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Abstract

Background: Projection of future cancer incidence is an important task in cancer epidemiology. The results are of
interest also for biomedical research and public health policy. Age-Period-Cohort (APC) models, usually based on
long-term cancer registry data (> 20 yrs), are established for such projections. In many countries (including Germany),
however, nationwide long-term data are not yet available. General guidance on statistical approaches for projections
using rather short-term data is challenging and software to enable researchers to easily compare approaches is lacking.

Methods: To enable a comparative analysis of the performance of statistical approaches to cancer incidence
projection, we developed an R package (incAnalysis), supporting in particular Bayesian models fitted by Integrated
Nested Laplace Approximations (INLA). Its use is demonstrated by an extensive empirical evaluation of operating
characteristics (bias, coverage and precision) of potentially applicable models differing by complexity. Observed long-
term data from three cancer registries (SEER-9, NORDCAN, Saarland) was used for benchmarking.

Results: Overall, coverage was high (mostly > 90%) for Bayesian APC models (BAPC), whereas less complex models
showed differences in coverage dependent on projection-period. Intercept-only models yielded values below 20% for
coverage. Bias increased and precision decreased for longer projection periods (> 15 years) for all except intercept-only
models. Precision was lowest for complex models such as BAPC models, generalized additive models with multivariate
smoothers and generalized linear models with age x period interaction effects.

Conclusion: The incAnalysis R package allows a straightforward comparison of cancer incidence rate projection
approaches. Further detailed and targeted investigations into model performance in addition to the presented
empirical results are recommended to derive guidance on appropriate statistical projection methods in a given setting.
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Background
Projection of future cancer incidence is an important
task in cancer epidemiology. The results are of interest
also for biomedical research and public health policy. In
particular, cancer prevention and screening programs re-
quire reliable estimates of future cancer incidence to
allow informed decisions on their design and to facilitate
evaluations [1, 2]. Projections are often performed using
long-term data (> 20 yrs) from population-based cancer
registries [3]. For short-term data, there appears to be a
lack of guidance which statistical approach to choose.
The need to base projection models on relatively short-
term data is relevant e.g. for Germany, where aggregated
data of cancer incidence on a national level is only avail-
able from 1999 on, as well as for many countries with
newly established cancer registries. Even though it might
be challenging to give general guidance on which projec-
tion approach to choose, software enabling comparison
of multiple competing methods for a given research
question might prove useful, but flexible, extensive and
easy to use tools are missing.
A selection of previously applied projection models is

outlined in [4]. Relatively simple approaches assuming
constant rates were utilized [5, 6], as well as more com-
plex age-period (AP) models formulated as generalized
linear models (GLMs) with or without interaction effects
[7–9]. Clements et al. use generalized additive models
(GAMs) [10]. GAMs can include uni- or multivariate
smoothers in their linear predictors. An established
model class for incidence projections based on long-
term observation data are age-period-cohort (APC)
models, which additionally incorporate a cohort effect
[11, 12]. Even though projections of APC usually yield
robust results, the APC identification problem impairs
direct interpretability of single effects [13, 14].
Projection models are often fitted within a classical

maximum likelihood (ML) or restricted maximum likeli-
hood (REML) framework [15–17]. Alternatively, a Bayes-
ian framework may be used [18, 19]. Bayesian model
estimation can be implemented using Markov-Chain
Monte Carlo (MCMC) methods, which are computa-
tionally intensive. A recently developed computationally
far less demanding alternative is Integrated Nested La-
place Approximation (INLA) [20, 21].
GAMs usually incorporate splines to fit univariate

trends or tensor product smoothers for multivariate
trends (i.e. interactions between function of continuous
variables). In the classical frequentist framework, such
models can be fit e.g. using the mgcv-package in R [22].
Uni- and multivariate smoothers can directly be incor-
porated into the model formula, e.g. as splines or tensor
product smoothers.
Recently, a highly flexible Bayesian APC (BAPC)

