
Fan et al. BMC Cardiovascular Disorders          (2021) 21:577  
https://doi.org/10.1186/s12872-021-02409-4

RESEARCH

Identification of four hub genes in venous 
thromboembolism via weighted gene 
coexpression network analysis
Guoju Fan1, Zhihai Jin2, Kaiqiang Wang1, Huitang Yang1, Jun Wang1, Yankui Li1, Bo Chen1 and 
Hongwei Zhang1*   

Abstract 

Background:  The pathogenic mechanisms of venous thromboembolism (VT) remain to be defined. This study 
aimed to identify differentially expressed genes (DEGs) that could serve as potential therapeutic targets for VT.

Methods:  Two human datasets (GSE19151 and GSE48000) were analyzed by the robust rank aggregation method. 
Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were conducted for 
the DEGs. To explore potential correlations between gene sets and clinical features and to identify hub genes, we 
utilized weighted gene coexpression network analysis (WGCNA) to build gene coexpression networks incorporating 
the DEGs. Then, the levels of the hub genes were analyzed in the GSE datasets. Based on the expression of the hub 
genes, the possible pathways were explored by gene set enrichment analysis and gene set variation analysis. Finally, 
the diagnostic value of the hub genes was assessed by receiver operating characteristic (ROC) analysis in the GEO 
database.

Results:  In this study, we identified 54 upregulated and 10 downregulated genes that overlapped between normal 
and VT samples. After performing WGCNA, the magenta module was the module with the strongest negative correla-
tion with the clinical characteristics. From the key module, FECH, GYPA, RPIA and XK were chosen for further valida-
tion. We found that these genes were upregulated in VT samples, and high expression levels were related to recurrent 
VT. Additionally, the four hub genes might be highly correlated with ribosomal and metabolic pathways. The ROC 
curves suggested a diagnostic value of the four genes for VT.

Conclusions:  These results indicated that FECH, GYPA, RPIA and XK could be used as promising biomarkers for the 
prognosis and prediction of VT.
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Introduction
Venous thromboembolism (VT), which includes pulmo-
nary embolism (PE) and deep vein thrombosis (DVT), 
has been reported to be the third most commonly 

occurring cardiovascular disease (CVD) worldwide, fol-
lowing coronary heart disease and hypertension [1]. 
Annually, approximately 600,000 incidents are diagnosed 
in the United States. Furthermore, VT leads to compli-
cations, such as reappearance, chronic thromboembolic 
pulmonary hypertension, postthrombotic syndrome, 
and death [2–6]. Early diagnosis and treatment for VT 
patients are crucial to effectively reduce mortality and 
improve prognosis.
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  In recent decades, considerable attention has been 
given to exploring new biomarkers and potential 
molecular mechanisms for VT diagnosis and therapy 
[7–10]. Based on the GEO database, RPL9, RPL5, 
RPS20, TP53, and RPL23 were enriched in the ribo-
some pathway, validating them as potential targets for 
VT therapy [9]. This is a noteworthy finding, as it sug-
gests that the PAI-1 4G/5G polymorphism might be a 
prospective VT risk biomarker, especially in the Asian 
population, according to a meta-analysis [11]. Moreo-
ver, it has been reported that COX7C and UQCRQ 
may play vital roles in a single VT, while ADRBK1, 
NDUFA5, and ATP5O may be possible targets for 
recurrent VT [12]. Therefore, it is essential to identify 
new novel biomarkers significantly correlated with VT 
diagnosis to improve the effectiveness of therapeutic 
approaches.

