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Abstract 

Background:  Circulating microRNAs (miRNAs) are considered a hot spot of research that can be employed for 
monitoring and/or diagnostic purposes in coronary artery disease (CAD). Since different disease features might be 
reflected on altered profiles or plasma miRNAs concentrations, a combination of miRNAs can provide more reliable 
non-invasive biomarkers for CAD.

Subjects and methods:  We investigated a panel of 14-miRNAs selected using bioinformatics databases and current 
literature searching for miRNAs involved in CAD using quantitative real-time PCR technique in 73 CAD patients com‑
pared to 73 controls followed by function and pathway enrichment analysis for the 14-miRNAs.

Results:  Our results revealed three out of the 14 circulating miRNAs understudy; miRNAs miR133a, miR155 and 
miR208a were downregulated. While 11 miRNAs were up-regulated in a descending order from highest fold change 
to lowest: miR-182, miR-145, miR-21, miR-126, miR-200b, miR-146A, miR-205, miR-135b, miR-196b, miR-140b and, 
miR-223. The ROC curve analysis indicated that miR-145, miR-182, miR-133a and, miR-205 were excellent biomarkers 
with the highest AUCs as biomarkers in CAD. All miRNAs under study except miR-208 revealed a statistically significant 
relation with dyslipidemia. MiR-126 and miR-155 showed significance with BMI grade, while only miR-133a showed 
significance with the obese patients in general. MiR-135b and miR-140b showed a significant correlation with the Wall 
Motion Severity Index. Pathway enrichment analysis for the miRNAS understudy revealed pathways relevant to the 
fatty acid biosynthesis, ECM-receptor interaction, proteoglycans in cancer, and adherens junction.

Conclusion:  The results of this study identified a differentially expressed circulating miRNAs signature that can 
discriminate CAD patients from normal subjects. These results provide new insights into the significant role of miRNAs 
expression associated with CAD pathogenesis.
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Background
Cardiovascular diseases (CVDs) are one of the top causes 
of patients’ mortality all over the world [1, 2]. In Egypt, 
CVDs have also been the leading cause of premature 
death. Since 1990, they accounted for 46.2% of the over-
all mortality in Egypt in 2017 [3]. Coronary artery dis-
ease (CAD) is the most prevalent among CVDs, and its 
incidence is high apart of the socioeconomic status of the 
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patient [4]. These figures highlight the urge to discover 
new CVD biomarkers for the prevention and treatment 
of those diseases.

Currently, the common diagnosis of CAD is based on 
coronary angiography, an invasive technique visualiz-
ing the positional structure of the coronary artery and 
it is considered the gold standard for CAD diagnosis 
[5]. Owing to the known complications of invasive tech-
niques, the emergence of non-invasive and non-imaging 
techniques offers excellent opportunities [6].

MicroRNAs (miRNAs) are non-coding, single-stranded 
RNAs with 20–22 nucleotides in length [7]. Their pri-
mary function is to block mRNA translation to protein 
via binding to complementary sequences on messen-
ger RNA (mRNA). About 1,900 unique human miRNAs 
have been identified till now, and most of them inhibit 
and target gene expression for hundreds of genes [8]. In 
addition, it is estimated that miRNAs regulate about 60% 
of human protein-coding genes and each miRNA targets 
multiple mRNAs [9].

In the dilemma of discovering non-invasive biomarkers 
in CVDSs, major scientific endeavors have been turned 
to the identification of circulating miRNAs as diagnostic, 
prognostic, and therapeutic biomarkers in many diseases, 
including CAD [10].

Although several biological molecules, including pep-
tides, proteins, cytokines, and different metabolites, are 
currently being used as biomarkers for CVDs [11], circu-
lating miRNAs possess many attractive features of bio-
markers owing to their stability as they are not degraded 
by endogenous RNases in the circulation [12, 13].

Several studies have described the role of circulat-
ing miRNAs as early diagnostics biomarkers in CAD. 
At the same time, others demonstrated their prognos-
tic and therapeutic potential interventions in CAD [14]. 
So, circulating miRNAs are considered now a hot spot 
of research that can be employed for monitoring and/or 
diagnostic purposes of CVDs. Moreover, since different 
disease features might be reflected on altered profiles or 
plasma/serum miRNAs concentrations, a combination of 
miRNAs will provide more reliable biomarkers [15].

In this vicinity, our study investigated the differential 
expression of a panel of 14-miRNAs selected using bio-
informatics databases and current literature searching 
for miRNAs suspected to be involved in CAD pathogen-
esis and have putative binding sites for the most affected 
genes in CAD.

Subjects and methods
Study population
This study was a case–control study with 146 participants 
classified into two groups. The first group included 73 
patients presenting with symptoms or findings suggesting 

CAD by clinical examination and diagnostic tools (Echo 
and ECG) recruited from the cardiology clinic at the Suez 
Canal University Hospital (SCUH) from June 2020 till 
June 2021. All details on study subjects are available in 
Additional files 1, 2.

Selection of miRNAs under study using bioinformatics 
tools
The miRNAs under study were selected using bioinfor-
matics online tools as HMDD (http://​www.​cuilab.​cn/) 
[16], and miR2Disease (http://​www.​mir2d​isease.​org/) 
[17]. Also, we searched available literature for the most 
common miRNAs involved in CAD pathogenesis. All 
details related to miRNAs selected based on literature are 
available in Additional file 2.

Blood samples collection
Three ml of fresh venous blood was collected from all 
study participants in vacutainer tubes containing eth-
ylene diamine tetraacetic acid (EDTA) anticoagulant. 
The samples were centrifuged to separate plasma; 100 μl 
plasma was preserved in 500  μl Qiazole reagent. The 
plasma samples were stored at − 80℃ till further analysis.