model based on the INLA approach has been proposed

for future cancer incidence projections which assumes a
Poisson distribution of incidence counts [19]. Havulinna
et al. demonstrate that interactions between effects can
be modeled by specifying appropriate priors [18].
Given the lack of guidance on statistical modeling ap-

proaches to cancer incidence projection and the increas-
ing understanding across sciences that neutral
comparisons of statistical methods are needed [23–25],
we developed an R package which allows an integrated
comparison of model performance metrics in the above
described context. We thereby aim to facilitate an in-
formed choice of statistical models and the development
of methodological guidance. Due to the desirable flexi-
bility in modeling options and the probabilistic inter-
pretation of results in a Bayesian framework as well as
the computationally efficient implementation, we
emphasize the INLA approach. To demonstrate the
functionality of the new package we provide an extensive
empirical benchmarking analysis of a selection of poten-
tially applicable modeling approaches using observed
long-term data from three population-based cancer
registries.

Methods
Cancer registry data
Three low incident tumor sites/entities (brain tumors,
kidney cancer, melanoma) and four high incident en-
tities (lung, breast, colorectal, prostate) were selected
from three population-based cancer registries: SEER-9
[26], NORDCAN [27] and Saarland [28]. Incidence data
of patients below the age of 20 yrs. and older than 84
years (available only as aggregated data) were excluded
from analysis. Specific selection criteria are shown in
Table 1. Data was separately analyzed for males and fe-
males with few exceptions (prostate cancer: only male;
breast cancer: only female in the Saarland data, males
and females in SEER-9 and NORDCAN data). A repre-
sentative data structure of incidence and population
data, as also used in the incAnalysis package, is shown
in Suppl.-Tbl. 1. Cancer cases (incidence) for a given
year are stored in rows (most recent year in bottom
row) and each row is separated by age(−group) in col-
umns in increasing order from left to right.
From the Surveillance, Epidemiology, and End Results

(SEER) Program in the United States, SEER-9 cancer in-
cidence data (1973–2014) were accompanied by popula-
tion data, available in 1 year age groups.
NORDCAN data (1960–2015) comprise cancer inci-

dence data from Denmark, Finland, Iceland, Norway,
Sweden, Faroe Islands and Greenland. The data were re-
trieved from the NORDCAN website on 2018-08-01. In-
cidence data were available in 5 year age groups.
Population matrices were calculated from the person-
years at risk information.
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Cancer incidence data from Saarland (1970–2014), a
German federal state with a long-established cancer
registry, were obtained from the Saarland cancer registry
website on 2018-08-01 (5 yr age groups). Population data
were retrieved from the health report system of the fed-
eral government (up to 2012) und from the website of
Saarland for the years 2013/14 [29, 30].

Projection models
The incAnalysis R package (see details below in sec-
tion 3.2) was used to evaluate a number of increasingly
complex models (GLMs, GAMs, BAPC) using the
INLA framework. To describe the evaluated models,
we introduce the following notation: Y denotes ob-
served cancer incidence counts, N denotes population
size, AGE and PERIOD are the respective covariates.
The notation also corresponds to variable names used
in the R package. Age or age-group, respectively, are
indexed by i. Selected projections are shown in Suppl.-
Figs. 1 and 2.

Generalized linear models (GLMs)
GLMs are formulated using three components: (1) a
probability distribution from the exponential family, (2)
a linear predictor η = Xβ and (3) a link function g with
E(y) = μ = g−1(η). In all, except BAPC models, negative-
binomially distributed counts of tumor cases were
assumed.
The most simplistically structured GLM includes only

an intercept, η = β0. In R, this intercept-only model was
formulated as Y ~ offset (log(N)) (equivalent
to: Y ~ 1 + offset (log(N)).
Next, a GLM with age and period as covariates to-

gether with their interaction term was assessed: η = β0 +
β1age + β2period + β3age : period, corresponding to the R
formula Y ~ offset (log(N)) + AGE*PERIOD.