In this research, we examined 2 GEO datasets and 
found 64 significant differentially expressed genes 
(DEGs) between normal and VT samples. A weighted 
gene coexpression network analysis (WGCNA) was 
performed to evaluate the key module correlated with 
VT. Moreover, the preservation of gene modules was 
evaluated as preserved. Four hub genes, FECH, GYPA, 
RPIA, and XK, were found to be highly associated with 
VT, including low risk, moderate risk, high risk, single, 
and recurrent VT. Additionally, four genes appeared 
to be highly correlated with ribosome and metabolism 
pathways based on the GSEA and GSVA data. The diag-
nostic values of the four genes were validated by ROC 
curves. Thus, we identified the four hub genes FECH, 
GYPA, RPIA, and XK as new biomarkers and verified 
the prognostic and predicted values for VT patients.

Methods
Collection of data
The RNA expression profiles were obtained from 
two eligible microarray datasets (GSE19151 [13] and 
GSE48000 [14]) that contained 107 healthy samples and 
160 VT samples. The patients with VT were separated 
into 3 groups: (1) ‘low-risk’ patients had one or more 
provoked VTs; (2) ‘moderate-risk’ patients had a sin-
gle unprovoked VT; and (3) ‘high-risk’ patients had ≥ 2 
unprovoked VTs.

Identification of robust DEGs
The R program “limma” was used to standardize the 
data and evaluate DEGs based on dataset series matrix 
files [15]. The DEGs that met the criteria of adjusted p 
value < 0.05 and log 2-fold change (FC) > 0.5 were fil-
tered by robust rank aggregation (RRA) [16].

Gene ontology (GO) and kyoto encyclopedia of genes 
and genomes (KEGG) pathway analyses
Using the R package “clusterProfiler”, we conducted GO 
enrichment analysis for the DEGs; the analysis included 
molecular function (MF), cellular components (CC), 
and biological process (BP). KEGG pathway analysis 
was performed to investigate the high-level functions 
and utilities of the biological system.

WGCNA and identification of the key module
We chose the top 25% of genes with the most variance 
from GEO to build a coexpression network in R using 
the WGCNA program to identify VT-associated mod-
ules. Once outliers were removed at a cutoff point of 
10,000, the data were grouped using Pearson’s correla-
tion [17]. The optimum power value was determined 
once the independence level was 0.9 and a slope of 
approximately 1 was chosen. Subsequently, for network 
creation and module identification, we adjusted the 
soft-threshold power to 4, the cutoff height to 0.25, and 
the least module size to 10. Gene significance was used 
to quantify the associations between individual genes 
and traits.

Module preservation analysis
The module preservation function (nPermutations = 200) 
was used to generate module preservation and quality 
metrics to assess the stability of the obtained module uti-
lizing the WGCNA package [18]. GSE19151 was a valida-
tion dataset that comprised mRNA expression data from 
133 specimens. The modules showing elevated Zsum-
mary and reduced medianRank scores were considered 
highly conservative and stable modules, respectively [19].

Gene set enrichment analysis (GSEA) and gene set 
variation analysis (GSVA)
We used the R package “clusterprofiler” to conduct GSEA 
on hub genes using sequencing data [20]. Furthermore, 
the “GSVA” R program was utilized to identify the path-
ways most closely associated with hub genes [21]. The 
samples were categorized into two cohorts based on 
the median expression per hub gene (low expression vs. 
high expression). p < 0.01 was considered statistically sig-
nificant. The chosen reference gene set was “c2.cp.kegg.
v6.2.symbols.gmt”, which was acquired from the Molecu-
lar Signature Database (MSigDB).

Validation of the prediction of hub genes
We used the “pROC” R package to construct receiver 
operating characteristic (ROC) curves and compute the 
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area under the ROC curve (AUC) to assess the projected 
values of hub genes [22].

Results
Differentially expressed mRNAs related to VT
We compared the gene expression between normal and 
VT samples by analyzing GSE19151 and GSE48000 
(Fig. 1). There were 375 upregulated and 187 downregu-
lated genes in GSE19151 and 1285 upregulated and 230 
downregulated genes in GSE48000 (Fig.  2a). The DEGs 
are presented in the Heatmaps (Fig.  2b). The Venn dia-
grams show the 54 upregulated and 10 downregu-
lated genes that overlap the two different GEO datasets 
(Fig. 2c, Additional file 1).