MicroRNA extraction and quality analysis
Total RNA was isolated using Qiagen miRNeasy Mini 
kit (cat no 217004, QIAGEN, Hilden, Germany) follow-
ing the modified protocol supplied by the manufacturer. 
RNA concentration and purity were determined using 
NanoDrop 2000 1C spectrophotometer (NanoDrop 
Tech., Inc. Wilmington, DE, USA).

Circulating miRNAs relative expression analysis using 
quantitative real‑time PCR assay
The expression profile of 14 circulating miRNAs involved 
in CAD pathogenesis was assessed in the plasma of 
all study participants using Real Time-Polymerase 
Chain Reaction (RT-PCR). This was done via a two-
step approach as follows; (a) reverse transcription (RT), 
and (b) quantitative Real-Time PCR, where the pre-
mix of cDNA was used as a template for relative quan-
tification of the 14 human miRNAs under study, which 
are miR-21-3p, miR-126-5p, miR-145-5p, miR-155-3p, 
miR-208a-5p, miR-140-3p, miR-182-5p, miR-146a-5p, 
miR-223-5p, miR-196b-5p, miR-200b-3p, miR-205-5p, 
miR-133a-5p, and miR-135b-5p. All details related to RT 
and Real-Time PCR conditions are available in Additional 
file 2.

http://www.cuilab.cn/
http://www.mir2disease.org/
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Assessment of circulating miRNAs predictive significance 
as biomarkers
The contribution to the predictive capacity of the sig-
nificant miRNAs was analyzed using Receiver Oper-
ating Characteristic (ROC) curves to evaluate the 
diagnostic value of the used miRNAs as biomarkers for 
CAD pathogenesis. A p-value of < 0.05 was considered 
statistically significant.

Function and pathway enrichment analysis
The functional enrichment analysis was conducted 
using the software Database for Annotation Visualiza-
tion and Integrated Discovery (DAVID) (https://​david.​
ncifc​rf.​gov/) [18], where gene ontology (GO) consist-
ing of biological processes, cellular components, and 
molecular functions terms was searched for via Path-
way analysis on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database [108] for determining the 
pathways affected with differential miRNA expression 
and their target genes. More details on function and 
pathway enrichment analysis are available in Additional 
file 2.

MiRNA‐mRNA regulatory network construction
The targets of the homogenously statistically significant 
DEmiRNAs were predicted using miRTargetLink 2.0 
(Version 2.0, https://​ccb-​compu​te.​cs.​uni-​saarl​and.​de/) 
[19]. More details on miRNA-mRNA regulatory net-
work construction are available in Additional file 2.

Statistical analysis
Data were analyzed using R software version 3.3.2, 
GraphPad prism 7, SPSS software version 23.0, and 
PC-ORD ver. 5.0. We used the G*Power 3.1.9.2. with 
the specified study design (gene expression), alpha 
error = 0.05, an effect size = 0.74, and a total sample 
size of 146 was calculated that can give 80% power 
of the study http://​www.​gpower.​hhu.​de/A [20]. Fold 
change of the miRNAs was estimated using the LIVAC 
method (= 2−ΔΔCq) [21]. More details on statistical 
analysis are available in Additional file 2.

Results
Baseline characteristics and CAD risk factors 
among the study participants
Baseline data from all study participants in both control 
and CAD groups were presented in table (1). The age 
of participants showed an average of 38.34 ± 11.90 and 
54.93 ± 9.56 years in controls and study groups, respec-
tively. The CAD group showed significantly higher age 
(p < 0.001***) than the control group. Subjects aged over 

55 years were nearly five times prone to develop CAD 
(OR = 4.9, 95% CI: 2.2–10.8, p = 0.001) compared to 
subjects aged 18 to 55 years. The male gender was more 
represented in control and CAD groups with 52 (71.2%) 
and 55 (75.3%) patients in the control and the CAD 
group, respectively, with a non-statistical difference 
(p > 0.05) among the two groups. About CAD risk fac-
tors, smokers were significantly (p < 0.001***) higher in 
the CAD group with a total of 42 (57.5%) smokers com-
pared to the control group, which included 21 (28.8%) 
smokers. Smokers were nearly three times more prone 
to develop CAD (OR = 3.4, 95% CI: 1.7–6.7, p = 0.001) 
than non-smokers. Family history was found for 45 
(61.6%) patients compared to 25 (34.2%) subjects in 
the control group, with a highly significant difference 
between the two groups. CAD patients with positive 
family history were nearly three times more prone to 
develop CAD (OR = 3.1, 95%CI: 1.6–6.1, p = 0.001) 
than patients with negative family history. Concern-
ing dyslipidemia, patients were significantly higher in 
CAD group 59 (80.8%) compared to the control group 
3 (4.1%). Dyslipidemia was shown to be a significant 
risk factor in our CAD patients with nearly 98 times 
prone to develop CAD (OR = 98.3, 95%CI: 27–358.7, 
p = 0.001) compared to subjects with standard lipid 
profile. The average (± SD) BMI of the CAD group 
(30.16 ± 5.68) was significantly higher (p = 0.011) than 
the control group (27.69 ± 3.99), as shown in Table  1. 
CAD patients with obesity were nearly two times more 
to develop CAD (OR = 2.4, 95%CI: 1.2–4.8, p = 0.011) 
than non-obese patients.