Generalized additive models (GAMs)
GAMs have a structure similar to GLMs, with the differ-
ence that smooth functions f s of covariates can be in-
cluded in the linear predictor (A: model matrix, θ:
parameter vector): g(μ) = A θ + f1(x1) + f2(x2) +….

Table 1 Selection details for analyzed tumor sites/entities for the three cancer registries and selected incidence data. −low, +high
incidence. 1: male/female; age 60 for SEER-9 and age group 60–64 otherwise

registry entity/site selection #cases1

1990 2014

SEER-9 Glioblastoma− HISTO3V: 9440 13/7 21/14

Kidney cancer− PRIMSITE: C649 35/23 99/45

Melanoma− PRIMSITE: C440–449 54/36 227/144

Lung and bronchial tumors+ PRIMSITE: C340–349 263/169 221/183

Breast cancer+ PRIMSITE: C500–509 4/404 2/845

Colorectal cancer+ PRIMSITE: C18–20 151/100 182/120

Prostate cancer+ PRIMSITE: C61.9 250 595

NORDCAN Brain, central nervous system− cancer: 340 194/192 299/309

Kidney− cancer: 290 182/118 343/158

Melanoma of skin− cancer: 310 182/157 551/447

Lung+ cancer: 180 929/411 906/900

Breast+ cancer: 200 9/1314 21/2877

Colorectal+ cancer: 590 638/551 1148/872

Prostate+ cancer:261 762 3878

Saarland Brain tumors [Gehirn] - loc: 191 2/2 8/2

Kidney cancer [Niere, sonst.u.n.n.bez.
Harnorgane] -

loc: 189 18/9 13/6

Melanoma [Bösartiges Melanom der Haut] - loc: 712 3/6 15/10

Lung, bronchial and tracheal tumors
[Luftröhre, Bronchien u. Lunge] +

loc: 162 109/14 86/46

Female breast tumors [Weibliche Brustdrüse] + loc: 174 75 107

Colorectal cancer [Dick- und Mastdarm] + loc: 153 + 154 47/49 59/36

Prostate cancer [Prostata] + loc: 185 36 95
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Splines might be used as smooth functions, or in the
case of INLA, specific Gaussian Markov Random Fields.
In the present analysis, B-splines were used as univariate
smoother for the age covariate and bs() from the splines
package can directly be included in the model formula: Y
~ offset (log(N)) + PERIOD+bs (AGE). Alterna-
tively, an random walk order 2 (rw2) model might be spe-
cified as Y ~ offset (log(N)) + PERIOD+f (AGE,
model = ‘rw2’).
To allow evaluation of models with multivariate tensor

product smoothers for age and period with INLA, we
used an ad-hoc solution applying a z-model (we acknow-
ledge that this is a non-standard appraoch and a more
detailed outline than in the scope of this article would
be useful before more widespread application). Tensor
spline interactions can be specified, e.g. by using the
function mgcv::te() for the classical model fitting ap-
proach (Y ~ offset (log(N)) + te (AGE,PERIOD)).
In R-INLA, te() is not directly usable in model formulas.
The z-model we used instead is an implementation of
classical random effects part of a mixed model (η =… +

Z z). The random effects design matrix is Z ¼

Z1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Zi

0
@

1
A for each cluster i which has q ∈ℕ+ ran-

dom effects. Z was calculated as the tensor product
smooth model matrix for marginal bases for age and
period model matrices A and P using mgcv::ten-
sor.prod.model.matrix() [31]. The ith row of
the resulting tensor product model matrix is calculated
as the Kronecker product of the ith rows of A and P.
Marginal bases were calculated as M-splines, using
splines2::mSpline() [32]. M-splines are non-
negative splines, which can be considered as a normal-
ized version of B-splines. A loggamma prior was speci-
fied for this model, with parameter values (a = 1, b =
0.005), the same values used as in [33]. The correspond-
ing R code is shown in the package vignette
vignette(‘incidence’).