Pathway enrichment analysis of DEGs
The top five enriched pathways for DEGs were riboso-
mal, structural constituent of ribosome, small ribosomal 
subunit, ribosomal subunit, and mitochondrial ribo-
some pathways (Fig. 3a, Additional file 2). In addition, the 
metabolic pathways were visualized in schemes depicting 
the ribosomal pathway (Fig. 3b). In the ribosomal path-
way, RPS15, RPL15, RPL13, and RPS21 were upregulated. 
These data reveal that these genes might be crucial for 
VT.

WGCNA
A WGCNA was performed on GSE19151, integrating 
the DEGs generated from the RRA analysis to identify 
the main modules that highly correlate with the clinical 
characteristics of VTs (Fig. 4a). As indicated in Fig. 4b 
and c, beta (β) = 4 (scale-free R2 = 0.8) was addition-
ally adjusted as the soft threshold for computation of 

adjacencies. Moreover, an aggregate of 14 modules was 
discovered after merging similar modules (Fig.  4c). 
Based on a heatmap of module–trait associations, 
the yellow, green–yellow, pink, and magenta modules 
were the four with the strongest association with VT 
(Fig. 4d). Additionally, we found that the significance of 
the yellow, green–yellow, pink, and magenta modules 
was higher than that of the others module, implying 
that these modules might have a significant relationship 
with VT (Fig.  4e). Furthermore, in the magenta mod-
ule, the association and p value between module affilia-
tion and gene significance values were 0.39 and 0.0013, 
respectively (Fig. 4f ).

Network preservation analysis
We utilized GSE19151 as a validation set to execute 
preservation analysis to assess the preservation of gene 
modules. The preservation was evaluated using an inte-
grated modulePreservation algorithm in the WGCNA 
package. A Z score ranging between 2 and 10 was con-
sidered to represent mild to moderate preservation, 
while scores above 10 represent excellent preserva-
tion [23–26]. Meanwhile, a module with a substantially 
lower rank appears to have better observable preser-
vation metrics than a module with a greater median 
rank. Combining the median rank, Z score, and mod-
ule–trait correlations, the magenta module, comprising 
65 DEGs, was found to be the module with the strong-
est negative correlation with clinical characteristics 
(Fig. 5a, Additional file 3). The most enriched pathways 
of the DEGs in the magenta module were 2 iron, 2 sul-
fur cluster binding, efflux transmembrane transporter 

Fig. 1  The workflow of this study
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Fig. 2  Analysis of DEGs in VT. a Volcano plot visualizing DEGs between normal and VT samples in GSE19151 and GSE48000; b the expression of 
DEGs in the heatmap of normal and VT samples; Venn diagrams showing the identification of c overlapped upregulated and d downregulated 
DEGs in two different datasets
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activity, and carbonate dehydratase activity (Fig.  5b, 
Additional file 4).

Validation of hub genes
We chose four hub genes (FECH, GYPA, RPIA, and 
XK) to explore their correlations with clinical values. 
They were shown to be more highly expressed in the VT 
group than in the normal group (Fig. 6a). There was a sig-
nificant difference in the low-, moderate- and high-risk 
groups compared to the normal group (Fig.  6b). Based 
on the data from GSE19151, we found that the levels of 
hub genes were much higher in the single VT (Fig.  6c) 
and recurrent VT (Fig.  6d) groups than in the normal 
groups. The data suggested that four genes were strongly 
correlated with VT and might be associated with VT 
recurrence.

