at risk, the algorithm
is based on a uniform censoring assumption, which may
be violated in certain trials. Future work can expand on
this and consider extension to a non-uniform censoring
mechanism.

Availability and requirements
Project name: IPDfromKM R package and Shiny web
application.
Project home page: https://CRAN.R-project.org/
package=IPDfromKM, and https://www.trialdesign.org/
one-page-shell.html#IPDfromKM.
Operating system(s): Platform independent.
Programming language: R.
Other requirements: none.
License: GPL-2.
Any restrictions to use by non-academics: none

Appendix
Modified-iKM algorithm in details
The IPD reconstruction is carried out using the modified-
iKM algorithm, which is based on the K-M estimation
method [9] and improves upon the iKM algorithm [5].
Details regarding the iKM estimation method and the
modified-iKM algorithm are provided below.

The KM estimator
The KM estimator, first proposed by Kaplan and Meier
[9] is a non-parametric estimator of the survival function.
It is determined by the product over the failure times of
the conditional probabilities of surviving to the next fail-
ure time. Specifically, suppose there are Q distinct failure
times. Let tq denote a time where at least an event (e.g.,
a patient dies) is observed, nq is the number of subjects
at risk at time tq, and dq is the number of subjects who
experience the event at that time, q = 1, · · · ,Q. The KM
estimator (SKMtq ) is formally defined as

SKMtq =
q

∏

j=1

1 − dj
nj

= SKMtq−1 ∗ 1 − dq
nq

, q = 1, · · · ,Q. (1)

The number of patients at risk (nq+1) can be determined
by the number of patients at risk at time tq, minus the
corresponding number of patient experienced events and
number of patients censored.

nq+1 = nq − dq − cq. (2)

Themodified-iKM algorithm
Before initializing the iterative algorithm, we first sort
extracted coordinates by time and make monotonic-
ity adjustments on survival probabilities. In addition, to
improve estimation accuracy, we propose a step control
procedure while calculating the number of events at the
coordinate k (denoted as d̂k). Usually, there will be mul-
tiple points at the same time, and thus multiple survival
probabilities are available at this time. In a K-M curve,
this is reflected by a drop in the survival probability at a
time point. We refer to such a time point as a jumping
step. Suppose there are s consecutive points read out at
the jumping step from the target K-M curve, and denote

https://CRAN.R-project.org/package=IPDfromKM
https://CRAN.R-project.org/package=IPDfromKM
https://www.trialdesign.org/one-page-shell.html#IPDfromKM
https://www.trialdesign.org/one-page-shell.html#IPDfromKM
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them as j, j + 1, ...j + s − 1. The original iKM method
requires the use of all the values for d̂j, d̂j+1, ..., d̂j+s−1 and
adds them together to get the estimated total number of
events that happened at the jumping step. However, this
could end up in an under-estimated number at risk due
to rounding. That is, d̂j, d̂j+1, ..., d̂j+s−1 can be too small
to round off to zero. When too many jumping points
exist, the number at risk is under-estimated. As a sim-
ple illustrative example, suppose s = 10, if all the values
for d̂j, d̂j+1, ..., d̂j+s−1 are within [ 0.1, 0.5). After rounding
these values separately and adding them together, the esti-
mated number at risk is zero, but in reality, it lies between
1 and 5.We note that this rarely happens in practice based
on extensive simulations and real trial examples. Nev-
ertheless, it is great to safe guard against the potential
under-estimation problem. For this reason, we recom-
mend controlling the steps to ensure that there are only
two points remaining in each vertical segment on the K-
M curve: one at the beginning and the other one at the
end of the segment. The corresponding survival rates at
these two points are simply ŜKMlast(k) and Sk . By doing this,
the number of events at this step needs to be calculated
and rounded only one time, and it would not end up with
the potential under-estimated problem.
To start the iterative estimation process, we first divide

the preprocessed coordinates from the K-M curve into
I intervals. Denote the number of patients at risk at the
beginning of the intervals as (nrisk1, nrisk2, · · · , nriskI)
and denote the time at which the number of patients
at risk is provided as (trisk1, trisk2, · · · , triskI). For each
interval, we denote the index of the first point as loweri
and of the last point as upperi. The iterative estimation
process proceeds as follows:

1. Initialize the total number of patients censored at
interval i (n̂censori) using the difference between the
reported number at risk at the beginning of interval
i + 1 and the number at risk in this interval if no
censoring occurs (nrisknocensori+1 ) in interval i. The
value of nrisknocensori+1 is given by
nrisknocensori+1 = nriski ∗ Sloweri+1/Sloweri rounded to
the nearest integer, where Sloweri+1/Sloweri is the
probability of survival at the beginning of interval
i + 1 conditional on being alive at the beginning of
interval i. Thus we have

n̂censori = nriski ∗Sloweri+1/Sloweri −nriski+1. (3)

2. Determine the number of patients censored between
the extracted coordinates k and k + 1 (denoted as
n̂censork). Assuming a constant censoring rate, it is
straightforward to determine the censoring time by
distributing the number of censored patients evenly
over the interval i :

tcensorm = Tloweri + m ∗ (Tloweri+1 −
Tloweri)/(ncênsori + 1),m = 1, · · · , n̂censori. The
value of n̂censork is determined by counting the
censoring times that lie between [Tk ,Tk+1]:

n̂censork =
nênsori
∑

m=1
I(tcensorm ∈[Tk ,Tk+1] ), (4)

where I(tcensorm ∈[Tk ,Tk+1] ) is an indicator
function, which returns 1 if the censoring time
tcensorm lies within the interval [Tk ,Tk+1].

3. Determine the number of patients at risk for the
coordinate k + 1 (i.e., n̂k+1 ) as

n̂k+1 = n̂k − d̂k − ncênsork , k = loweri, · · · ,upperi
(5)

according to Eq. (2), where d̂k is determined by
n̂k ∗

(

1 − Sk/ŜKMlast(k)
)

. Round to the nearest integer,

based on an rearrangement of Eq. (1). Here ŜKMlast(k),
instead of ŜKMk−1, is used because there may not be an
event at the extracted coordinate k − 1. Thus, ŜKMlast(k)
is the survival probability of the last point before time
Tk .

4. Check if the estimated number at risk at the start of
the next interval i + 1 (i.e., ̂nriski+1, which is just
n̂upperi+1 ) is equal to the reported value nriski+1.

• If ̂nriski+1 = nriski+1, move to step 5.
• Otherwise, set

n̂censori := n̂censori + n̂(upperi)+1 − nriski+1.

5. Repeat the iteration in steps 1-4, as long as one of the
following two conditions holds:

(

n̂(upperi)+1 > nriski+1
)

and
(

n̂censori<nriski − nriski+1
)

.
(6)

or
(

n̂(upperi)+1 < nriski+1
)

and
(

n̂censori > 0
)

. (7)

The condition in (6) shows that the number of
patients at risk for interval i is greater than the
reported value, so the iteration will continue to
increase the number of censored patients for this
interval. On the other hand, condition (7) shows that
the number of patients at risk at the end of interval i
is less than the reported value, thus the iteration will
continue to decrease the estimation of the number of
censored patients for the interval. Note that, in
condition (6), the upper bound on the number of
censored patients (n̂censori) is added (i.e.,
n̂censori < nriski − nriski+1) to ensure that the
number of censored patients for each interval lies
within the range of [ 0, nriski − nriski+1]. This proper
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boundary condition is needed to avoid having an
infinite number of iterations, which was not
considered in the original iKM method.

6. Check if the iteration reaches the last interval.

• If i + 1 is not the last interval, i.e., i + 1 �= I,
repeat steps 1-4.

• Otherwise, adjust the initial guess of the
censored patients in the last interval as

n̂censorI = min(Average censoring rate ∗ length of
the last interval,

nriskI − endpts − (tot.events −
upperI−1

∑

k=1
d̂k)),

(8)

where endpts is the last reported number of
patients at risk. The adjustment is made because
the number at risk for the last interval (nriskI ) is
typically not available, and thus the equation in
(3) can cannot be determined directly.

Robustness and stability of the modified-iKM algorithm
We state that Step (1a) and (2b) of the modified-iKM algo-
rithm improve the robustness and stability of the original
iKM. In this section, we show two data applications to
demonstrate these advantages.