Bayesian age-period-cohort models (BAPC)
APC models estimate the individuals’ age, birth cohort
and the period in which the event occurred [19]: ηij =
log(λij) = μ + αi + βj + γk with intercept μ, and age, period
and cohort effects αi, βj and γk. i (1 ≤ i ≤ I) denotes the
age group at time point j (1 ≤ j ≤ j), the cohort index
k depends on the age and period index as well as on the
age group and period interval width: k = j +M (I − i ). M
encodes the width of age groups as compared to period
intervals, e.g. for 5 yr age groups and yearly data, M is 5.
The model implemented in the BAPC package assumes

Poisson distributed data, includes the three random ef-
fects age, period, cohort (second-order random walk,
rw2) and an additional random effect (independent and
identically distributed, iid) to adjust for overdispersion.
Separate age, period and cohort effects are not identifi-
able due to the exact linear dependence of effects [19].

Performance metrics
Model performance was evaluated using three metrics:
coverage, bias and precision. Metrics were calculated per
age/age-group, sex and entity, and averaged (arithmetic
mean), yielding one aggregated value per entity, gender,
projection interval and projection models as a summary
statistic.
Coverage was calculated as the fraction of projections

lying within the 95% (equal tailed) credibility band. Bias
was set to 0 if the observed incidence count was equal to
the predicted, otherwise the ratio (observed-predicted)/
observed was computed. Posterior standard deviations
were used as a measure of precision.

Model performance
Evaluation of the predictive performance of models with
increasing complexity was performed as follows (see also
Fig. 1): the most current observed incidence data was
predicted, with the projection period starting n years
prior to this timepoint (n ∈ {2, 5, 10,15,20}). The observa-
tion period for model training preceded this timepoint.
In the presented analysis, 15 yrs. were chosen as observa-
tion period. For the evaluation of a 2 yr projection, e.g.
in the SEER-9 dataset, data of the year 2014 would be
predicted, using data from the 15 yrs. prior to 2012 for
model fitting.
Das was available in different aggregation types - as

age-groups for NORDCAN and Saarland data and for
each age for the SEER-9 data. In the latter case, individ-
ual age-years were used, i.e. no further aggregation was
applied.

R package incAnalysis
To facilitate further application and reproducibility, the R
package ‘incAnalysis’ was developed. It is publicly available
on http://github.com/mknoll/incAnalysis. The package
mainly builds on methods in the R packages BAPC [19],
mgcv [22] and R-INLA [ref: http://www.r-inla.org/]. Rep-
resentative analyses with stepwise explanations on how to
use the package are outlined in the accompanying vignette
in more detail: vignette(‘incidence’)in R. An overview of
the functionality and structure of the package is given in
Fig. 2.
A wide variety of approaches to project future cancer

incidence can be comparatively assessed using this pack-
age. Constant rates or counts simply projected into the
future, as well as GLMs and GAMs (both in the INLA
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and ML/REML framework, selected via the method par-
ameter) and BAPC models might be specified.
The package provides a class called incClass which

is instantiated with population and incidence data (data.-
frame with years in rows, the earliest available year in
the first row and age/age-group as columns with increas-
ing values from left to right) as well as the period used
for model training and the fitting period of interest (and
additional parameters). Different models are then added
to the newly created object with the following functions
which usually expect additional parameters, e.g. model
formulas and the respective class object: runFwProj()
for forward projection of constant rates or constant
counts, runGLM() for generalized linear models (using
INLA or an ML approach, specified by the method par-
ameter), runGAM() for GAMs, runInla() for any
INLA model and runBAPC() to run the BAPC model

[19]. evaluate() calculates the performance metrics,
which can be extracted as data.frame via metrics();
additionally, projections are plotted. pitHist() plots
Probability Integral Transform (PIT) histograms for all
INLA fitted models.