Comorbidities, clinical and cardiovascular findings 
among CAD patients
Table 2 shows the comorbidities clinical and cardiovas-
cular findings among the CAD patients under study. 
Concerning comorbidities, there was no statistical sig-
nificance between CAD and either diabetes, hyperten-
sion, or ischemic heart disease (IHD) among our study 
population. Clinical examination revealed an aver-
age (± SD) for Body surface area (BSA) of 1.84 ± 0.18, 
Systole 127.33 ± 17.28, diastole of 81.37 ± 16.14, Left 
Ventricular Ejection Fraction (LVEF) of 46.58 ± 13.25. 
Grades of LVEF represented by grades from normal 
to severe were 22 (30.14%), 15 (20.55%), 24 (32.88%), 
and 12 (16.44%), respectively. Grade 3 was the highest 
with a statistically significant difference, as revealed by 
the Chi-squared test. The average (± SD) WMSI was 
recorded as 1.49 ± 0.44. The diastolic grade represented 
from normal to severe were represented by 4 (5.48%), 
42 (57.53%), 22 (30.14%), and 5 (6.85%), with a highly 
significant difference between grades.

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://ccb-compute.cs.uni-saarland.de/
http://www.gpower.hhu.de/A
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Circulating miRNAs relative expression analysis
The differential expression patterns of the 14 miRNAs 
under study (miR-21, miR-126, miR-133a, miR-135b, 
miR-140, MiR-145, miR-146a, miR-155, miR-182, miR-
196b, miR-200b, miR-205, miR-208a, miR-223) were 
investigated by qRT‐PCR and shown in (Fig.  1). Out of 
the 14 circulating miRNAs; miRNAs miR133a, miR155 
and miR208a were down-regulated in CAD patients 
compared to the control group and recorded a median 
(IQR) of 3.89 (− 6.85 to − 0.84), − 1.89(− 4.28 to − 0.62) 
and 0.12(− 3.96–3.47) respectively (Fig. 2).

However, when sorting the relative expression pat-
terns in the rest of the up-regulated 11 miRNAs in a 
descending order from highest fold change to lowest, 
the following order was obtained: miR-182 6.12 (4.12–
7.12), miR-145 5.12(3.12–6.76); miR-21 4.68(1.58–7.59); 
miR-126 3.75(1.35–7.58), miR-200b 3.71(0.80–6.62), 
miR-146A 3.62(1.15–7.62), miR-205 3.58(1.81–5.68), 
miR-135b 2.62(0.62–5.18); miR-196b 2.43(0.18–4.44), 
miR-140b 2.07(− 2.39–5.62) and, miR-223 1.71(− 0.39–
4.43). Differences were assessed by Mann–Whitney 
where, all miRNAs showed a highly significant differ-
ence between study and control groups, except miR-140b 
showed a non-significant difference (Fig. 2).

Circulating miRNAs predictive significance as biomarkers 
by ROC analysis
Receiver operating curve (ROC) including Area Under 
Curve (AUC) and probability levels were presented in 
Table 3. The ROC curve data from Table 3 indicated that 
miR-145, miR-182, miR-133a, miR-205, miR-21, miR-
155, miR-126, miR-146A, miR-200b, miR-135b revealed 
a highly significant (p < 0.001***) and valuable biomark-
ers with the highest AUCs of 0.959, 0.959, 0.863, 0.836, 
0.767, 0.767, 0.767, 0.767, 0.740, and 0.712 respectively.

Correlation analysis of circulating miRNAs differential 
expression levels and the CAD patients’ clinical 
characteristics
The 14 selected circulating miRNAs showed various 
distribution among all CAD patients. The Spearman’s 
rank correlation of the 14 selected plasma miRNAs in 
both control and CAD was evaluated and presented 
in Fig.  3. There were a strong association between 
some of the miRNAs understudy in CAD patients 
with Spearman’s correlation coefficient of 0.59 and 
more and a two-tailed significance p < 0.0001 (miR-
182 and miR-145: r = 0.820***; miR-182 and miR-
205: r = 0.693***; miR-145 and miR-205: r = 0.678***; 

Table 1  Baseline characteristics and CAD risk factors among the study participants

* , **, *** Significant at p < 0.05, < 0.01, < 0.001; ns, nonsignificant at p > 0.05
t independent t-test between study and control groups (parametric)
M Mann–Whitney test between study and control groups (non-parametric)

Variable Controls CAD cases P-value Odds ratio (95% CI)

Aget 38.34 ± 11.90 54.93 ± 9.56 < 0.001*** –

Age groupM

> 55 years 11 (15.1%) 34 (46.6%) < 0.001*** Reference

< 55 years 62 (84.9%) 39 (53.4%) 4.9 (2.2–10.8)

GenderM

Males 52 (71.2%) 55 (75.3%) > 0.05 (ns) Reference

Females 21 (28.8%) 18 (24.7%) 1.2 (0.6–2.6)

SmokingM

Smoker 21 (28.8%) 42 (57.5%) < 0.001*** Reference

Non-smoker 52 (71.2%) 31 (42.5%) 3.4 (1.7–6.7)

Family historyM

Positive 25 (34.2%) 45 (61.6%) < 0.001*** Reference

Negative 48 (65.8%) 28 (38.4%) 3.1 (1.6–6.1)

DyslipidemiaM

Dyslipidemia 3 (4.1%) 59 (80.8%) < 0.001*** Reference

No dyslipidemia 70 (95.9%) 14 (19.2%) 98.3 (27–358.7)

ObesityM

Obese 21 (28.8%) 36 (49.3%) 0.011* Reference

Non-obese 52 (71.2%) 37 (50.7%) 2.4 (1.2–4.8)

BMIt 27.69 ± 3.99 30.16 ± 5.68 0.003** –
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miR-146a vs. miR-182: r = 0.619***; miR-146a vs. miR-
145: r = 0.639***; miR-21 vs miR-145: r = 0.595***).

