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Abstract

Background: Studies based on high-quality linked data in developed countries show that even minor linkage
errors, which occur when records of two different individuals are erroneously linked or when records belonging to
the same individual are not linked, can impact bias and precision of subsequent analyses. We evaluated the impact
of linkage quality on inferences drawn from analyses using data with substantial linkage errors in rural Tanzania.

Methods: Semi-automatic point-of-contact interactive record linkage was used to establish gold standard links
between community-based HIV surveillance data and medical records at clinics serving the surveillance population.
Automated probabilistic record linkage was used to create analytic datasets at minimum, low, medium, and high
match score thresholds. Cox proportional hazards regression models were used to compare HIV care registration
rates by testing modality (sero-survey vs. clinic) in each analytic dataset. We assessed linkage quality using three
approaches: quantifying linkage errors, comparing characteristics between linked and unlinked data, and evaluating
bias and precision of regression estimates.

Results: Between 2014 and 2017, 405 individuals with gold standard links were newly diagnosed with HIV in
sero-surveys (n = 263) and clinics (n = 142). Automated probabilistic linkage correctly identified 233 individuals
(positive predictive value [PPV] = 65%) at the low threshold and 95 individuals (PPV = 90%) at the high
threshold. Significant differences were found between linked and unlinked records in primary exposure and outcome
variables and for adjusting covariates at every threshold. As expected, differences attenuated with increasing threshold.
Testing modality was significantly associated with time to registration in the gold standard data (adjusted hazard ratio
[HR] 4.98 for clinic-based testing, 95% confidence interval [CI] 3.34, 7.42). Increasing false matches weakened the
association (HR 2.76 at minimum match score threshold, 95% CI 1.73, 4.41). Increasing missed matches (i.e., increasing
match score threshold and positive predictive value of the linkage algorithm) was strongly correlated with a reduction
in the precision of coefficient estimate (R2 = 0.97; p = 0.03).

Conclusions: Similar to studies with more negligible levels of linkage errors, false matches in this setting reduced the
magnitude of the association; missed matches reduced precision. Adjusting for these biases could provide more robust
results using data with considerable linkage errors.
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Background
A growing number of demographic and epidemiological
research studies are conducted using linked datasets from
multiple sources [1]. In the absence of unique identifiers,
record linkage – the matching of an individual’s records
between two or more data sources [2, 3] – often relies on
a set of personal identifiers (e.g., names, address, date of
birth) that are reported with error or are dynamic (e.g.,
name or residence changes). Errors arising during the
linkage process because of imperfect identifiers can result
in two types of linkage errors: false matches (records of
two different individuals are erroneously linked) and
missed matches (records belonging to the same individual
are not linked). These linkage errors have been shown to
impact the bias and precision of subsequent analyses
[4, 5]. Even at error rates < 1%, false matches typically
weaken associations between variables captured in
different datasets and bias coefficients toward a null
association [5] while missed matches result in a
decreased analytic sample size and thus statistical
power, and potentially underestimate exposures and
outcomes of interest [6, 7]. Globally, there is a lack of
guidance on how to measure the impact of linkage
errors on analyses of linked data [8, 9]. However, the
few studies that exist are predominantly conducted in set-
tings with very low linkage errors, such as the United
Kingdom, United States, and Australia [10, 11]. Whether
and how analyses are affected by linkage errors in settings
with lower data quality and therefore more substantial
linkage errors, such as sub-Saharan Africa, remains
unknown.
A recent Wellcome Trust report detailed how record

linkage adds to the value of medical research in low- and
middle-income countries [1]. A unique challenge exists in
these settings, particularly in sub-Saharan Africa, where
there is an overall lack of electronic data available for link-
age and relatively poor quality of variables that could be
used by a linkage algorithm. Because of this, very few rec-
ord linkage projects have been undertaken throughout the
region [12–15], and the absence of gold standard linked
data complicate those that have used automated linkage. In
a rural ward of ~ 35,000 residents in northwest Tanzania
with a history of community-based HIV surveillance, we
developed and implemented a novel approach to record
linkage, which we term point-of-contact interactive record
linkage (PIRL) [16–18]. PIRL, described later in more detail,
is a semi-automatic record linkage process that incorpo-
rates human inspection of potential matches identified by a
probabilistic linkage algorithm whilst in the presence of the
individual whose records are being linked, which contrasts
with a more conventional approach where record linkage is
done automatically with no human involvement. PIRL has
the advantage that uncertainty surrounding identities can
be resolved during a brief interaction whereby extraneous