Results
Coverage
Coverages for the evaluated models are shown in Fig. 3
for an observation period of 15 yrs. and projection pe-
riods of 2, 5, 10, 15 and 20 yrs.
Importantly, most models yielded coverages below

95%, with smallest (< 25%) coverages for intercept only
models and highest coverages (> 75%) for BAPC models,
irrespective of the projection period. Variability of cover-
ages of BAPC projections is smaller in the SEER-9 data-
set as compared to NORDCAN and Saarland data.

Fig. 1 Overview of the analyzed cancer registry data, study design, model selection and evaluation metrics
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Coverage increased for AP models with linear age,
period and interaction effect for longer projection inter-
vals in all datasets. Models incorporating a univariate
smoother for age showed no clear median increase in
coverages for longer periods, variability, however,
increased.
Multivariate smoother models showed a decrease of

median coverages for longer projection intervals in the
SEER-9 data, in increase in the Saarland data and high
variability with no clear trend in the NORDCAN data.

Bias
Results of bias analyses are shown in Fig. 4. Negative
values correspond to higher predicted than observed

incidence counts (overestimation). For visualization pur-
poses, values <− 200 were set to − 200.
Several models show negative values. Absolute bias

increases with longer projection intervals for most
models in the SEER-9 and Saarland datasets.
Intercept-only models show mostly absolute median
bias values below − 100, except for 15 and 20 yr pro-
jections in the Saarland data. Univariate smoother
models show in most cases lower absolute bias as
GLMs with linear age, period and interaction effects.
Median absolute bias is smallest for the multivariate
smoother models in SEER-9 data for longer projection
intervals. Differences in median absolute bias between
all except intercept-only models are highest in the
SEER-9 dataset.

Fig. 2 The R package “incAnalysis”
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Precision
Precision is depicted in Fig. 5; median model values
range mostly between 0.5 and 5 for the SEER-9 data, 2
and 6 for the NORDCAN data and 0 and 4 in the Saar-
land dataset. Longer projection intervals yield lower pre-
cision for all but the intercept only model. Univariate
smoother models show higher precision as compared to
most additionally evaluated models. Variability in preci-
sion increases for longer projection intervals for the
BAPC models, and for the SEER-9 data, for univariate
smoother GAMs. For the other models, no clear trend
can be observed.

Discussion
Population-based cancer registry data are routinely used
to monitor cancer incidence at the population-level, to
evaluate screening and prevention programs, and to
identify areas where intensified medical research is
needed [4]. However, no consensus appears to exist on
which models to use for projections based on short-term
observational rate data in cancer epidemiology. System-
atic empirical evaluations of potentially applicable ap-
proaches using existing cancer registry data for
benchmarking appear sensible to obtain a better under-
standing of their operating characteristics and to ultim-
ately make informed methodological recommendations.

Fig. 3 Coverages of future projections after 2, 5, 10, 15 and 20 yrs. based on models with a 15 yr observation period. Dashed line: 95% coverage.
Int: intercept only model, lin + interact: linear age, period and interaction effects, age,bs: univariate smoother (B-spline) for age, splineTensor:
tensor product smoother (age, period), M-spline basis. GLMs, GAMs: neg-binomial distribution

Knoll et al. BMC Medical Research Methodology          (2020) 20:257 Page 7 of 11



To facilitate this idea, we introduced an R package
(incAnalysis) for an integrated evaluation of the ad-
equacy of different statistical approaches in this context.
We note that the package could in principle also be used
for projections of other types of rates than incidence
rates. In an extensive and systematic evaluation we dem-
onstrated its use. While the presented results may
already be informative for methodological guidance, we
believe that further detailed and targeted applications
would be helpful for the derivation of methodological
guidance by expert panels. Consensus on desirable (or
acceptable) operating characteristics would be sensible

prerequisite for the appraisal of individual statistical
modeling options.
In the reported empirical analysis only age(−groups)

between 20 and 84 were analyzed, as childhood tumors
constitute a biologically distinct group, are in general
rare and require reliable projections of birth rates. This
might impair the ability of models to obtain reliable pro-
jections; nevertheless it has been reported [34] that this
approach might decrease accuracy. Cancers in the age
group > = 85 were excluded to assure comparability be-
tween cancer registries (fixed age-group width required
for BAPC [gridFactor]).