Considering the relation between miRNAs and 
the clinical data shown in Table  4, most of the stud-
ied miRNAs showed positive statistically significant 
relation with age except miR-140b, miR-196b, and 
miR-223. MiR-21, miR-126, miR-135b, miR-155, and 
miR-182 significantly linked with smoking. MiR-133a 
and miR-182 showed significant association with fam-
ily history. All miRNAs under study except miR-208 
revealed a statistically significant relation with dys-
lipidemia. MiR-126 and miR-155 showed significance 
with BMI grade, while only miR-133a showed signifi-
cance with the obese patients. MiR-140b, miR-182, 
miR-196b, and miR-208 revealed positive statistically 
significant relation with hypertension, while miR-21 
and miR-145 showed significance with ischemic heart 
disease. Finally, miR-135b and miR-140b showed a 
significant correlation concerning the Wall Motion 
Severity Index.

Function and pathway enrichment analysis of circulating 
miRNAs DE in CAD
For identifying all the pathways targeted by DE circu-
lating miRNAs in CAD, a pathway enrichment analysis 
based on annotated gene targets in GO was performed. 
The databases were used to assess the 14 miRNAs under 
study regulatory functions and for identifying the molec-
ular pathways for the miRNAs under study. We used the 
KEGG pathway database to perform the functional path-
way analysis. Enrichment of specific pathways revealed 
pathways relevant to the fatty acid biosynthesis, ECM-
receptor interaction, proteoglycans in cancer, and adher-
ens junction were found as shown in Fig. 4. The fatty acid 
biosynthesis and ECM-receptor interaction pathways 
were significantly enriched in CAD patients (Fig. 4B).

The GO biological processes related to CAD pathogen-
esis were found to be distinctly enriched in our analysis 
as the enriched pathways were associated with negative 
regulation of transport, regulation of cardiomyocyte dif-
ferentiation, negative regulation of cytokine production, 
regulation of muscle cell differentiation, regulation of 
smooth muscle cell proliferation, miRNA-mediated gene 
silencing by inhibition of translation and gene silencing 
by miRNA as represented in Fig. 5A.

To assure quality control and investigate associa-
tion analysis, the circulating miRNAs understudy was 
enriched using DisGeNET, collected and grouped into 
clusters as shown in Fig.  5B based on the top enriched 
clusters and their membership similarities where it iden-
tified cardiovascular morbidity as one of the top clusters 
among which our circulating miRNAs are involved.

MiRNA‐mRNA regulatory network construction
Our network analysis identified the relationship between 
the circulating miRNAs under study and their target 
genes. Our miRNA-target gene network comprised 14 
microRNAs and 295 target genes then filtered with a 
minimum of 3 shared targets that revealed a final of 87 
target genes using miRTargetLink 2.0 (https://​ccb-​web.​
cs.​uni-​saarl​and.​de/​mirta​rgetl​ink/​netwo​rk.​php) (Fig.  6). 
The circulating miRNAs understudy and their targeted 
genes were related to the biological processes known 
to be involved in CAD pathogenesis, such as fatty acid 
biosynthesis, ECM-receptor interaction, proteoglycans 
in cancer and adherens junction, negative regulation of 
transport, regulation of cardiomyocyte differentiation, 
negative regulation of cytokine production, regulation 
of muscle cell differentiation, regulation of smooth mus-
cle cell proliferation, miRNA-mediated gene silencing by 
inhibition of translation and gene silencing by miRNA.

Among the critical genes involved in CAD were the 
SMAD genes that are targeted by six of our circulating 

Table 2  Co-morbidities, clinical and cardiovascular findings 
among CAD Group represented as frequency (n, %)

*** Significant at p < 0.001; ns, nonsignificant at p > 0.05 using Chi-square test

Variable CAD Cases P-value

Diabetes

Diabetics 33 (45.2%) > 0.05 ns

Non-diabetics 40 (54.8%)

Hypertension

Hypertensive 32 (43.8%) > 0.05 ns

Non-hypertensive 41 (56.2%)

Ischemic heart disease

Ischemic heart disease 41 (56.2%) > 0.05 ns

Non-ischemic heart disease 31 (42.5%)

BSA 1.84 ± 0.18

Systole 127.33 ± 17.28

Diastole 81.37 ± 16.14

LVEF 46.58 ± 13.25

LVEF grade

Normal 22 (30.14%) < 0.001***
Mild 15 (20.55%)

Moderate 24 (32.88%)

Severe 12 (16.44%)

WMSI 1.49 ± 0.44

Diastolic function

Normal 4 (5.5%) < 0.001***
Mild 42 (57.5%)

Moderate 22 (30.1%)

Severe 5 (6.8%)

https://ccb-web.cs.uni-saarland.de/mirtargetlink/network.php
https://ccb-web.cs.uni-saarland.de/mirtargetlink/network.php
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miRNAs (miR-135b, miR145, miR146a, miR-155, 
miR182, and miR-205) for proteins involved in ECM 
remodeling, cell differentiation, endocardial and epicar-
dial EMT, neural crest migration, and maintenance of 
cardiovascular structure and function.

Finally, target genes regulated by the circulating miRNAs 
understudy were also correlated with the FOXO signaling 
pathway, such as FOXO1 (miR-21 and miR-135b), FOXO3 
(miR-21, miR-126, miR155, miR-182), and genes related 
to the adherens junction pathway, including EGFR (miR-
21, miR-133a, miR145, miR-146a and miR-155), TGFBR1 

(miR-21, miR145, miR-196b). Finally, several genes were 
involved in the proteoglycans in cancer pathway that regu-
lated MAPK1, FN1, FZD4, CTNNB1, RDX, MSN, SDC2, 
ACTG1, and IGF1R. The proteoglycans in cancer pathway 
modulate the dynamics and kinetics of various ligand-
receptor interactions that appear to play a role in CAD 
pathogenesis.

