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Abstract 

Background:  To explore the characteristics of myocardial textures on coronary computed tomography angiography 
(CCTA) images in patients with coronary atherosclerotic heart disease, a classification model was established, and the 
diagnostic effectiveness of CCTA for myocardial ischaemia patients was explored.

Methods:  This was a retrospective analysis of the CCTA images of 155 patients with clinically diagnosed coronary 
heart disease from September 2019 to January 2020, 79 of whom were considered positive (myocardial ischaemia) 
and 76 negative (normal myocardial blood supply) according to their clinical diagnoses. By using the deep learn-
ing model-based CQK software, the myocardium was automatically segmented from the CCTA images and used to 
extract texture features. All patients were randomly divided into a training cohort and a test cohort at a 7:3 ratio. The 
Spearman correlation and least absolute shrinkage and selection operator (LASSO) method were used for feature 
selection. Based on the selected features of the training cohort, a multivariable logistic regression model was estab-
lished. Finally, the test cohort was used to verify the regression model.

Results:  A total of 387 features were extracted from the CCTA images of the 155 coronary heart disease patients. 
After performing dimensionality reduction with the Spearman correlation and LASSO, three texture features were 
selected. The accuracy, area under the curve, specificity, sensitivity, positive predictive value and negative predictive 
value of the constructed multivariable logistic regression model with the test cohort were 0.783, 0.875, 0.733, 0.875, 
0.650 and 0.769, respectively.

Conclusion:  CCTA imaging texture features of the myocardium have potential as biomarkers for diagnosing myocar-
dial ischaemia.
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Background
Coronary atherosclerotic heart disease (CHD), also 
referred to as coronary heart disease, is one of the lead-
ing causes of death and disability worldwide [1–3]. It is 
caused by atherosclerosis of important blood vessels 

arising from internal and/or external factors, resulting in 
stenosis or occlusion of the lumen and eventually myo-
cardial ischaemia or necrosis (also known as ischaemic 
heart disease). The main clinical symptom of myocardial 
ischaemia is chest pain, and clinical treatment includes 
medication, percutaneous coronary intervention, coro-
nary artery bypass grafting and so on. The early diagnosis 
of myocardial ischaemia in patients with CHD is crucial 
for the selection of appropriate treatment.
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Coronary CT angiography (CCTA) is a non-invasive 
imaging technique that can clearly display the anatomy 
of the coronary arteries. In addition, it has advantages 
in evaluating coronary artery stenosis, atherosclerotic 
plaque, calcification, and cardiac function (based on non-
invasive coronary fractional flow reserve (FFR)) [4–7]. 
Therefore, it is considered a routine examination method 
for patients with suspected CHD. However, it is difficult 
to assess myocardial ischaemia by visual changes in myo-
cardial tissue density on CCTA images, as conventional 
CCTA images show limited contrast. Furthermore, the 
assessment of haemodynamics by coronary artery lesions 
displayed on CCTA images remains unclear since there is 
no significant relationship between arterial stenosis and 
blood flow changes in the myocardium [8, 9]. Therefore, 
a combination of different examinations for the diagno-
sis of myocardial ischaemia is needed (stress single-pho-
ton emission computed tomography/positron emission 
tomography (SPECT/PET), stress cardiac magnetic reso-
nance (CMR), or invasive FFR) [10].

Recently, radiomics has shown great potential for vari-
ous cancers in terms of pathological classification, the 
assessment of tumour metastasis, clinical outcomes and 
gene expression [11–13]. Radiomics can be used to non-
invasively extract a large number of high-level quantita-
tive features from medical images, especially parameters 
that are invisible to the naked eye or cannot be quanti-
fied through routine analysis. If the imaging features of 
CCTA can be used to assess whether myocardial ischae-
mia is present in CHD patients, they could have a posi-
tive impact on the technology of CCTA and the clinical 
diagnosis and treatment of CHD patients. Therefore, the 
purpose of this study was to explore the use of CCTA 
imaging features to evaluate myocardial ischaemia in 
patients with CHD.