GSEA and GSVA of four hub genes
To further identify the possible functions of FECH, 
GYPA, RPIA, and XK in VT, we conducted GSEA and 
GSVA with GSE19151. Genes in the high-expression 
cohorts of FECH, GYPA, RPIA, and XK were highly 
enriched in ribosome (Fig. 7a), graft versus host disease 
(Fig. 7b), primary immunodeficiency (Fig. 7c), and B cell 
receptor signaling pathways, respectively (Fig. 7d). Based 
on the analysis of GSVA, FECH was associated with vas-
cular smooth muscle contraction (Fig.  7e). GYPA was 

enriched in aminoacyl tRNA biosynthesis (Fig. 7f ). PRIA 
was related to nitrogen metabolism (Fig. 7g), and XK was 
associated with porphyrin and chlorophyll metabolism 
(Fig.  7h). After comprehensively considering the results 
of GSEA and GSVA, we concluded that these four genes 
might be highly correlated with ribosomal and metabolic 
pathways.

The predicted values of hub genes in VT
ROC curves showed the predicted value of these genes 
as biomarkers for the incidence of VT (FECH AUC: 
0.765, GYPA AUG: 0.837, RPIA AUG: 0.668, and XK 
AUG: 0.819) and the possibility of single and recurrent 
VT (FECH AUC: 0.655, GYPA AUG: 0.642, RPIA AUG: 
0.641, and XK AUG: 0.634) (Fig. 8a, b). The ROC curves 
suggest that these four genes have predictive values for 
low risk VT (FECH AUC: 0.688, GYPA AUG: 0.696, RPIA 
AUG: 0.701, and XK AUG: 0.719) (Fig.  8c) and moder-
ate risk VT (FECH AUC: 0.642, GYPA AUG: 0.663, RPIA 
AUG: 0.682, and XK AUG: 0.658) (Fig. 8d).

Discussion
VT is reported to be the third most common CVD world-
wide following coronary heart disease and hypertension. 
Although numerous investigations have been conducted 
to investigate treatment targets for VT, discrepancies 
between the DEGs discovered have been observed in 

Fig. 3  Functional enrichment of DEGs. a GO terms identified in the GO analysis for DEGs; b Visualization of the ribosome pathway. Red nodes 
represent upregulated DEGs
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various studies [27–31]. This study is the first to integrate 
RRA and WGCNA to identify new biomarkers associ-
ated with VT. Two GEO datasets were included in our 

study, and 54 upregulated and 10 downregulated genes 
were determined to overlap. After investigating their 
enrichment in GO and KEGG pathways, we discovered 

Fig. 4  Identification of key modules associated with clinical traits by WGCNA. a Clustering dendrograms of samples; b Analysis of the scale-free 
fit index and the mean connectivity for various soft-thresholding powers; c Dendrogram of all DEGs clustered with dissimilarity measure based 
on topological overlap; d Heatmap of the correlation between module eigengenes and clinical traits. Each row denoted a module eigengene, 
each column represented a clinical trait and each cell contained the correlation coefficient and p value; e Gene significance in different modules 
(bottom); f Scatter plot of genes in yellow module
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that these DEGs may be involved in ribosomal and meta-
bolic pathways. We were able to identify the coexpression 
module linked to clinical characteristics using WGCNA. 
Genes in this module were enriched in 2 iron, 2 sulfur 
cluster binding, efflux transmembrane transporter activ-
ity, and carbonate dehydratase activity.

We identified four hub genes, FECH, GYPA, RPIA, 
and XK, from the magenta module. High expression of 
these four genes was significantly associated with VT, 
low-, moderate- and high-risk VT, and recurrence of 
VT, indicating the prognostic value of these hub genes. 
Ferrochelatase (FECH) is the terminal enzyme in heme 
biosynthesis and plays vital roles in choroidal neovascu-
larization, retinal neovascularization, and erythropoietic 
protoporphyria [32–34]. It was reported that FECH was 
involved in the metabolic pathway [35], and our work 
concurs with this. Glycophorins (GYPA) are one of the 
primary sialoglycoproteins of the human erythrocyte 