Fig. 1  The differential expression profile of circulating miRNAs under study in CAD (n = 73). Heat map illustrates the levels of all miRNAs under 
study (Log2fold change) in CAD patients. Color grades is shown within each row, with the highest expression corresponding to deep red and the 
lowest to deep blue

(See figure on next page.)
Fig. 2  The relative expression level of the circulating miRNAs under study in CAD. Fourteen miRNAs were analyzed: miR-21, miR-126, miR-133a, 
miR-135b, miR-140, miR-145, miR-146a, miR-155, miR-182, miR-196b, miR-200b, miR-205, miR-208a and miR-223. SNOR68 and RNU6B were used 
as an endogenous control. The values are represented as median (Q1 and Q3) using Whiskers and bars. All values were log-transformed with 
the control level sets at the Fold change equals 1. Mann–Whitney U test was used for comparison. *p-Values < 0.05 were considered statistically 
significant



Page 7 of 17Abdallah et al. BMC Cardiovascular Disorders          (2022) 22:286 	

Fig. 2  (See legend on previous page.)
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Discussion
Although enormous progress has been achieved to 
diagnose and treat CAD with invasive techniques, seri-
ous cardiovascular events occur to a large percentage of 
patients with this disease [22, 23]. These serious events 
can be partly referred to as unraveled molecular events 
that lead to CAD pathogenesis, most likely involving ath-
erosclerosis and genetic factors [23–25]. In the search for 
reliable biomarkers for CAD, circulating miRNAs bio-
stable nature, encouraged research in this area aiming to 

use it as non-invasive biomarkers [26]. Given a possible 
clinical transferability of our results, we have isolated cir-
culating miRNAs from EDTA-plasma, for investigating a 
panel of 14 circulating miRNAs shown in Table 1 relying 
upon the previously reported results for the sensitivity of 
the qRT-PCR for the extracted miRNAs from plasma [27, 
28].

In accordance with our results, Ren et  al., Tsai et  al., 
and Li et  al., [12, 29, 30] reported the up-regulation of 
miR-21 in CAD. This miR-21 up-regulation could be due 
to the associated effects of vascular wall-shear stress on 
the endothelium and oxidative stress [31–33] and due to 
the effect of the oscillatory shear stress that contributes 
to the vascular endothelium proinflammatory responses. 
Ren et  al., Liu et  al., Jansen et  al., Wagner et  al., and 
D’Alessandra et  al. [12, 34–37] showed upregulation of 
miR-126 in their CAD research. MiR-126 is responsible 
for endothelial cell repair and vascular development, and 
the endothelial cells is enriched with it [38, 39]. Xu et al. 
showed upregulation of miR-135b among CAD patients 
compared to controls. MiR-135b targets the MEF2C 
gene, which is mainly involved in cellular homeostasis, 
cell proliferation, and migration in the cardiovascular sys-
tem, which affects the cells phenotype [39–42]. Maciejak 
et al., Zhu et al., and Choteau et al. [43–45] documented 
upregulation of miR-145 in CAD. MiR-145 is abundant 
in vascular smooth muscles. Its expression is dysregu-
lated in atherosclerotic vessels [46]. Niculescu et al. and 
Dégano et al. [47, 48] reported the upregulation of miR-
146a among CAD patients. MiR-146a is implicated in 
both inflammation and lipid homeostasis [48, 49]. MiR-
146a functions by its inhibitory effect on oxidized low-
density lipoproteins and inflammatory response [50], 
thus affecting the pathogenesis of atherosclerosis [33]. 
Zhu et al. documented in their work the upregulation of 
miR-182 [51]. Xu et al. reported upregulation of miR-205 
resembling our findings. MiR-205 is recently discovered 

Table 3  ROC analysis for biomarker accuracy testing of 
circulating miRNAs under study

AUC: 0.5 or less = no discrimination, 0.7–0.8 = acceptable discrimination, 0.8–
0.9 = excellent discrimination, and more than 0.9 = outstanding discrimination

Significant P-values are in bold

Abbreviations: AUC​ Area under the curve, SE Standard error

miRNA AUC​

Area SEa Asymptotic Sig.b Asymptotic 
95% CI

Lower Upper

miR-145 0.959 0.023 < 0.001*** 0.913 1.000

miR-182 0.959 0.023 < 0.001*** 0.913 1.000

miR-205 0.836 0.043 < 0.001*** 0.751 0.921

miR-133a 0.863 0.040 < 0.001*** 0.784 0.942

miR-155 0.767 0.049 < 0.001*** 0.670 0.864

miR-126 0.767 0.049 < 0.001*** 0.670 0.864

miR-146A 0.767 0.049 < 0.001*** 0.670 0.864

miR-21 0.767 0.049 < 0.001*** 0.670 0.864

miR-200b 0.740 0.051 < 0.001*** 0.639 0.840

miR-135b 0.712 0.053 < 0.001*** 0.608 0.816

miR-196b 0.644 0.056 0.003** 0.534 0.754

miR-223 0.616 0.057 0.015* 0.505 0.728

miR-140b 0.589 0.058 0.063 ns 0.476 0.702

miR-208 0.616 0.057 0.015* 0.505 0.728

Fig. 3  Correlation Matrix between all circulating miRNAs under study
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to decrease cellular proliferation, hinders invasion, and 
increase apoptosis [52, 53]. Liu et al., Schulte et al., and 
Shan et  al. [34, 54, 55] reported upregulation of miR-
223, resembling our study results. MiR-223 is thought 
to regulate endothelial cells inflammation and appears 
to be associated with HDL [56, 57]. Magenta et  al. [58] 
reported upregulation of miR-200b and highlighted that 
it is overexpressed in atherosclerosis, ischemic muscles, 
and vascular dysfunction. Fichtlscherer et al. and Weber 
et al. [59, 60] reported downregulation of miR-155 as our 
results. MiR-155 is known to be implicated in inflam-
matory responses where it strengthen inflammation and 
sustain macrophages [61, 62]. Finally, Patterson et  al. 
showed downregulation of miR-133a and 208a in CAD 
patients [63].