Methods
Materials
All patients with a diagnosis of myocardial ischaemia 
with available CCTA images between September 1, 2019, 
and January 1, 2020, at Xiamen Cardiovascular Hospital 
Xiamen University in Fujian Province were retrospec-
tively included in this study. The diagnosis of myocardial 
ischaemia was based on clinical diagnosis and/or single 
photon emission computed tomography (SPECT) imag-
ing findings. To ensure that the corresponding clinical 
and imaging data of the included patients were suitable 
for the purposes of our research, we established the fol-
lowing inclusion criteria: (1) The interval between CCTA 
image acquisition and myocardial ischaemic diagnosis 
was less than two weeks. (2) The absence of a combina-
tion of other heart diseases, a history of coronary artery 
bypass grafting or coronary stent implantation, as these 

conditions may affect the results. Finally, a total of 79 
patients with clinically diagnosed myocardial ischaemia 
were enrolled. The study also included 76 age-matched 
healthy controls with CCTA scans performed during the 
same time period.

The following patient information was collected: demo-
graphic data, including sex, age and weight; clinical data, 
including history of hypertension, history of hyperlipi-
daemia, history of diabetes, smoking status, clinical char-
acteristics and myocardial enzymes; and imaging data, 
including electrocardiography and CCTA.

Diagnosis of myocardial ischaemia
In this study, myocardial ischaemia was diagnosed based 
on stress SPECT imaging and/or the patient’s clini-
cal characteristics, electrocardiogram and myocardial 
enzymes (Fig.  1). The diagnosis process was as follows: 
the patient’s clinical characteristics, electrocardiogram 
and myocardial enzymes were first judged. If the patient 
was not suspected of having myocardial ischaemia, she 
was initially enrolled in the normal myocardial blood 
supply group (negative group) of this study. If the patient 
had signs of myocardial ischaemia, she was subjected to a 
stress SPECT scan for diagnosis. Patients diagnosed with 
myocardial ischaemia according to stress SPECT were 
initially enrolled in the myocardial ischaemia group (pos-
itive group) of this study.

The stress SPECT scan was performed with a D-SPECT 
Cardiac Scanner System (Spectrum Dynamics Medical 
Ltd. Israel). The patient received an intravenous injec-
tion of adenosine disodium triphosphate (Tianjin Jinyao 
Pharmaceutical Co., Ltd. China) at a rate of 0.14  mg/
kg.min, which was completed continuously within 6 min. 
Three minutes after the start of the injection, the patient 
received a simultaneous bolus injection of 99mTC-MIBI 
(Fuzhou Jiayi Pharmaceutical Co., Ltd. China) at a dose 
of 24.0  mCi via another intravenous channel. Approxi-
mately 1 h later, the patient underwent stress-gated myo-
cardial tomography.

CCTA scans
All patients received a CCTA scan on an empty stom-
ach with a 560-slice multi-slice spiral cardiovascular CT 
device (CardioGraphe™; GE Healthcare). The scan range 
was from the tracheal crest to the bottom of the heart. 
The scanning parameters were as follows: tube voltage 
120 kVp; tube current 50  mA; CT rotation time 0.24  s; 
and reconstruction layer thickness 0.5  mm. The con-
trast agent was injected from a vein through a high-pres-
sure syringe (Salient; Imaxeon Pty Ltd.), and scanning 
started 5 s after reaching the trigger threshold. The con-
trast medium used was iohexol injection (Omnipaque, 
350 mg I/ml, GE Healthcare) with the following injection 



Page 3 of 10Zhao et al. BMC Cardiovasc Disord          (2021) 21:416 	

programme: duration of coronary drug injection 12  s; 
heart rate ≥ 75 beats/min; every additional 5 beats/min, 
the rate was increased by 0.2  ml/s, and the amount of 
medicine was increased similarly. A 30 ml dose of saline 
was injected at the same rate as the contrast. The CCTA 
scans were performed in accordance with the 2016 Soci-
ety of Cardiovascular Computed Tomography (SCCT) 
guidelines for the performance and acquisition of coro-
nary computed tomographic angiography, and the scan 
parameter settings followed the "as low as reasonably 
achievable" (ALARA) principle [14]. The contrast media 

injection protocol is shown in Table 1 in Additional file 1. 
Figures  2 and 3 show the CCTA images of patient with 
and without myocardial ischaemia, respectively.