information (e.g., household membership) can be referred
to as an additional criterion to adjudicate between multiple
potential matches. Largely due to the interaction with those
who are the target of the linkage and the ability to perform
repeated searches through the database, PIRL has been
shown to outperform automated linkage for identifying
matches, which have been affected by the substantial data
quality issues in similar settings [18]. The gold standard
linked database created by PIRL allows for the first known
attempt to evaluate the impact of linkage errors on subse-
quent analyses in a setting with substantial linkage errors.
The linked data infrastructure created by PIRL

includes gold standard links between HIV serological
survey data and manually digitised medical records from
three clinics serving the surveillance population, two of
which offer HIV testing services while the third enrols
HIV-positive individuals into care. As an illustrative
example to evaluate linkage errors, we tested whether
individuals who receive their first HIV diagnosis during
a village-based HIV serological survey enrol for HIV care
services quicker than those who receive their first HIV
diagnosis in a clinic that also offers HIV testing. For this
analysis, we first assessed the relationship between diag-
nosis location and time to enrolment into HIV care in
the gold standard linked data. We then conducted auto-
mated record linkage, a process that included no human
interaction or involvement like PIRL, to create four test
datasets based on varying levels of match score thresh-
old. Linkage errors, including false and missed matches,
were quantified in each test dataset, overall and by indi-
vidual characteristics. Finally, we determined whether
and how linkage errors impacted the analysis of the
primary research question by comparing the characteris-
tics of linked and unlinked records and the bias and
precision of regression coefficients.

Methods
Data sources
The Kisesa observational HIV cohort study was estab-
lished in 1994 and is located in a rural ward in the Magu
district of Mwanza region in northwest Tanzania [19].
The study includes multiple rounds of health and demo-
graphic surveillance system (HDSS) surveys that cover
the entire population of ~ 35,000 residents, and multiple
rounds of population-based HIV sero-surveys, in which
adults aged 15 years or older living in the Kisesa HDSS
study area are invited to attend temporary village-based
clinics for a personal interview and HIV test. A
government-run health centre serving the HDSS popula-
tion includes an HIV testing and counselling clinic
(HTC), an antenatal clinic (ANC) offering HIV testing,
and an HIV care and treatment centre (CTC). For the
HTC and ANC, we developed electronic databases and
digitised the paper-based logbooks using a double-entry

Rentsch et al. BMC Medical Research Methodology          (2018) 18:165 Page 2 of 9



system where two different fieldworkers independently
capture each book, and any discrepancy between fields
were reconciled in a third cleaning stage. The CTC data-
bases have been fully digitised, and data clerks regularly
update and run data checks on these data. Ethical ap-
proval was obtained from the National Institute for
Medical Research, Tanzania (reference no. NIMR/HQ/
R.8c/Vol.II/436 and MR/53/100/450), and the London
School of Hygiene and Tropical Medicine (Project ID
#8852). Informed written consent (including consent to
link data sources in the PIRL study) was obtained from
all participants. Parental written consent was addition-
ally obtained for participants < 18 years of age.

Linkage
Participants’ records from all sero-survey rounds were
cross-referenced with their HDSS identifiers as part of
the identification process during the survey interview.
Records from the three clinics were linked to the HDSS
database using PIRL, which has been described else-
where [17, 18]. Briefly, as individuals arrived to any of
the three clinics and consented to be in the study, field-
workers entered their personal and residence details into
specialised computer software [16], which used a prob-
abilistic linkage algorithm to search the HDSS database.
The algorithm used to search for possible matches was
based on the Fellegi-Sunter record linkage model [2, 3],
and incorporated the following data fields: up to three
names for the individual; sex; year, month, and day of
birth; village and sub-village; up to three names of a
household member; and up to three names for the
ten-cell leader of the patient. A ten-cell leader is an indi-
vidual who acted as a leader for a group of ten house-
holds and these positions have been relatively stable
over time. While searching through potential matches,
the fieldworker could view the full list of household
members associated with each HDSS record as an add-
itional step to adjudicate true matches. The fieldworker
then interacted with the patient to identify which HDSS
record(s), if any, were a true match.
Multiple data checks were performed within the soft-

ware and on the back-end database to ensure the links
made with PIRL were true matches. First, the software
displayed warning messages to the fieldworkers if they
attempted to match to a record that had an absolute dif-
ference in birth year of > 10 years, or the entered names
did not agree with the names listed on the selected
HDSS record as measured by a Jaro-Winkler string com-
parator [20]. The linkage algorithm allowed for all pair-
wise comparisons between listed names on clinic and
HDSS records because the order of names is relaxed in
this setting and HDSS records only hold up to two
names while other data sources often store more than
two names. Further, the lead author performed periodic

and manual, back-end inspection of the data to verify
the matches made in the field. These data integrity
checks flagged individuals who were matched to
multiple HDSS records with large age differences (> 10
years), of conflicting sex, within the same household, or
with overlapping household residency episodes in which
one record’s start date occurred before another record’s
end date. Over the study period, eight PIRL matches
were deemed unlikely and deleted.
Using links made during the sero-survey and PIRL as