On the contrary to our results, D’Alessandra et  al., 
and Liu et  al. [37, 64] reported upregulation of miR-
133a and miR-208a, which was significantly downreg-
ulated in our study. Fichtlscherer et  al. [59] reported 
downregulation of miR-126 and miR-145, while Weber 
et al., Gao et al., Ying et al., and Wagner et al. [60, 65–
67] detected downregulation of miR-145. Ying et  al. 
[66] reported downregulation of miR-196 while Wagner 

et al. [67] showed downregulation of miR-223. MiR-145 
and miR-182 were the most upregulated miRNAs in 
our study, although miR-145 is not usually upregulated 
in CAD patients.

From the abovementioned, we deduce that there is no 
consensus on the relative expression signature of circu-
lating miRNAs in CAD. So, we should interpret miRNA 
results with caution due to these contradicting results. 
These contradictions can be explained by which type 
of body fluid was used prior to miRNA extraction, how 
the sample was prepared and preserved, which platform 
was used for the analysis. Going into more sophisticated 
details, RNA extraction method itself can affect the con-
centration and quality of miRNAs extracted [68]. Also, 
the normalization strategy whether mono or multiple 
endogenous controls were used is important [69–73]. 
Moreover, during sample collection and preparation 
step, centrifugation is a necessary procedure for blood. 
The centrifugation helps in starting with high-quality 
plasma for miRNA extraction [71]. These methodological 
variations could lead to conflicting results between dif-
ferent studies. In our opinion, standardization of various 
methodologies among all studies investigating circulating 

Table 4  Correlation analysis of circulating miRNAs relative expression levels and the CAD patients’ clinical characteristics

mmiiRR--

222233

mmiiRR--

119966bb

mmiiRR--

2211

mmiiRR--

112266

mmiiRR--

113333aa

mmiiRR--

113355bb

mmiiRR--

114400bb

mmiiRR--

114466aa

mmiiRR--

115555

mmiiRR--

118822

mmiiRR--

220000bb

mmiiRR--

220055

mmiiRR--

220088

mmiiRR--

114455

CAD .246** .241** .507** .504** -.650** .329** .206* .471** -.518** .756** .440** .460** -0.142 .631**

Age 0.158 0.153 .320** .263** -.396** .256** 0.054 .165* -.347** .415** .304** .218** -.201* .315**

Age_Group 0.033 0.052 0.094 0.093 -.230** .197* -0.065 -0.032 -.229** .180* .193* 0.074 -0.161 0.140

Gender -0.058 -0.115 0.059 -0.028 0.019 0.119 0.044 -0.028 -0.107 0.014 0.089 0.027 -0.138 0.025

Smoking 0.006 -0.024 .172* .170* -0.148 .195* 0.036 0.156 -.205* .183* 0.101 0.120 -0.036 0.156

Family 

History
-0.013 0.055 0.078 0.142 -.171* -0.009 -0.086 0.055 -0.083 .213** 0.106 0.118 -0.076 0.079

Dyslipedemia .206* .209* .393** .471** -.488** .288** .305** .374** -.319** .693** .293** .401** -0.056 .546**

BMI 0.105 0.102 -0.024 .193* -0.157 -0.015 0.066 -0.015 -.169* 0.105 -0.030 0.056 0.155 0.076

Obesity 0.062 0.016 -0.058 0.140 -.164* 0.075 -0.015 0.006 -0.154 0.138 0.046 0.034 0.047 -0.024

Obesity_Gr 0.113 0.092 0.097 0.144 -0.058 0.019 0.120 0.113 0.018 0.022 -0.005 0.067 0.160 .192*

DM -0.006 0.005 -0.105 -0.022 -0.007 0.111 -0.222 0.022 -0.206 -0.067 -0.019 -0.046 -0.057 -0.077

HTN 0.020 -.275* -0.071 -0.111 0.078 0.030 -.306** -0.198 -0.195 -.231* 0.072 -0.179 -.354** -0.181

IHD -0.168 -0.140 -.327** -0.115 0.014 -0.119 -0.200 -0.216 -0.049 -0.115 -0.225 -0.080 -0.034 -.394**

BSA 0.000 -0.050 -0.088 -0.028 0.025 0.114 -0.122 -0.009 -0.147 0.051 0.192 0.152 0.080 -0.136

LVEF 0.197 -0.061 -0.050 0.009 -0.060 -0.207 0.168 -0.130 0.113 -0.084 -0.126 -0.089 -0.039 -0.059

LVEF_Grades -0.177 0.091 0.021 0.028 0.081 0.151 -0.198 0.135 -0.146 0.102 0.118 0.134 0.048 0.054

WMSI -0.205 0.032 0.126 0.035 0.143 .259* -.281* 0.021 0.002 0.112 0.168 0.126 -0.021 -0.017

Dia_function -0.115 -0.078 0.144 -0.104 -0.132 0.039 -0.228 0.057 -0.031 -0.009 0.063 0.020 -0.100 -0.013

Association of gene expression with clinical features. Pearson’s Correlation coefficient are presented. Significant values are highlighted.