membrane and serve as receptors for pathogens, includ-
ing Plasmodium falciparum erythrocyte-binding antigen 
175 (EBA-175), influenza virus, and hepatitis A virus 
(HAV). GYPA plays a vital role in the high activity of sol-
ute carrier family 4 member 1 (SLC4A1) and transloca-
tion of SLC4A1 to the plasma membrane [36]. Our study 
showed that GYPA was strongly associated with the 
occurrence of VT, acting as a possible and not well-stud-
ied biomarker for VT. Furthermore, the enzyme ribose 
5-phosphate isomerase A (RPIA) plays an essential role 
in carbohydrate metabolism [37, 38] in Enterococcus fae-
calis and is a prognostic biomarker for human hepatocel-
lular carcinoma [39]. Our data indicated that RPIA was 
involved in the incidence of VT. The X-linked Kx blood 
group (XK) protein has eukaryotic and prokaryotic mem-
brane transport protein structural features. Mutations in 
XK are highly correlated with McLeod syndrome with 
defects in the hematopoietic and neuromuscular systems. 

Fig. 5  The medianRank and Zsummary values of the module preservation using the GSE19151 dataset. a The medianRank graph and the 
Zsummary graph. The dashed blue and green lines indicate the thresholds Zsummary = 2 and Zsummary = 10, respectively; b The plot for the top 
9 GO enrichment annotations of all genes in magenta module
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Thus, FECH, GYPA, RPIA, and XK were identified in our 
study as potential biomarkers for VT.

To explore their potential biological functions in VT, 
we conducted GSEA and GSVA, which revealed that 
these four novel genes might be positively involved in 
ribosomal and metabolic pathways. It has been reported 

that RPIA is a vital mediator in the process of carbohy-
drate metabolism and nucleotide metabolism in cancer 
[37, 38, 40]. Additionally, many related pathways, such 
as the B cell receptor signaling pathway, antigen pro-
cessing and presentation, and allograft rejection, were 

Fig. 6  Correlation analysis between the expression of EFCH, GYPA, RPIA and XK and clinicopathological parameters in GSE19151 and GSE48000. a 
the expression of hub genes and VT; b low risk and high risk; c single VT; d recurrent VT



Page 9 of 12Fan et al. BMC Cardiovascular Disorders          (2021) 21:577 	

found to be enriched in the high-expression cohorts of 
hub genes, revealing their potential roles in VT.

Conclusions
By combining RRA and WGCNA, we found some robust 
DEGs and significant gene modules in VT. Four hub 
genes (FECH, GYPA, RPIA, and XK) were significantly 

upregulated in the VT cohort, and GSEA and GSVA indi-
cated that these genes might contribute to the incidence 
of VT. Moreover, these four hub genes were found to 
be diagnostic biomarkers for the prediction of VT. Fur-
ther experiments are required to determine the possible 
mechanisms of these biomarkers in VT.

Fig. 7  GSEA and GSVA of hub genes in datasets. a–d Top 3 gene sets (according to GSEA enrichment score) enriched in the high-expression group 
of a EFCH; b GYPA; c RPIA; d XK. GSVA-derived clustering heatmaps of differentially expressed pathways for e EFCH; f GYPA; g RPIA; h XK
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Fig. 8  The diagnostic values of hub genes in VT. ROC curves and AUC statistics to evaluate the diagnostic efficiency of hub genes on the incidence 
of VT (a); the possibility of single and recurrent VT (b); low risk (c) and moderate risk (d)



Page 11 of 12Fan et al. BMC Cardiovascular Disorders          (2021) 21:577 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12872-​021-​02409-4.

Additional file 1. DEGs of GSE19151 and GSE48000.

Additional file 2. GO terms of DEGs.

Additional file 3. 65 DEGs in the magenta module.

Additional file 4. The enriched pathways of the DEGs in the magenta 
module.

Acknowledgements
We thank all participants for their supports.

Authors’ contributions
Conceived and designed the experiments: ZHW, FGJ, JZH, WKQ and YHT, 
Analyzed the data: WJ, LYK and CB, Wrote the paper: FGJ and WKQ. All authors 
have read and approved the manuscript.