the gold standard, we performed automated probabilistic
record linkage using the same algorithm used in the
PIRL software but limited to identifiers collected in the
sero-survey and clinic databases. Automated record link-
age has been well described [21–25]. Briefly, a match
score (i.e., the weighted likelihood a record-pair is a link
or non-link) was calculated for all pairwise comparisons
between the patient registry and the HDSS database.
The HDSS record with the highest match score was
selected for each record in the patient registry. When
performing automated linkage, a match score threshold
is selected to determine what constitutes a link versus a
non-link. The placement of the threshold can be a mat-
ter of trial and error [26]. Additionally, a match score is
not a standardised metric and can be greatly influenced
by the number of identifiers used in the linkage algo-
rithm. To show how the impact of linkage errors on
subsequent analyses were affected by the placement of
the match score threshold, we created separate analytic
test datasets at various thresholds based on percentiles
of the distribution of match scores, rather than absolute
scores, among true matches. By selecting thresholds
based on percentiles and not absolute scores, our find-
ings may be more generalizable to other settings. In this
sample, match scores among true matches ranged from
− 21 to 61. We created four analytic datasets based on
the following thresholds: (a) all matches above the mini-
mum match score (threshold = − 21), (b) 25th percentile
(low threshold = 13), (c) 50th percentile (medium thresh-
old = 24), and (d) 75th percentile (high threshold = 35).
Higher thresholds represent more conservative defini-
tions on what constituted a true match. In cases where
matches were missed (i.e. the match score for a true
record-pair fell below a particular threshold), these data
were not included in the analytic dataset, thereby redu-
cing the sample size of the dataset. The PIRL links made
between the CTC and HDSS databases were then used
for the entire sample to identify those who registered for
HIV care.

Analytic sample
We included all individuals with a gold standard link
who received their first positive HIV diagnosis in the
sero-survey, HTC, or ANC between December 2014 and
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October 2017. Individuals were excluded if they were
younger than 15 years (to be consistent with the 15-year
age limit in the sero-survey), had evidence of a previous
positive HIV diagnostic test or registered for HIV care
prior to their HIV test (repeat testers), or reported resi-
dence outside the HDSS area or were not seen in the
2016/17 HDSS round (non-residents). Repeat testers and
non-residents were excluded because these groups are
likely to achieve the outcome (registered for HIV care)
at different rates than individuals newly diagnosed with
HIV and residents. We extracted demographic and
spatial characteristics including sex, age, rurality of
sub-village (rural, peri-urban, or urban), whether the
sub-village of residence had a paved road, and geodesic
distance between an individual’s household and the
CTC.

Statistical analyses
Chi-square and Fisher’s exact tests were used to assess dif-
ferences between individuals who were diagnosed with
HIV by testing modality, i.e. in the community-based
sero-survey versus walk-in clinic (either HTC or ANC)
during the study period in the gold standard data. At each
match score threshold, we classified links made by the au-
tomated linkage as true, false, or missed matches and
compared characteristics between these groups using
standardised differences [27]. Standardised differences of
0.2, 0.5, and 0.8 represented small, moderate, and large
standardised differences, respectively, comparing true
matches with false and missed matches [28]. Cox propor-
tional hazards regression models were used to compare
HIV care registration rates by testing modality (sero-sur-
vey vs. clinic) in each dataset created by the automated
linkage. Individuals were censored at first CTC visit,
death, or 90 days after positive HIV diagnosis. Models
were adjusted for age, sex, rurality of sub-village, whether
the sub-village had a paved road, and distance to the CTC.
We evaluated for bias in precision by comparing regres-
sion coefficients and standard errors of the primary expos-
ure variable (testing modality) in the gold standard data
with those obtained at each selected match score thresh-
old. Statistical analyses were performed using SAS version
9.4 (SAS Institute Inc., Cary, NC, USA).

Results
Gold standard links
During the study period, 263 and 142 individuals with
gold standard links received their first positive HIV diag-
nosis in the sero-survey and clinics, respectively (total
n = 405). Among clinic patients, 126 (89%) HIV diagno-
ses occurred in the HTC and the remaining 16 (11%)
diagnoses were made in the ANC. Participants diag-
nosed in the sero-survey were more likely to be older,
from more rural areas, and reside further from the CTC

than those who were diagnosed in a clinic (all p < 0.02)
(Table 1). Over half (n = 75 [53%]) of individuals diag-
nosed in a clinic subsequently registered for HIV care by
the study cut-off date, compared to 42 (16%) of those
diagnosed in the sero-survey (p < 0.0001).