Abbreviations: CAD Coronary artery disease, BMI Body mass index, DM Diabetes mellitus, HTN Hypertension, IHD Ischemic heart disease, LVEF Left ventricular ejection 
fraction, WMSI Wall motion severity index, Dia_Function Diastolic Function

**Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed). 
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Fig. 4  KEGG pathways enriched analysis for differentially expressed circulating miRNAs under study in CAD A Using targeted pathways clusters/
heatmap. B Using significance clusters/heatmap
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Fig. 5  Pathway, process enrichment and association analysis for differentially expressed circulating miRNAs under study in CAD A Top 9 clusters 
with their representative enriched terms (one per cluster) B Circulating miRNAs under study enrichment in relation to ontology categories: 
DisGeNET



Page 12 of 17Abdallah et al. BMC Cardiovascular Disorders          (2022) 22:286 

miRNAs can help in solving the contradicting results 
problem in the future.

According to ROC analysis results for unraveling the 
discriminating power of the circulating miRNAs under 
study, miR-145, miR-182, miR-205, and miR-133a were 
found to be highly predictive as potential biomarkers 
for discriminating CAD patients from controls as their 
AUCs values was above 0.80 [74]. MiR-182 and miR-205 
are recently linked miRNAs in cardiovascular disease. 

Thus, these four circulating miRNAs may be used as a 
panel for the detecting underlined CAD pathogenesis. 
However, the sensitivity and specificity of this four circu-
lating miRNAs panel need to be further investigated in a 
larger cohort.

Considering the relation between miRNAs and the 
clinical data, most of the studied miRNAs showed a sta-
tistically significant relation with age. Only miR-133a and 
miR-155 showed a significant inverse correlation with 

Fig. 6  The 14 miRNAs under study target genes network. MiRNA targets were only the validated miRNAs whether with strong or weak validity with 
additional filter of minimum 3 shared targets using miRTargetLink 2.0 (https://​ccb-​web.​cs.​uni-​saarl​and.​de/​mirta​rgetl​ink/​netwo​rk.​php)

https://ccb-web.cs.uni-saarland.de/mirtargetlink/network.php
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age, and this was consistent with the results of Fichtls-
cherer et  al. [75]. In the same consensus, miR-223 was 
directly correlated with age, as shown by Schulte and his 
colleagues [54]. On the contrary, Ali et  al. [76] showed 
different results with no correlation between their miR-
NAs understudy and age. Regarding special habits, very 
few studies studied the role of smoking with circulat-
ing miRNAs in CAD. Our results showed that miR-
21, miR-126, miR-135b, miR-155, and miR-182 was 
significantly correlated with smoking. In contrast to our 
study results, miR-145 was significantly associated with 
smoking, as reported by Gao and his colleagues [77]. 
Although our study reported a significant correlation 
between miR-133a and family history, another Egyp-
tian study by Turky et al. didn’t correlate miR-133a with 
family history in CAD [78]. All miRNAs under study 
except miR-208 revealed a statistically significant rela-
tion with dyslipidemia. Following our results, ElShafea 
et  al. in Egypt reported a significant reverse correlation 
with dyslipidemia [79]. Faccini et  al. reported upregula-
tion of miR-140 and that its antagonism could be a new 
therapeutic strategy for treating hypercholesterolemia 
and atherosclerosis [68]. In contrast, Fujii et  al. contra-
dicted our results and reported that miR-126 wasn’t cor-
related with dyslipidemia [80]. Considering obesity, our 
study and another Egyptian study done by Turky et  al. 
showed that miR-133a showed significance with the obe-
sity in CAD patients [78]. Other miRNAs in our study 
were not correlated with obesity. In comparison, miR-126 
and miR-155 showed significance with BMI grade. Jusic 
et al. reported the association of miR-21 with hyperten-
sion in CAD patients [81], which was not the case in our 
study, but miR-140b, miR-182, miR-196b, and miR-208 
showed to be correlated with hypertension. Regarding 
ischemic heart disease, Jansen et  al. reported that miR-
126 correlates with IHD in CAD patients [82], which was 
not the case also in our study. Instead, miR-21 and miR-
145 showed a significant correlation with IHD in CAD 
patients. Finally, the observed correlation between miR-
135b and miR-140b and WMSI was not reported before 
in the literature. This finding may be attributed to the fact 
that miR-135b and miR-140b overexpression has a role in 
blood vessel endothelial cell migration and proliferation, 
impaired cardiac conduction system activity, enhanced 
cardiomyocytes apoptosis, and decreased resistance to 
reactive oxygen species (ROS) that can cause changes in 
the vessel walls [83, 84].

The combined action of the 14 studied miRNAs 
revealed number of pathways regulating fatty acid bio-
synthesis and ECM-receptor interaction (Fig.  4). As the 
pathways identified in our study have been proved to 
be associated with CAD [85, 86], we can deduce that 
this group of miRNAs are mostly implicated in the 

pathogenesis of CAD with their predicted and/or vali-
dated function and biomarker type are summarized in 
Table 5.