Funding
The authors received no financial support for the research, authorship, and/or 
publication of this article.

Availability of data and materials
The gene expression profiles of GSE19151 and GSE48000 were downloaded 
from Gene Expression Omnibus (GEO).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declared no potential competing interests with respect to the 
research, authorship, and/or publication of this article.

Author details
1 Department of Vascular Surgery, The Second Hospital of Tianjin Medical 
University, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, China. 2 Depart-
ment of Orthopedics, Handan First Hospital, Handan, China. 

Received: 15 October 2021   Accepted: 26 November 2021

References
	1.	 Goldhaber SZ, Bounameaux H. Pulmonary embolism and deep vein 

thrombosis. Lancet. 2012;379(9828):1835–46.
	2.	 Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal 

FR, Hammerstrom J. Incidence and mortality of venous thrombosis: a 
population-based study. J Thromb Haemost. 2007;5(4):692–9.

	3.	 Day ISCfWT. Thrombosis: a major contributor to the global disease bur-
den. J Thromb Haemost. 2014;12(10):1580–90.

	4.	 Schulman S, Lindmarker P, Holmstrom M, Larfars G, Carlsson A, Nicol P, 
Svensson E, Ljungberg B, Viering S, Nordlander S, et al. Post-thrombotic 
syndrome, recurrence, and death 10 years after the first episode of 
venous thromboembolism treated with warfarin for 6 weeks or 6 months. 
J Thromb Haemost. 2006;4(4):734–42.

	5.	 Arshad N, Bjori E, Hindberg K, Isaksen T, Hansen JB, Braekkan SK. Recur-
rence and mortality after first venous thromboembolism in a large 
population-based cohort. J Thromb Haemost. 2017;15(2):295–303.

	6.	 Ende-Verhaar YM, Cannegieter SC, Vonk Noordegraaf A, Delcroix M, 
Pruszczyk P, Mairuhu AT, Huisman MV, Klok FA. Incidence of chronic 

thromboembolic pulmonary hypertension after acute pulmonary 
embolism: a contemporary view of the published literature. Eur Respir J. 
2017;49(2):1601792.

	7.	 Morelli VM, Braekkan SK, Hansen JB. Role of microRNAs in venous throm-
boembolism. Int J Mol Sci. 2020;21(7):2602.

	8.	 Heit JA, Armasu SM, McCauley BM, Kullo IJ, Sicotte H, Pathak J, Chute 
CG, Gottesman O, Bottinger EP, Denny JC, et al. Identification of unique 
venous thromboembolism-susceptibility variants in African–Americans. 
Thromb Haemost. 2017;117(4):758–68.

	9.	 Wang G, Zhao W, Yang Y, Yang G, Wei Z, Guo J. Identification of biomark-
ers of venous thromboembolism by bioinformatics analyses. Medicine 
(Baltimore). 2018;97(14):e0152.

	10.	 Zhou ZH, Chen Y, Zhao BH, Jiang Y, Luo Q. Early postpartum venous 
thromboembolism: risk factors and predictive index. Clin Appl Thromb 
Hemost. 2019. https://​doi.​org/​10.​1177/​10760​29618​818777.

	11.	 Zhang Q, Jin Y, Li X, Peng X, Peng N, Song J, Xu M. Plasminogen activator 
inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous 
thromboembolism—a meta-analysis and systematic review. Vasa. 
2020;49(2):141–6.

	12.	 Zhou W, Zhang K, Chen D, Gao P, Wang Q. Gene microarray analyses for 
potential biomarkers of single and recurrent venous thromboembolism. 
Mol Med Rep. 2015;12(5):7358–66.

	13.	 Lewis DA, Stashenko GJ, Akay OM, Price LI, Owzar K, Ginsburg GS, 
Chi JT, Ortel TL. Whole blood gene expression analyses in patients 
with single versus recurrent venous thromboembolism. Thromb Res. 
2011;128(6):536–40.