Automated linkage
Most identifiers used by the linkage algorithm were
complete or nearly complete in the sero-survey and
clinic databases, including two names, year of birth, sex,
village, and sub-village information (all ≥99.3%
complete) (Table 2). A majority (72%) of sero-survey re-
cords also included two names of another household
member, 48% included two names of the household’s
ten-cell leader, and 13% had a third name for the indi-
vidual. Most (89%) clinic records held information on a
third name for the individual, > 75% up to two names of
the household’s ten-cell leader, and 12% included two
names for another household member. The HDSS data-
base had high levels of completeness (all > 99%) on all
identifiers used by the linkage algorithm except for a
third name, which is not collected in the HDSS system.
Of the 405 gold standard links, automated linkage cor-

rectly identified 248 records, falsely matched 157
records, and missed 157 records at the minimum match
score threshold. This resulted in a sensitivity and posi-
tive predictive value (PPV) of 61% and a false match rate
of 39% (Fig. 1). At the high match score threshold, auto-
mated linkage correctly identified 95 records, falsely
matched 11 records, and missed 310 records, which
equated to a sensitivity of 23%, PPV of 90%, and false
match rate of 10%.

Linked sample characteristics
The frequency of the primary exposure variable, the
location in which an individual received their first posi-
tive HIV diagnostic test, differed between true, false, and
missed matches at all match score thresholds Table 3.
Compared to linked true matches, false and missed
matches were more likely to receive their HIV-positive
test in a clinic than the sero-survey. Increasing the
threshold minimised but did not eliminate the differ-
ences between true matches and false matches.
The frequency of the outcome variable, registering at

the CTC, also differed significantly between true
matches and false matches, particularly at lower match
score thresholds. Compared to linked true matches, false
matches were less likely to have registered at the CTC at
every match score threshold except for the high
threshold.
There were also differences between true, false, and

missed matches with respect to variables used as adjust-
ing factors. False matches were more likely to be youn-
ger, from more rural areas, and reside at greater
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distances from the CTC. There were minimal differences
between true and false matches by sex in analytic samples
created using lower match score thresholds; however, false
matches were more likely than true matches to be male at
the medium and high match score thresholds.

Modelled estimates
There was a significant association between testing mo-
dality and time to registration at the CTC in the linked
gold standard data in favour of those receiving their
diagnosis at a walk-in clinic (adjusted hazard ratio [HR]
4.98, 95% confidence interval [CI] 3.34, 7.42) (Table 3).

Bias was present at each match score threshold in the auto-
mated linked datasets. The significant positive association
was still found, though much attenuated, at the minimum
threshold (HR 2.76, 95% CI 1.73, 4.41) and low threshold
(HR 3.32, 95% CI 2.00, 5.51) (Fig. 2). The association was
not found at the medium threshold (HR 2.37, 95% CI 0.96,
5.87) nor the high threshold (HR 1.70, 95% CI 0.17, 16.87).
An increase in the number of missed matches from the
analytic dataset (i.e. increasing the match score threshold
and positive predictive value of the linkage algorithm) was
strongly correlated with a reduction in the precision of the
primary exposure coefficient (R2 = 0.97; p = 0.03).

Table 1 Characteristics of patients in the analytic sample

Characteristic Sero-survey participants (n = 263) Clinic patients (n = 142) p-value

Clinic

ANC – 16 (11.3) –

HTC – 126 (88.7)

Sex

Female 173 (65.8) 98 (69.0) 0.5092

Male 90 (34.2) 44 (31.0)

Age, years

15–29 62 (23.6) 51 (35.9) 0.0222

30–39 96 (36.5) 53 (37.3)

40–49 59 (22.4) 22 (15.5)

50+ 46 (17.5) 16 (11.3)

Village

Igekemaja 27 (10.3) 14 (9.9) 0.0167

Ihayabuyaga 30 (11.4) 6 (4.2)

Isangijo 27 (10.3) 14 (9.9)

Kanyama 38 (14.5) 23 (16.2)

Kisesa 73 (27.8) 51 (35.9)

Kitumba 32 (12.2) 26 (18.3)

Welamasonga 36 (13.7) 8 (5.6)

Rurality of sub-village

Rural 140 (53.2) 55 (38.7) 0.0204

Peri-urban 54 (20.5) 39 (27.5)

Urban 69 (26.2) 48 (33.8)

Sub-village had paved road

Yes 109 (41.4) 70 (49.3) 0.1290

No 154 (58.6) 72 (50.7)

Distance from household to CTC, km

< 1 53 (20.2) 37 (26.1) 0.0162

1–1.9 58 (22.1) 45 (31.7)

2–4.9 60 (22.8) 29 (20.4)

5–11 92 (35.0) 31 (21.8)

Registered at CTC 42 (16.0) 75 (52.8) < 0.0001

Abbreviations: CTC - HIV care and treatment centre; ANC - antenatal clinic; HTC - HIV testing and counselling clinic
Note: all statistics are given in n (%); differences tested using chi-square