MiRNAs function via modulating the expression of its 
target messenger RNA, thereby affecting important bio-
logical processes [87]. By investigating the potential bio-
logical role of miRNA-specific target genes in our study, 
most of the target genes were enriched in the biological 
process of negative regulation of transport, regulation 
of cardiomyocyte differentiation, negative regulation 
of cytokine production, regulation of muscle cell dif-
ferentiation, regulation of smooth muscle cell prolifera-
tion, miRNA-mediated gene silencing by inhibition of 
translation and gene silencing by miRNA. These results 
emphasized that our deregulated miRNAs under study 
play an important role in CAD and is participating in 
various signaling pathways that is related to circulatory 
function. Circulating miRNAs shown to affect target 
mRNA expression in different cells [88], So, using miR-
TargetLink 2.0 as shown in (Fig. 6), we predicted the tar-
get genes for the miRNAs understudy to understand their 
biological roles in CAD. We found that the 14 miRNAs 
understudy may affect several aspects of atherosclerotic 
plaques, such as inflammation, hypoxia, angiogenesis, 
inflammation, apoptosis, and ECM degradation (Table 5). 
They may also regulate several key-signaling pathways in 
atherosclerotic plaques, such as pathways involving toll-
like receptor-4 (TLR-4), hypoxia-inducible factor 1a, and 
(HIF-1a), transforming growth factor-b (TGF-b), and 
FOXO signaling pathway.

Concerning our study limitations, this is a mono center 
study involving a limited number of patients and we 
investigated only 14 human miRNAs. So, we recommend 
doing multicentric studies across different geographi-
cal locations in the region with larger study populations. 
Also, we cannot exclude that other miRNAs not investi-
gated in our study is not implicated in CAD pathogen-
esis. Moreover, several confounders like age, smoking, 
family history, and dyslipidemia differed between the 
CAD and control groups. So, the expression of these 
miRNAs could have been affected by these confound-
ers. Thus further in vitro, in vivo, functional and clinical 
validation studies could help in better understanding of 
the precise role of miRNAs in CAD and in validating this 
study findings.

Conclusion
In conclusion, the results of this study identified a dif-
ferentially expressed circulating miRNAs signature that 
can discriminate CAD patients from control subjects. 
These results provide new insights into the pivotal role of 
miRNAs expression associated with CAD pathogenesis. 
The potential diagnostic value of circulating miRNAs has 
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been shown in CAD patients as depicted through our 
discussion. Our study results extends these findings and 
confirm that CAD patients show specific circulating miR-
NAs signature. Also, we revealed novel findings regard-
ing correlation with clinical data where we reported that 
miR-133a and miR-182 showed significant relation with 
family history. MiR-140b, miR-182, miR-196b, and miR-
208 revealed a positive statistically significant link with 
hypertension, while miR-21 and miR-145 showed signifi-
cance with ischemic heart disease. Finally, miR-135b and 
miR-140b showed to be correlated with WMSI. However, 
owing to the current overlap of the signatures pinpointed 
from various studies, we recommend further studies in 
relation to the miRNAs discriminating power in CAD. 
These future studies should preferably standardize the 
laboratory methodology, address larger population size, 
implementing functional and clinical validation studies 
to help better understanding the underlying clinical sig-
nificance and miRNAs role in CAD development. Finally, 
we can declare that despite barriers to implementing 

miRNA-based studies in CAD, our research results fore-
see it as promising non-invasive biomarkers in CAD. To 
the best of our knowledge, this is the first study in Egypt 
to assess a CAD mQ11iRNAs panel encompassing 14 
biomarkers.
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Table 5  Selected miRNAs under study involved in CAD pathogenesis with their predictive/ validated function and biomarker type

MiRNA Predictive/ validated function Biomarker References

MiR-21 Share in the proinflammatory processes in the vascular 
endothelium,
Promotes atherosclerosis

Diagnosis
Severity

Fleissner et al., Zhou et al. and Weber et al., [31, 33, 60]

MiR-126 Increase EC proliferation,
Protects against atherosclerosis

Prognostic
Diagnosis
Severity

Kuhnert et al., and Urbich et al. [38, 46]

MiR-133a Promotes myogenesis,
Cardiac conductance,
Controls collagen synthesis and fibrosis

Diagnosis
Prognostic
Severity

Ahlin et al., Liu et al. and Laffont et al. [89–91]

MiR-135b Positive regulation of blood vessel endothelial cell migration, 
and proliferation

Prognostic
Treatment Prediction

Maiti et al., Potthoff et al. and Lin et al. [39, 41, 42]

MiR-140 Negative regulation of NF-kappaB activity, and interleukin-6 
production

Diagnosis
Prognostic

Werner et al. and Taurino et al. [84, 92]

MiR-145 Increases collagen in the plaque,
Increase stability of the plaque,
Protects against atherosclerosis

Severity
Diagnosis

Cordes et al. and Wei et al. [93, 94]

MiR-146a Inhibits lipid accumulation,
Decrease inflammatory response,
Prevents atherosclerosis

Prognostic
Severity

Taganov et al. and Yang et al. [95, 96]

MiR-155 Increases inflammation,
Increases atherosclerosis

Severity
Diagnosis

Nazari-Jahantigh et al., Wei et al. Androulidaki et al., 
and Du et al. [61, 62, 97, 98]

MiR-182 Affected by angiogenesis causing modulation in the myocar‑
dial response

Diagnosis
Treatment Prediction

Zhu et al., and Li et al. [51, 99]

MiR-196b Modulates the cardiomyocyte hypertrophy,
Associated with peripheral arterial disease

Prognostic
Treatment Prediction

Stather et al. and Wu et al. [100, 101]

MiR-200b Promotes endothelial cell apoptosis
Regulation of myotube differentiation and angiogenesis

Prognostic
Treatment Prediction

Zhang et al. [102]

MiR-205 Regulating oxidative stress, mitochondrial function, and 
apoptosis thus affecting cardiac ischemia/ reperfusion injury

Prognostic
Treatment Prediction

Xu et al. [52]

MiR-208a Has a role in cardiac development,
Regulate cardiac myosin heavy chain expression

Severity
Diagnosis

Chistiakov et al. [103]

MiR-223 Affects inflammation in endothelial cells,
Increases atherosclerosis

Prognostic Vickers et al. and Tabet et al. [56, 57]
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