Myocardial segmentation and feature extraction
The CCTA images were imported into CQK software 
(CT Coronary Artery Quantitative Analysis Kit, CQK, 
GE Healthcare, China) for automatic myocardium seg-
mentation and feature extraction. A radiological expert 
with 10  years of experience verified the segmentation 
results. A total of 387 features were extracted from the 

Fig. 1  Workflow of the construction of the myocardial ischaemia model

Fig. 2  A 56-year-old male patient with myocardial ischaemia. a Axial image, b coronal image, and c sagittal image. The window level was set to 100 
HU, and the window width to 800 HU
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three-dimensional segmented myocardium, including 
histogram parameters (42 features), grey level cooccur-
rence matrix features (144), Haralick feature s(10), grey 
level run-length matrix features (180) and grey level size 
zone matrix features (11). The corresponding formula 
and meaning of each feature are detailed in Additional 
file 2.

CCTA myocardial features
The dataset was randomly assigned in a 7:3 ratio to either 
a training cohort or a test cohort. All images in the train-
ing cohort were used to train the predictive model, while 
those in the test cohort were used to independently eval-
uate the model performance. Before the analyses, varia-
bles with zero variance were excluded. Then, missing and 
outlier values were replaced by the median, and finally, 
the data were standardized.

Feature selection and machine learning model 
construction
Feature selection was performed by using Spear-
man correlation analysis (SPM) and the least absolute 
shrinkage and selection operator (LASSO). A Spear-
man correlation coefficient between two features 
of ≥ 0.9 was considered to indicate a relevant correla-
tion, and only one of the two features was selected 
randomly to reduce feature redundancy. The LASSO 
method was used to further select features with pen-
alty parameter tuning that was conducted by tenfold 
cross-validation based on minimum criteria. Finally, 
we obtained the optimal feature subset. A multivari-
able logistic regression model was constructed based 
on the optimal feature subset from the training cohort. 
Multivariable logistic regression is a machine learning 
method that analyses the relationship between multi-
ple variables and two-classification dependent variables 
and solves the problem of binary classification (0 or 1). 

Then, the optimal features from the test cohort were 
imported into the constructed model to verify its dis-
criminative performance. To visualize and validate the 
multivariable logistic regression model, we built a radi-
omics nomogram.

Statistical power calculation
For the sample size of test cohort, Shein-Chung Chow 
and colleagues [15] introduced a sample size estimation 
method for clinical research. According to their book, 
the sample size calculation to test whether the means of 
two groups are significantly different is as follows.

Let the positive and negative groups be A and B and 
µ represent the mean of the radiomics features in each 
group, with the hypotheses of interest being:

The statistical powers are calculated, respectively, as:

where n is the sample size in the training cohort, N  
is the sample size in the test cohort, � is the standard 
normal distribution function, α is the type I error, β is 
the type II error, 1− β is the power, and σ 2 is the vari-
ance of the covariate.
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Fig. 3  A 61-year-old female patient without myocardial ischaemia. a Axial image, b coronal image, and c sagittal image. The window level was set 
to 100 HU, and the window width to 800 HU
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Statistical analysis
In this study, the patients were divided into a myocardial 
ischaemia group and a normal myocardial blood supply 
group. Continuous variables with a normal distribution 
are expressed as the mean ± standard deviation, and Stu-
dent’s t-test was utilized for comparisons between two 
groups. Continuous variables with nonnormal distribu-
tions are expressed as medians (interquartile ranges), and 
the Mann–Whitney U test was utilized for comparisons 
between two groups. Categorical variables are expressed 
as frequencies (percentages) and were compared with the 
chi-square test.