Rentsch et al. BMC Medical Research Methodology          (2018) 18:165 Page 5 of 9



Discussion
This paper provides original evidence that bias and pre-
cision in analyses using linked data are impacted by sub-
stantial linkage errors similarly to how they are impacted
by more negligible linkage errors. With the recent avail-
ability of gold standard linked data in this East African
setting, we asked a timely research question and assessed
how our conclusions would have changed if instead of
using gold standard linked data, we used automated rec-
ord linkage, a less resource-intensive but less accurate
form of record linkage. We evaluated the quality of au-
tomated linkage and identified potential sources of bias
by quantifying false and missed matches, comparing
characteristics between linked and unlinked data, and
comparing regression coefficients at various match score
thresholds in sensitivity analyses. High levels of linkage
errors in this setting (e.g. false match rates up to 40%

observed at the minimum threshold) introduced bias at
all match score thresholds. False matches reduced the
magnitude of the association between the tested expos-
ure and outcome while increasing numbers of missed
matches reduced the precision of these estimates, which
is comparable to analyses in settings with higher quality
data [5–7, 11, 29].
We used standardised differences to identify variables

that were more affected by linkage error and potential
sources of bias as was done in previous studies [30]. We
found strong evidence of selection bias based on who
was included in the analytic datasets since frequencies of
the primary exposure, outcome, and some adjusting var-
iables differed significantly between true, false, and
missed matches at all match score thresholds. Increasing
the match score threshold attenuated differences
between true and false matches but also exacerbated

Table 2 Completeness of matching identifiers in clinic data and demographic surveillance data

% records with complete information

Matching identifier Sero-surveys (n = 263) Clinic data (n = 142) HDSS data (n = 99,866)

First name 100.0% 100.0% 100.0%

Second name 100.0% 100.0% 100.0%

Third name 13.3% 88.7% –

Year of birth 100.0% 100.0% 99.4%

Sex 100.0% 100.0% 100.0%

Village 100.0% 99.3% 100.0%

Sub-village 100.0% 99.3% 100.0%

TCL first name 48.3% 91.5% 99.4%

TCL second name 48.3% 74.6% 99.4%

Household member first name 71.5% 11.3% 99.9%

Household member second name 71.5% 11.3% 99.9%

Abbreviations: HDSS - health and demographic surveillance system; TCL - ten-cell leader

Fig. 1 Sensitivity (Se), positive predictive value (PPV), and false match rate (False), by match score threshold. Notes: Se = linked records over N true
matches; PPV = true matches over N linked records; False = false matches over N linked records; or simply the inverse of PPV
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differences between true and missed matches. The
trade-off between false and missed matches when com-
paring characteristics between linked and unlinked data
has also been found in other settings with low levels of
linkage errors [31].
We found measurable bias in the regression coefficient

of the primary exposure at every match score threshold.
Selection bias is likely to have impacted the analyses
given that selection into the linked datasets was related
to both the exposure and outcome [32, 33]. Therefore,
conditioning or limiting the analyses to records that
were linked could therefore induce a protective relation-
ship between the exposure and outcome, as we found in
this analysis. One method to potentially correct for this
bias is to use multiple imputation to handle missing
values due to unlinked records [29], which could employ
the match weights from the linkage procedure to inform
priors during the imputation process [34, 35]. We also
found that the number of missed matches increased at
higher thresholds which resulted in a decreased analytic
sample size and thus statistical power as evidenced by

larger standard errors and wider confidence intervals
compared to lower thresholds. Our identification of bias
towards a null association with gains in precision at
these lower thresholds is substantiated by previous re-
search that showed similar trends in settings with min-
imal linkage errors [5, 29].
Our findings suggested the optimal point that bal-

anced trade-offs between false and missed matches (i.e.,
PPV and sensitivity) was at the minimum match score
threshold. However, optimisation in this context is in-
appropriate because there were large biases in the pri-
mary regression coefficient at this and all other match
score thresholds, which would have led to misleading in-
terpretations of the results. While the consequence of
optimisation in our primary analysis would have resulted
in a biased measure of the association between variables
found in different data sources, a potentially more ap-
propriate use of optimisation may have been to obtain a
count outcome from a single data source. The propor-
tion of individuals who registered at the CTC (outcome)
was 29% in the gold standard data and ranged between
17 and 19% in the automated linked datasets. Therefore,
if our research question was to obtain the proportion or
rate of individuals who registered at the CTC our con-
clusions would also have been meaningfully different at
every match score threshold. While optimisation was
possible with our data, we conclude there was no opti-
mal threshold that balanced trade-offs between PPV and
sensitivity as well as resulted in unbiased associations
between two variables or count outcomes of a single
variable.
A strength of this analysis was the access to

individual-level data collected in the PIRL software,
clinics, and sero-surveys. This information is often only
available to individuals performing the linkage and not
to researchers conducting analyses [36–39] and allowed
us to have full control of the automated linkage process
including data pre-processing to improve the quality of
the variables used in the algorithm. Most of the identi-
fiers used by the automated linkage algorithm had no or
very little missing data, including names, year of birth,