	14.	 Lewis DA, Suchindran S, Beckman MG, Hooper WC, Grant AM, Heit JA, 
Manco-Johnson M, Moll S, Philipp CS, Kenney K, et al. Whole blood gene 
expression profiles distinguish clinical phenotypes of venous thrombo-
embolism. Thromb Res. 2015;135(4):659–65.

	15.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma pow-
ers differential expression analyses for RNA-sequencing and microarray 
studies. Nucleic Acids Res. 2015;43(7):e47.

	16.	 Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list inte-
gration and meta-analysis. Bioinformatics. 2012;28(4):573–80.

	17.	 Zhong H, Wang J, Zhu Y, Shen Y. Comprehensive analysis of a nine-gene 
signature related to tumor microenvironment in lung adenocarcinoma. 
Front Cell Dev Biol. 2021;9:700607.

	18.	 Zhu Z, Jin Z, Deng Y, Wei L, Yuan X, Zhang M, Sun D. Co-expression net-
work analysis identifies four hub genes associated with prognosis in soft 
tissue sarcoma. Front Genet. 2019;10:37.

	19.	 Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module pre-
served and reproducible? PLoS Comput Biol. 2011;7(1):e1001057.

	20.	 Wei Y, Chen X, Ren X, Wang B, Zhang Q, Bu H, Qian J, Shao P. Identification 
of MX2 as a novel prognostic biomarker for sunitinib resistance in clear 
cell renal cell carcinoma. Front Genet. 2021;12:680369.

	21.	 Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Identification of signatures of 
prognosis prediction for melanoma using a hypoxia score. Front Genet. 
2020;11:570530.

	22.	 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. 
pROC: an open-source package for R and S+ to analyze and compare 
ROC curves. BMC Bioinform. 2011;12:77.

	23.	 Yang B, Wei S, Ma YB, Chu SH. Integrated transcriptomic analysis reveals 
the molecular mechanism of meningiomas by weighted gene coexpres-
sion network analysis. Biomed Res Int. 2020;2020:4927547.

	24.	 Bakhtiarizadeh MR, Mirzaei S, Norouzi M, Sheybani N, Vafaei Sadi MS. 
Identification of gene modules and hub genes involved in mastitis devel-
opment using a systems biology approach. Front Genet. 2020;11:722.

	25.	 Panahi B, Hejazi MA. Weighted gene co-expression network analysis of 
the salt-responsive transcriptomes reveals novel hub genes in green 
halophytic microalgae Dunaliella salina. Sci Rep. 2021;11(1):1607.

	26.	 Tang X, Huang X, Wang D, Yan R, Lu F, Cheng C, Li Y, Xu J. Identifying 
gene modules of thyroid cancer associated with pathological stage by 
weighted gene co-expression network analysis. Gene. 2019;704:142–8.

	27.	 Wang X, Sundquist K, Svensson PJ, Rastkhani H, Palmer K, Memon AA, 
Sundquist J, Zoller B. Association of recurrent venous thromboembolism 
and circulating microRNAs. Clin Epigenet. 2019;11(1):28.

	28.	 Riva N, Vella K, Hickey K, Bertu L, Zammit D, Spiteri S, Kitchen S, Makris M, 
Ageno W, Gatt A. Biomarkers for the diagnosis of venous thromboem-
bolism: D-dimer, thrombin generation, procoagulant phospholipid and 
soluble P-selectin. J Clin Pathol. 2018;71(11):1015–22.

https://doi.org/10.1186/s12872-021-02409-4
https://doi.org/10.1186/s12872-021-02409-4
https://doi.org/10.1177/1076029618818777


Page 12 of 12Fan et al. BMC Cardiovascular Disorders          (2021) 21:577 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	29.	 Mauracher LM, Posch F, Martinod K, Grilz E, Daullary T, Hell L, Brostjan C, 
Zielinski C, Ay C, Wagner DD, et al. Citrullinated histone H3, a biomarker of 
neutrophil extracellular trap formation, predicts the risk of venous throm-
boembolism in cancer patients. J Thromb Haemost. 2018;16(3):508–18.