All statistical analyses for the present study were per-
formed with R software (version 3.5.1, http://​www.r-​proje​
ct.​org/). A two-tailed p-value < 0.05 indicated statistical 
significance. The SPM method and multivariable logis-
tic regression model were performed with the “stats” 
package in R software, and the LASSO method was per-
formed with the “glmnet” package. Receiver operating 
characteristic (ROC) curves were generated to determine 
the performance of the machine learning model with 
the “pROC” package, and the accuracy (ACC), sensitiv-
ity, specificity and area under the curve (AUC) were cal-
culated with the “ReprotROC” package. The nomogram 
was generated with the “rms” package.

Results
Clinical data analysis
According to the evaluation criteria for myocardial 
ischaemia, the 155 coronary heart disease patients 
enrolled in this study included 79 patients with myocar-
dial ischaemia (positive patients, 63.62 ± 11.61 years) and 

76 patients with normal myocardial blood supply (nega-
tive patients, 55.37 ± 11.06 years). There were 59 and 47 
male patients in the positive group and negative group, 
respectively, with p = 0.086.

Feature extraction
A total of 155 patients were included in this study. For 
each patient, 387 features were extracted. After using 
SPM, 68 features remained. Then, 14 features were 
selected by utilizing the LASSO method (Fig. 4). The 14 
texture features of the training cohort were used to build 
a multivariable logistic regression model. In this model, a 
weighting factor is assigned based on the impact of each 
feature on the predicted results. The 14 texture features 
and their corresponding coefficients in the multivariable 
logistic regression model are listed in Table 1. The Rad-
score was calculated by summing the intercept and the 
product of the feature values and the corresponding coef-
ficients and can be expressed as follows:

Radscore = 0.886*RelativeDeviation + (− 0.696)*Voxel-
ValueSum + (0.404)*histogramEntropy + (− 0.228)*skew-
n e s s  +  ( 0 . 4 4 0 ) * C o r re l a t i o n _ A l l D i re c t i o n _ o f f -
set7_SD +  (0 .096)*GLCMEntropy_angle45_of f -
set7 +  (0.065)*HaralickCorrelation_angle90_off-
set7 +  (1.625)*RunLengthNonuniformity_AllDirec-
tion_offset7_SD +  (0.942)*ShortRunEmphasis_All-
Direction_offset4_SD + (1.508)*ShortRunEmphasis_
angle45_offset7 + (0.820)*ShortRunLowGreyLevelEm-
phasis_AllDirection_offset1_SD + (− 0.241)*ShortRun-
LowGre yLe velEmphasis_Al lDire ct ion_of fset7_
SD +  (−  0.531)*SizeZoneVariability +  (−  0.252)* 
LowIntensitySmallAreaEmphasis.

Fig. 4  Feature selection and dimension reduction. a Ten-fold cross-validation of the LASSO analysis was applied to acquire the most valuable 
features when the minimum lambda value was reached. b The regression coefficients from LASSO

http://www.r-project.org/
http://www.r-project.org/
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Machine learning model
The selected 14 CCTA features were utilized to construct 
the multivariable logistic regression model for the diag-
nosis of myocardial ischaemia.

The ACC, AUC, specificity, sensitivity, positive predic-
tive value (PPV), and negative predictive value (NPV) 
of the diagnostic myocardial ischaemia model with the 
training cohort were 0.835, 0.914, 0.733, 0.959, 0.957, 
and 0.746, respectively; with the test cohort, these values 
were 0.717, 0.827, 0.684, 0.741, 0.650 and 0.769, respec-
tively (Table  2). The ROC curves of the training cohort 
and test cohort are shown in Fig.  5. The corresponding 
calibration curves of the model are displayed in Fig. 6 for 
the training cohort and the test cohort. Figure  7 shows 
the nomogram of the constructed multivariable logistic 
regression model, which estimates the risk of myocardial 
ischaemia according to the calculated Radscore. Every 
patient had a Radscore value based on the selected 14 
features. According to the Radscore and nomogram, we 
can obtain the probability of each patient’s risk of myo-
cardial ischaemia.