Table 3 Comparison of regression model diagnostics by match score threshold

Sample n β SE χ2 p HR (95% CI) PPV

Gold standard 405 1.61 0.2033 62.4 <.0001 4.98 (3.34, 7.42) –

Probabilistic linkage threshold, by match score threshold

minimum 405 1.02 0.2383 18.2 <.0001 2.76 (1.73, 4.41) 0.612

low 359 1.20 0.2579 21.7 <.0001 3.32 (2.00, 5.51) 0.649

medium 235 0.86 0.4621 3.5 0.0615 2.37 (0.96, 5.87) 0.745

high 106 0.53 1.1707 0.2 0.6501 1.70 (0.17, 16.87) 0.896

Abbreviations: n - sample size; β - primary exposure coefficient; SE - standard error; χ2 - chi-square; p - p-value; HR - hazard ratio; CI - confidence interval; PPV -
automated linkage algorithm’s positive predictive value
Note: All models adjusted for age, sex, sub-village, and distance from household to CTC

Fig. 2 Associations between primary exposure and outcome
variables by match score threshold
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sex, village and sub-village. While the algorithm embed-
ded in the PIRL software utilised a larger set of personal
identifiers, this restricted set of variables has been shown
to drive the success of the linkage algorithm in our PIRL
software [18].
There were some limitations. First, the magnitude of

the tested association between the selected exposure and
outcome was large in the gold standard data, which was
probably why the conclusions of the primary regression
analysis were similar in the automated linked datasets at
the lower match score thresholds even after measurable
attenuation in the estimate. It is likely that a more mod-
est association found in the gold standard data would
have resulted in a null association and therefore different
conclusions as has been found in other studies [31]. Sec-
ond, the relatively small sample size in the gold standard
data did not allow us to assess linkage bias at match
score thresholds higher than the 75th percentile.

Conclusions
Recently, there has been increased attention on how
errors arising during the linkage process impacts infer-
ences drawn from analyses using imperfectly matched
data, but predominately in high-income countries with
negligible linkage errors. We provided original evidence
that the impact of linkage quality is similar in a
low-income country setting with substantial linkage
errors. We plan to investigate methods that minimise or
correct for these biases and provide more robust results
using data with considerable linkage errors. Until these
analyses are complete, our results suggest that
researchers in similar settings desiring to perform prob-
abilistic record linkage should allocate resources toward
PIRL or similar system[s].

Abbreviations
ANC: Antenatal clinic; CI: Confidence interval; CTC: HIV care and treatment
centre; HDSS: Health and demographic surveillance system; HIV: Human
immunodeficiency virus; HR: Hazard ratio; HTC: HIV testing and counselling
clinic; PIRL: Point-of-contact interactive record linkage; PPV: Positive
predictive value

Acknowledgements
The authors thank the Kisesa HIV serological survey and record linkage field
teams for conducting the interviews and data collection, and the survey
participants. We also extend our gratitude to Redempta Natalis, the District
Medical Officer, for allowing this research.

Funding
This work constitutes PhD research funded by the UK Economic and Social
Research Council (ESRC). This study was supported by the Bill & Melinda
Gates Foundation grants to the ALPHA Network [OPP1082114], the MeSH
Consortium [OPP1120138], and the HIV Modelling Consortium [OPP1084364].
The Kisesa HDSS is a member of the INDEPTH Network and has received
funding from the Global Fund [TNZ-405-GO4-H, TNZ-911-G14-S]. KH is sup-
ported by the Wellcome Trust [103975/Z/14/Z]. The funders had no role in
the design of the study and collection, analysis, and interpretation of data
and in writing the manuscript.

Availability of data and materials
Due to ethical clearances, the datasets used and analysed during the current
study are not publicly available. The linkage algorithm requires personally
identifiable information, which our ethics certificate restricts from sharing.
However, applications to access portions of the data that can be
anonymised for collaborative analysis are encouraged and can be made by
contacting the project coordinator for the Kisesa HIV serological surveillance,
Mark Urassa (urassamark@yahoo.co.uk), or by contacting the ALPHA Network
team (alpha@lshtm.ac.uk; http://alpha.lshtm.ac.uk/).