Robustness We demonstrate the advantage of Tukey’s
fence using the data for the acute Myelogenous Leukemia

(AML) survival data in the survival package. We gener-
ated the K-M curve using the data for the control group
with the survminer package and extracted data points
from the K-M curve using the IPDfromKM package. The
first panel in Fig. 5a shows the data points extracted from
the published K-M curve, where the red dots indicate the
outliers flagged using Tukey’s fence. The second panel
shows the reconstructed K-M curves with and without the
outliers. As shown, we can see that by using Tukey’s fence
to remove outliers, the algorithm can ensure accurate esti-
mation. This shows that the use of Tukey’s fence increases
the robustness of the algorithm such that outliers in the
extracted data points will be removed automatically and
have a minute impact on the estimation. After removing
outliers, we use “force monotonicity” to ensure that sur-
vival probability monotonically decrease with time. While
isotonic regression is commonly used when monotonicity
assumption is violated, we show that force monotonicity is
better in most of the curves considered in this study. This
may be due to the fact that the former is more likely to
smooth out the curve (an example is show in Fig. 5b).

Stability Step (2a) proves to be most useful when there
are many reported time intervals. Take the tenth K-M
curve in our simulation study for example. We extracted
132 data points from the curve and applied both the
modified-iKM and the original iKM methods to esti-
mate the number of patients at risk (nrisk) and num-
ber of patients censored at each interval (ncensor). As
shown in Table 5, if 6-interval information was used, both
modified-iKM and original K-M would produce similar

Table 3 Hypothesis testing using log-rank test with true IPD versus with reconstructed IPD based on data points extracted using
different software

Results based Results based on reconstructed IPD

on true IPD IPDfromKM DigitizeIt ScanIt

HR(SE) p-value HR(SE) p-value HR(SE) p-value HR(SE) p-value

Simulated curves:

1 0.47(0.12) <0.001 0.48(0.13) <0.001 0.47(0.12) <0.001 0.47(0.12) <0.001

2 0.40(0.18) <0.001 0.40(0.18) <0.001 0.40(0.18) <0.001 0.40(0.18) <0.001

3 0.70(0.12) 0.002 0.70(0.12) 0.003 0.71(0.12) 0.003 0.70(0.12) 0.002

4 1.06(0.16) 0.735 1.06(0.16) 0.727 1.05(0.16) 0.761 1.05(0.16) 0.780

5 0.76(0.13) 0.028 0.77(0.13) 0.044 0.77(0.13) 0.039 0.77(0.13) 0.037

6 0.48(0.16) <0.001 0.48(0.16) <0.001 0.48(0.16) <0.001 0.48(0.16) <0.001

Real trial example:

1 0.49(0.22) 0.068 0.48(0.41) 0.064 0.46(0.38) 0.041 0.45(0.41) 0.041

2 0.54(0.14) 0.014 0.54(0.26) 0.017 0.56(0.26) 0.020 0.53(0.26) 0.013

3 0.59(0.11) 0.005 0.58(0.19) 0.005 0.58(0.19) 0.005 0.59(0.19) 0.007

4 1.04(0.29) 0.871 1.06(0.26) 0.830 0.99(0.25) 0.959 1.03(0.26) 0.917

5 0.73(0.12) 0.040 0.72(0.15) 0.031 0.70(0.14) 0.019 0.72(0.15) 0.036

HR hazard ratio, SE standard error
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a

b
Fig. 5 Advantage of Tukey’s fence and “force monotonicity” in Stage 1
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Fig. 6 Results of accuracy assessment results using the plot() function

Fig. 7 Graphs reported by the survreport() function
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Fig. 8 Original K-M curves in the POLAR trial

estimations. However, if 11-interval information was used,
the modified-iKM can reliably produce n̂censor for each
interval due to its stability by adding the additional bound-
ary setup (Appendix Modified-iKM algorithm in details).
In contrast, the original iKM algorithm behaves abysmally
(i.e., negative estimated values). This demonstrates the
stability of the modified-iKM.