Statistical power calculation
The patients were randomly divided at a ratio of 7:3. 
There were 60 positive and 49 negative patients in the 
training cohort and 19 positive and 27 negative patients 
in the test cohort. The ratio of the training cohort to the 
test cohort is close to 1:1, at which the logical regres-
sion model performs well. The event-per-predictor ratio 

Table 1  Remaining features and the corresponding coefficients 
in multivariate logistic regression model

Texture features Estimate

(Intercept)  − 1.022

RelativeDeviation 0.886

VoxelValueSum  − 1.696

histogramEntropy  − 0.404

skewness  − 0.228

Correlation_AllDirection_offset7_SD 0.440

GLCMEntropy_angle45_offset7 0.096

HaralickCorrelation_angle90_offset7 0.065

RunLengthNonuniformity_AllDirection_offset7_SD 1.625

ShortRunEmphasis_AllDirection_offset4_SD 0.942

ShortRunEmphasis_angle45_offset7 1.508

ShortRunLowGreyLevelEmphasis_AllDirection_offset1_SD 0.820

ShortRunLowGreyLevelEmphasis_AllDirection_offset7_SD  − 4.241

SizeZoneVariability  − 0.531

LowIntensitySmallAreaEmphasis  − 0.252

Table 2  Machine learning model for training cohort and test cohort

ACC​ AUC​ Specificity Sensitivity PPV NPV

Train cohort 0.835 0.914 0.733 0.959 0.957 0.746

Test cohort 0.717 0.827 0.684 0.741 0.650 0.769

Fig. 5  ROC curves of the training cohort (a) and test cohort (b)
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Fig. 6  Calibration curves of the nomogram for the training cohort (a) and test cohort (b)

Fig. 7  The nomogram of the constructed model. We drew a vertical line from the “Radscore” predictor to the "Total Points" to obtain the score 
of the predictor. Then, a vertical line was drawn from the "Total Points" to the “probability” axis. Finally, the “probability” value obtained was the 
probability for the risk of myocardial ischaemia
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was 7.78 since there were a total of 14 predictors in our 
model. An event-per-predictor ratio greater than 5 is rec-
ommended in logistic regression models according to the 
rule of thumb [16]. Therefore, we believe that there are 
no major concerns regarding model overfitting.

In our study, the sample sizes in the training cohort 
were nA = 60 and nB = 49 , with feature means of 
µA = −3.25 and µB = 1.71 , respectively, and a stand-
ard deviation of σ = 5.024 . The sample sizes in the test 
cohort were NA = 19 and N = 27 . The two-sided signifi-
cance level was α = 0.05, and we obtained a mean statis-
tical power of 1− β = 0.895.

Discussion
This proof-of-concept study shows that the combination 
of radiomics and machine learning algorithms can help 
in the diagnosis of myocardial ischaemia from CCTA 
images. The extracted information quantifying the spatial 
and textural properties of CCTA images may generally be 
invisible to the naked eye. The constructed imaging bio-
markers have the potential to objectify our interpretation 
of CCTA images and increase the diagnostic accuracy for 
myocardial ischaemia.

At present, the gold standard for myocardial ischaemia 
diagnoses consists of stress tests, such as stress SPECT/
PET or stress CMR. However, stress tests may pose 
potential risks to patients with suspected CHD. Clini-
cally, myocardial ischaemia is conventionally diagnosed 
based on comprehensive information including the 
patient’s history, clinical characteristics, and electrocar-
diography. In this article, we grouped patients based on 
SPECT findings and clinical diagnoses.