Authors’ contributions
CTR, KH, GR, BZ designed the research study. CTR, MU, JT, GR, BZ collected
the data. CTR and KH analysed the data. CTR, KH, MU, JT, GR, and BZ wrote
the paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Ethical approvals for the 2016 HIV serological survey and the PIRL study were
obtained from the National Institute for Medical Research, Tanzania
(reference no. NIMR/HQ/R.8c/Vol.II/436 and MR/53/100/450), and the London
School of Hygiene and Tropical Medicine (Project ID #8852). Informed
written consent was obtained from all participants. Parental written consent
was additionally obtained for participants < 18 years of age.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Population Health, Faculty of Epidemiology and Population
Health, London School of Hygiene & Tropical Medicine, Keppel Street,
London WC1E 7HT, UK. 2UCL GOS Institute of Child Health, London, UK. 3The
TAZAMA Project, National Institute for Medical Research, Mwanza, Tanzania.
4MRC/Wits Rural Public Health and Health Transitions Research Unit
(Agincourt), School of Public Health, Faculty of Health Sciences, University of
the Witwatersrand, Johannesburg, South Africa.

Received: 8 June 2018 Accepted: 30 November 2018

References
1. Wellcome Trust: Enabling data linkage to maximise the value of public

Health Research data: full report. 2015.
2. Fellegi IP, Sunter AB. A theory for record linkage. J Am Stat Assoc. 1969;64:

1183–210.
3. Newcombe H, Kennedy J, Axford S, James A. Automatic linkage of vital

records. Science. 1959;130:954–9.
4. Baldi I, Ponti A, Zanetti R, Ciccone G, Merletti F, Gregori D. The impact of

record-linkage bias in the cox model. J Eval Clin Pract. 2010;16:92–6.
5. Moore CL, Amin J, Gidding HF, Law MG. A new method for assessing how

sensitivity and specificity of linkage studies affects estimation. PLoS One.
2014;9:e103690.

6. Harron K, Goldstein H, Wade A, Muller-Pebody B, Parslow R, Gilbert R.
Linkage, Evaluation and Analysis of National Electronic Healthcare Data:
application to providing enhanced blood-stream infection surveillance in
Paediatric intensive care. PLoS One. 2013;8:e85278.

7. Schmidlin K, Clough-Gorr KM, Spoerri A, Egger M, Zwahlen M, Swiss
National C. Impact of unlinked deaths and coding changes on mortality
trends in the Swiss National Cohort. BMC Med Inform Decis Mak. 2013;13:1.

8. Boyd JH, Ferrante AM, Irvine K, Smith M, Moore E, Brown A, Randall SM.
Understanding the origins of record linkage errors and how they affect
research outcomes. Aust N Z J Public Health. 2017;41:215.

9. Jorm L. Routinely collected data as a strategic resource for research:
priorities for methods and workforce. Public Health Res Pract. 2015;25:
e2541540.

Rentsch et al. BMC Medical Research Methodology          (2018) 18:165 Page 8 of 9

http://alpha.lshtm.ac.uk/


10. Bentley JP, Ford JB, Taylor LK, Irvine KA, Roberts CL. Investigating linkage
rates among probabilistically linked birth and hospitalization records. BMC
Med Res Methodol. 2012;12:149.

11. Bohensky MA, Jolley D, Sundararajan V, Evans S, Pilcher DV, Scott I, Brand
CA. Data linkage: a powerful research tool with potential problems. BMC
Health Serv Res. 2010;10:346.

12. Corbell C, Katjitae I, Mengistu A, Kalemeera F, Sagwa E, Mabirizi D, Lates J,
Nwokike J, Fuller S, Stergachis A. Records linkage of electronic databases for
the assessment of adverse effects of antiretroviral therapy in sub-Saharan
Africa. Pharmacoepidemiol Drug Saf. 2012;21:407–14.

13. Cawley C, Wringe A, Todd J, Gourlay A, Clark B, Masesa C, Machemba R,
Reniers G, Urassa M, Zaba B. Risk factors for service use and trends in
coverage of different HIV testing and counselling models in Northwest
Tanzania between 2003 and 2010. Tropical Med Int Health. 2015;20:1473-87.

14. Gourlay A, Wringe A, Todd J, Cawley C, Michael D, Machemba R, Reniers G,
Urassa M, Zaba B. Factors associated with uptake of services to prevent
mother-to-child transmission of HIV in a community cohort in rural
Tanzania. Sex Transm Infect. 2015;91:520-7.

15. Kabudula CW, Clark BD, Gómez-Olivé FX, Tollman S, Menken J, Reniers G.
The promise of record linkage for assessing the uptake of health services in
resource constrained settings: a pilot study from South Africa. BMC Med Res
Methodol. 2014;14.

16. Kabudula C, Rentsch CT, Catlett J, Beckles D, Masilela N, Żaba B, Reniers G:
PIRL - Point-of-contact Interactive Record Linkage software. https://doi.org/
10.5281/zenodo.998867; 2017.