Fig. 4 Bias of future projections after 2, 5, 10, 15 and 20 yrs. based on models with a 15 yr observation period. Negative values indicate overestimation
of cancer incidence. Bias values smaller than − 200 were set to − 200. Dashed line: no bias (0%). int: intercept only model, lin + interact: linear age,
period and interaction effects, age,bs: univariate smoother (B-spline) for age, splineTensor}: tensor product smoother (age, period), M-spline basis.
GLMs, GAMs: neg-binomial distribution
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Model performance was assessed by evaluating cover-
age, bias and precision of projections. Alternative met-
rics for model evaluation described are e.g. the
Continuous Ranked Probability Score (CPRS) as used
e.g. in [19] or the evaluation of PIT histograms. The lat-
ter can be easily obtained from INLA fitted objects, and
further metrics as the CPRS can be easily calculated
using the data provided by the incAnalysis package.
As the least complex model, intercept only models

were evaluated. As expected, only small coverages (<
25%) could be expected as cancer occurrence is usu-
ally highly dependent on age. An intercept only
model does not take the age into account (change in
the distribution of age over calendar time), and thus,

these models can hardly be recommended for cancer
incidence projection, especially over a longer period.
GLMs with linear age, period and their interaction ef-

fect were evaluated as next, more complex model types.
Performance, however, was generally poor. To achieve a
potentially even better fit, a model with a univariate
smoother for age was analyzed, as the latter is a biologic-
ally highly relevant covariate for cancer incidence. B-
splines, created with splines::bs() were incorpo-
rated into the model formula. An alternative would be
the specification of a Gaussian Markov Random Field
structure for smoothing, e.g. a second order random
walk.

Fig. 5 Precision of future projections after 2, 5, 10, 15 and 20 yrs. based on models with a 15 yr observation period. Transformed averaged posterior
standard deviations are shown. Int: intercept only model, lin + interac: linear age, period and interaction effects, age,bs: univariate smoother (B-spline)
for age, splineTensor: tensor product smoother (age, period), M-spline basis. GLMs, GAMs: neg-binomial distribution
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Next, multivariate smoothers (tensor product smoothers)
for age and period were included into the model, using a z-
model in INLA. For classical ML/REML models, such effects
can easily be included in the models by using the mgcv::
te() function. The latter cannot be directly fit with
INLA::inla(). Even though the mgcv::ginla() func-
tion was made available recently (which allows to obtain pos-
terior distributions of effects directly from GAMs fitted with
mgcv), the INLA package is not directly utilized by mgcv,
and thus projections are not as straight-forward as with the
z-model. Coverage is higher as compared to univariate
smoother models, but is less stable for long term projections
as compared to BAPC models.
Finally, the BAPC model was evaluated and turned out

to be among the best performing for all evaluated par-
ameter combinations. The additional two effects (cohort
and overdispersion adjustment effect) seem to be espe-
cially important for short-term projections, as differ-
ences to most other models except multivariate
smoother models decrease for longer intervals.

Conclusions
The incAnalysis R package allows a straightforward
comparison of key operating characteristics of statistical
approaches to cancer incidence projection. Our empir-
ical analyses of a selection of potentially applicable ap-
proaches suggest that (i) projections of rate data using
short term data yields robust high coverage at the cost
of low precision for BAPC, (ii) age-period GLMs with
interaction term mostly yield better results for longer
projection intervals (> 10 yrs), (iii) GAMs using tensor
product smooth models (age, period) constitute a rea-
sonable alternative to classical GLMs, and (iv) intercept-
only models may at best be useful only for short-term
projections (< 5 yrs). Further detailed and targeted inves-
tigations into model performance seem advisable to
make recommendations about appropriate statistical
projection methods in a given setting.
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