CCTA is a non-invasive vascular imaging technique 
commonly used to observe coronary narrowness and 
plaques from anatomical structures and is routinely used 
to track suspicious CHD. Many methods also exist for 
evaluating coronary function based on CCTA, such as 
CT blood FFR-CT [17–20], coronary calcium score [21] 
and perivascular fat [22]. Many qualitative imaging mark-
ers identified by CCTA [23, 24] were found to predict 
subsequent major adverse cardiac events (MACEs) [25, 
26]. However, because of the properties of these mark-
ers, they tend to change based on the observation room 
and the observer. There is little direct information about 
ischaemia of the myocardium [27].

Radiomics offers a large number of high-throughput 
mathematical objectives for describing different lesion 
characteristics, especially parameters that are invisible 
to the naked eye or cannot be quantified through routine 
analysis, such as texture and shape. It has been widely 
reported that radiomics can provide more information on 
the diagnosis and prognosis of various diseases than con-
ventional approaches [11–13]. In this study, patients in 

the myocardial ischaemia group were diagnosed by stress 
SPECT scans, and the patients in the normal myocardial 
blood supply group had no clinical signs of myocardial 
ischaemia. The CCTA myocardial radiomics features 
of all patients were extracted, and feature selection and 
model construction were performed under the guidance 
of the diagnosis results from stress SPECT and/or clinical 
information. Therefore, we believe that the constructed 
model has the potential to predict myocardial ischae-
mia. Additionally, the evaluation index was used to ver-
ify the effectiveness of the model. Myocardial ischaemia 
may lead to changes in myocardial function and tissues, 
which may not be recognized by the naked eye at an early 
stage. However, these subtle changes could be discovered 
by using high-throughput radiomics features. This may 
be the reason why CCTA myocardial radiomics features 
can be used to predict myocardial ischaemia. Wenchao 
Hu et al. [28] extracted 1409 radiomics features from tar-
get lesions (lesions with a tendency to cause myocardial 
ischaemia predicted by FFR measurements) on CCTA 
images. The AUCs of the training and test cohort in 
predicting myocardial ischaemia were 0.762 and 0.671, 
respectively. According to the results of our experiment, 
the AUCs of the training and test cohort are 0.914 and 
0.827, respectively. The higher AUCs may be due to the 
inclusion of more patients in our study. In addition, the 
radiomics features of the myocardium may have a greater 
ability to reflect myocardial ischaemia than those of tar-
get lesions. Our results are consistent with other findings 
reported in the literature; ZhenYu Shu et al. utilized myo-
cardial radiomics features to recognize chronic myocar-
dial ischaemia [29], with AUCs of 0.839 and 0.816 for the 
training and test cohort, respectively. This work adds fur-
ther evidence that radiomics has the potential to identify 
myocardial ischaemia.

One of the characteristics of this paper is the use of 
deep learning technology for the segmentation of the 
myocardium, which decreases the subjective differences 
among doctors and reduces the duration of manual anal-
ysis. In addition, three-dimensional segmentation allows 
an overall assessment of the myocardium. Furthermore, 
a large number of extracted high-order features provide 
multidimensional parameters for the diagnosis of ischae-
mia by CCTA.

This article has some limitations that should be 
acknowledged. First, the size of the data is small, despite 
the average statistical power of 0.895, and the generaliz-
ability of the results still needs to be validated with an 
external, central dataset. Second, we excluded patients 
with other heart diseases to reduce their impact on the 
model. However, this may have led to potential selection 
bias, which should be considered in subsequent studies. 
Third, the model incorporates only the radiomics features 
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from CCTA images; clinical indicators could be further 
combined to increase the effectiveness of the diagnosis. 
Since the main focus of this paper was to explore the 
effectiveness of CCTA, the value of combining clinical 
indicators will be explored in a future study. Finally, this 
study is limited to the prediction of myocardial ischae-
mia, and in future studies, we will further explore the 
value of myocardial textures in predicting other condi-
tions such as heart failure and heart deposits.

Conclusion
In conclusion, this paper develops a multivariable logic 
regression model based on CCTA images for diagnos-
ing myocardial ischaemia. These results will add value to 
CCTA research and facilitate a more accurate diagnosis 
for these patients.
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