17. Rentsch CT, Kabudula CW, Catlett J, Beckles D, Machemba R, Mtenga B,
Masilela N, Michael D, Natalis R, Urassa M, et al. Point-of-contact interactive
record linkage (PIRL): a software tool to prospectively link demographic
surveillance and health facility data [version 2; referees: 2 approved]. Gates
Open Res. 2018;1. https://doi.org/10.12688/gatesopenres.12751.2.

18. Rentsch CT, Reniers G, Kabudula C, Machemba R, Mtenga B, Harron K, Mee
P, Michael D, Natalis R, Urassa M, et al. Point-of-contact interactive record
linkage (PIRL) between demographic surveillance and health facility data in
rural Tanzania. International Journal for Population Data Science. 2017;2.

19. Kishamawe C, Isingo R, Mtenga B, Zaba B, Todd J, Clark B, Changalucha J,
Urassa M. Health & Demographic Surveillance System Profile: the Magu
health and demographic surveillance system (Magu HDSS). Int J Epidemiol.
2015;44:1851–61.

20. Winkler WE. String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. In: American Statistical Association
(proceedings of the section on survey research methods); 1990. p. 354–9.

21. Herzog TN, Scheuren FJ, Winkler WE. Data quality and record linkage
techniques: Springer Science & Business Media; 2007.

22. Sayers A, Ben-Shlomo Y, Blom AW, Steele F. Probabilistic record linkage. Int
J Epidemiol. 2015;45:954-64.

23. Christen P. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. New York: Springer Science &
Business Media; 2012.

24. Harron K, Goldstein H, Dibben C. Methodological developments in data
linkage: John Wiley & Sons; 2015.

25. Winkler WE. Overview of record linkage and current research directions. In:
Research Report Series. Washington, DC: US Bureau of the Census; 2006.

26. Newcombe H. Strategy and art in automated death searches. Am J Public
Health. 1984;74.

27. Austin PC. Balance diagnostics for comparing the distribution of baseline
covariates between treatment groups in propensity-score matched samples.
Stat Med. 2009;28:3083–107.

28. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed.
Hillsdale: Erlbaum Associates; 1988.

29. Harron K, Wade A, Gilbert R, Muller-Pebody B, Goldstein H. Evaluating bias
due to linkage error in electronic healthcare records. BMC Med Res
Methodol. 2014;14.

30. Ford JB, Roberts CL, Taylor LK. Characteristics of unmatched maternal and
baby records in linked birth records and hospital discharge data. Paediatr
Perinat Epidemiol. 2006;20:329–37.

31. Harron KL, Doidge JC, Knight HE, Gilbert RE, Goldstein H, Cromwell DA, van
der Meulen JH. A guide to evaluating linkage quality for the analysis of
linked data. Int J Epidemiol. 2017;46:1699–710.

32. Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D,
Poole C. Illustrating bias due to conditioning on a collider. Int J
Epidemiol. 2010;39:417–20.

33. Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to
selection bias. Epidemiology. 2004;15:615–25.

34. Goldstein H, Harron K, Wade A. The analysis of record-linked data using
multiple imputation with data value priors. Stat Med. 2012;31:3481–93.

35. Harron K, Goldstein H, Dibben C. Record linkage: a missing data problem. In:
Harron K, Dibben C, Goldstein H, editors. Methodological developments in
data linkage. London: John Wiley & Sons; 2015.

36. Randall SM, Ferrante AM, Boyd JH, Bauer JK, Semmens JB. Privacy-
preserving record linkage on large real world datasets. J Biomed
Inform. 2014;50:205–12.

37. Schmidlin K, Clough-Gorr KM, Spoerri A, Grp SNCS. Privacy preserving
probabilistic record linkage (P3RL): a novel method for linking existing
health-related data and maintaining participant confidentiality. BMC Med
Res Methodol. 2015;15:46.

38. Wartenberg D, Thompson WD. Privacy versus public health: the impact of
current confidentiality rules. Am J Public Health. 2010;100:407–12.

39. Boyd JH, Guiver T, Randall SM, Ferrante AM, Semmens JB, Anderson P,
Dickinson T, Simple Sampling A. Method for estimating the accuracy of
large scale record linkage projects. Methods Inf Med. 2016;55:276–83.

Rentsch et al. BMC Medical Research Methodology          (2018) 18:165 Page 9 of 9

https://doi.org/10.5281/zenodo.998867
https://doi.org/10.5281/zenodo.998867
https://doi.org/10.12688/gatesopenres.12751.2

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data sources
	Linkage
	Analytic sample
	Statistical analyses

	Results
	Gold standard links
	Automated linkage
	Linked sample characteristics
	Modelled estimates

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