Figures returned for accuracy assessment or secondary
analysis
The IPDfromKM package provides the plot() function to
visualize the accuracy of IPD reconstruction (Fig. 6), in
addition to a formal testing. It also provides the survre-
port() function to conduct secondary survival analysis and
returns figures for the new analysis (Fig. 7).
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Table 4 Hazard ratio and 95% Bootstrap confidence interval (BCI) for the six simulated trials in Table 3

Results based Results based on reconstructed IPD

Curve on true IPD IPDfromKM DigitizeIt ScanIt

1 0.469 [0.369, 0.594] 0.487 [0.379, 0.627] 0.470 [0.366, 0.597] 0.474 [0.368, 0.593]

2 0.408 [0.288, 0.554] 0.410 [0.281, 0.570] 0.403 [0.278, 0.566] 0.407 [0.277, 0.546]

3 0.699 [0.557, 0.876] 0.706 [0.560, 0.873] 0.713 [0.561, 0.882] 0.707 [0.563, 0.871]

4 1.081 [0.768, 1.481] 1.072 [0.764, 1.491] 1.076 [0.758, 1.474] 1.064 [0.768, 1.470]

5 0.767 [0.602, 0.971] 0.780 [0.596, 0.996] 0.778 [0.589, 0.991] 0.773 [0.592, 0.990]

6 0.486 [0.345, 0.653] 0.485 [0.343, 0.665] 0.486 [0.349, 0.657] 0.483 [0.340, 0.653]

Original K-M curves in the POLAR trial
Figure 8 shows the K-M curves and estimation of median
survival and hazard ratio for the subgroups in the POLAR
trial.

Discussion on variability of test statistics
We show in Table 2 that the point estimates for themedian
OS and HR are close to reported values based on raw
data. Considering that the reconstructed IPD data may
not be independent and that data extraction may bring
up extra variation in the reconstruction process, it is of
interest to see how the variability of test statistics based
on the reconstructed IPD impacts hypothesis testing. We
evaluated this by (1) conducting hypothesis tests using
the reconstructed IPD from the five pairs of K-M curves

in the POLAR trial and six additional pairs of simulated
K-M curves (generated in “Simulation result” section), and
(2) constructing bootstrap confidence intervals for the six
simulated trials using both true and reconstructed IPDs.
Table 3 shows that our method, with reconstructed IPD,
reaches the same conclusion as that with the true IPD,
indicating that results based on reconstructed IPD are
reliable. Table 4 demonstrates that the variability of statis-
tics based on the reconstructed IPD is comparable to that
based on the true IPD.

Long-term commitment of the shiny application
We develop the IPDfromKM Shiny application to help
users extract data points from published K-M curves and
estimate parameters of interest using the modified-iKM.

Table 5 Stability of modified-iKM in comparison to the original iKM method

Modified-iKM Original iKM

Interval Lower Upper trisk nrisk ̂nrisk ̂ncensor ̂nrisk ̂ncensor

When 6-interval information is used:

1 1 19 0 200 200 6 200 6

2 20 43 10 177 177 3 177 3

3 44 63 20 133 133 41 133 41

4 64 87 30 64 64 15 64 17

5 88 117 40 24 24 3 24 2

6 118 132 50 7 7 5 7 7

When 11-interval information is used:

1 1 10 0 200 200 0 200 0

2 11 19 5 191 191 6 191 6

3 20 32 10 177 177 0 177 -3

4 33 43 15 153 153 3 153 3

5 44 53 20 133 133 20 133 19

6 54 63 25 100 100 21 100 22

7 64 77 30 64 64 3 64 6

8 78 87 35 39 39 11 39 11

9 88 103 40 24 24 0 24 -2

10 104 117 45 12 12 2 11 2

11 118 132 50 7 7 5 7 7
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Fig. 9 Contact the authors for questions regarding the Shiny application

The application is freely available at https://www.trialdesign.
org/one-page-shell.html#IPDfromKM and regularly
maintained. Figure 9 shows the procedure to contact the
authors should users have any questions. Specifically,
panel A of Fig. 9 shows the part of the app interface
where the “CONTACT” (upper right corner) can be
used to communicate with the authors. Upon clicking on

“CONTACT,” users will be able to fill out their contact
information and specific questions. Responses to users’
questions will be sent back to the users’ email addresses
provided in panel B of Fig. 9.

Additional output of using the app to reconstruct IPD for
two treatment groups

Fig. 10 Accuracy assessment using the IPDfromKM Shiny application

https://www.trialdesign.org/one-page-shell.html#IPDfromKM
https://www.trialdesign.org/one-page-shell.html#IPDfromKM
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Fig. 11 Secondary analysis using the IPDfromKM Shiny application
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Fig. 12 Download report using the IPDfromKM Shiny application
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