	30.	 Chen X, Cao J, Ge Z, Xia Z. Correlation and integration of circulating 
miRNA and peripheral whole blood gene expression profiles in patients 
with venous thromboembolism. Bioengineered. 2021;12(1):2352–63.

	31.	 Dzikowska-Diduch O, Domienik-Karlowicz J, Gorska E, Demkow U, Pruszc-
zyk P, Kostrubiec M. E-selectin and sICAM-1, biomarkers of endothelial 
function, predict recurrence of venous thromboembolism. Thromb Res. 
2017;157:173–80.

	32.	 Basavarajappa HD, Sulaiman RS, Qi X, Shetty T, Sheik Pran Babu S, 
Sishtla KL, Lee B, Quigley J, Alkhairy S, Briggs CM, et al. Ferrochelatase 
is a therapeutic target for ocular neovascularization. EMBO Mol Med. 
2017;9(6):786–801.

	33.	 Pran Babu SPS, White D, Corson TW. Ferrochelatase regulates retinal 
neovascularization. FASEB J. 2020;34(9):12419–35.

	34.	 Long ZB, Wang YW, Yang C, Liu G, Du YL, Nie GJ, Chang YZ, Han B. 
Identification of FECH gene multiple variations in two Chinese patients 
with erythropoietic protoporphyria and a review. J Zhejiang Univ Sci B. 
2016;17(10):813–20.

	35.	 Wang P, Sachar M, Guo GL, Shehu AI, Lu J, Zhong XB, Ma X. Liver metabo-
lomics in a mouse model of erythropoietic protoporphyria. Biochem 
Pharmacol. 2018;154:474–81.

	36.	 Steiper ME, Walsh F, Zichello JM. The SLC4A1 gene is under differential 
selective pressure in primates infected by Plasmodium falciparum and 
related parasites. Infect Genet Evol. 2012;12(5):1037–45.

	37.	 Ramos Y, Rocha J, Hael AL, van Gestel J, Vlamakis H, Cywes-Bentley C, 
Cubillos-Ruiz JR, Pier GB, Gilmore MS, Kolter R, et al. PolyGlcNAc-contain-
ing exopolymers enable surface penetration by non-motile Enterococcus 
faecalis. PLoS Pathog. 2019;15(2):e1007571.

	38.	 Ramos Y, Morales DK. Exopolysaccharide-mediated surface penetra-
tion as new virulence trait in Enterococcus faecalis. Commun Integr Biol. 
2019;12(1):144–7.

	39.	 Ciou SC, Chou YT, Liu YL, Nieh YC, Lu JW, Huang SF, Chou YT, Cheng 
LH, Lo JF, Chen MJ, et al. Ribose-5-phosphate isomerase A regu-
lates hepatocarcinogenesis via PP2A and ERK signaling. Int J Cancer. 
2015;137(1):104–15.

	40.	 Buj R, Chen CW, Dahl ES, Leon KE, Kuskovsky R, Maglakelidze N, Navarat-
narajah M, Zhang G, Doan MT, Jiang H, et al. Suppression of p16 Induces 
mTORC1-mediated nucleotide metabolic reprogramming. Cell Rep. 
2019;28(8):1971–80.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Identification of four hub genes in venous thromboembolism via weighted gene coexpression network analysis
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Collection of data

	Identification of robust DEGs
	Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses
	WGCNA and identification of the key module
	Module preservation analysis
	Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA)
	Validation of the prediction of hub genes

	Results
	Differentially expressed mRNAs related to VT
	Pathway enrichment analysis of DEGs
	WGCNA
	Network preservation analysis
	Validation of hub genes
	GSEA and GSVA of four hub genes
	The predicted values of hub genes in VT

	Discussion
	Conclusions
	Acknowledgements
	References


