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Abstract

Background: Cardiac Amyloidosis (CA) pertains to the cardiac involvement of a group of diseases, in which misfolded
proteins deposit in tissues and cause progressive organ damage. The vast majority of CA cases are caused by light
chain amyloidosis (AL) and transthyretin amyloidosis (ATTR). The increased awareness of these diseases has led to an
increment of newly diagnosed cases each year.

Methods: We performed multiple searches on MEDLINE, EMBASE and the Cochrane Database of Systematic Reviews.
Several search terms were used, such as “cardiac amyloidosis”, “diagnostic modalities cardiac amyloidosis” and “staging
cardiac amyloidosis”. Emphasis was given on original articles describing novel diagnostic and staging approaches to
the disease.

Results: Imaging techniques are indispensable to diagnosing CA. Novel ultrasonographic techniques boast high
sensitivity and specificity for the disease. Nuclear imaging has repeatedly proved its worth in the diagnostic procedure,
with efforts now focusing on standardization and quantification of amyloid load. Because the latter would be
invaluable for any staging system, those spearheading research in magnetic resonance imaging of the disease are also
trying to come up with accurate tools to quantify amyloid burden. Staging tools are currently being developed and
validated for ATTR CA, in the spirit of the acclaimed Mayo Staging System for AL.

Conclusion: Cardiac involvement confers significant morbidity and mortality in all types of amyloidosis. Great effort is
made to reduce the time to diagnosis, as treatment in the initial stages of the disease is tied to better prognosis. The
results of these efforts are highly sensitive and specific diagnostic modalities that are also reasonably cost effective.
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Background
Amyloidosis refers to a group of diseases characterized by
the deposition of amyloid fibrils in multiple tissues
throughout the body, such as in the liver, kidney, eyes, heart
and others. Amyloid fibrils result from the uncontrolled de-
position of structurally abnormal proteins. Cardiac amyl-
oidosis (CA) refers to the infiltration of the myocardium by
amyloid fibrils, which cause cardiac dysfunction, eventually
leading to heart failure [1]. The effect of amyloidosis on the

quality of life and mortality rate of patients is substantial. A
recent study enrolling patients with light chain amyloid-
osis (AL) found significant mental and physical impairment
directly attributable to the disease [2].
Each disease that belongs to the umbrella term of amyl-

oidosis is caused by copies of a specific protein that are
folded in a fibrillogenic conformation. Not all types of amyl-
oidosis affect the heart in the same frequency. Cardiac amyl-
oidosis encountered in clinical practice is in the vast
majority of cases caused by light chain (AL) or transthyretin
amyloidosis (ATTR), with the latter consisting of two sub-
types: Senile ATTR amyloidosis, which is caused by
wild-type transthyretin deposition (ATTRwt), and familial
ATTR amyloidosis, which is caused by mutant proteins that
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exhibit increased fibrillogenicity (ATTRm or ATTRv, where
‘v’ stems from ‘variant’) [1, 3, 4]. Secondary amyloidosis is
the result of the overproduction of the acute-phase protein
serum amyloid A (SAA) in chronic inflammatory conditions.
SAA has been shown to deposit in cardiac tissue, but clinic-
ally significant cardiac involvement appears to be rare [5].
Isolated atrial amyloidosis (IAA) is a condition of great im-
portance to the pathophysiology of arrhythmias that origin-
ate in the atria, such as atrial fibrillation [6]. IAA is caused
by the deposition of Atrial Natriuretic Peptide (ANP) fibrils
in the atria. It appears to be the most common type of amyl-
oidosis to affect the heart, as more than 90% of people over
90 years old appear to have measurable ANP deposition in
their hearts [7]. The disease’s predilection for older women
appears to stem from the fact that estradiol upregulates
ANP expression in atrial cardiomyocytes [8].
Systemic amyloidosis is a quite rare disease, with its

incidence in the English population in the year 2008 es-
timated to be at least 4/1.000.000, as extrapolated from
epidemiological data. Most of the patients affected were
aged between 60 and 79 years [9]. The minimum inci-
dence of AL is similarly estimated at 3/1.000.000, and
the prevalence of AL CA, i.e. the cardiac involvement in
AL, is estimated at 8–12/1.000.000 [10]. AL CA affects
patients aged between 55 and 60 years old, with men
appearing to be slightly more vulnerable to the disease
[11]. On the other hand, ATTRwt CA usually affects
older patients, with the results of autopsies showing that
25% of people older than 80 years have their myocar-
dium infiltrated by TTR amyloid depositions [10, 12].
Interestingly, ATTRwt CA has been proved via
99mTc-DPD scintigraphy to represent 13% of patients
with Heart Failure with a Preserved Ejection Fraction
(HFpEF), in a sample of 120 patients over 60 years old
[13]. CA is the primary cause of restrictive cardiomyop-
athy (RCM) [14, 15]. In summary, cardiac amyloidosis’
frequency among HF patients is increasingly being ac-
knowledged by clinicians and researchers alike, as can be
observed from its inclusion in the novel MOGES classi-
fication of cardiomyopathies [16].
In the latter stages, CA, as a typical example of re-

strictive cardiomyopathy, manifests with the classical
triad of congestive HF symptoms, i.e. shortness of
breath, fatigue and edema [1]. Cardiac pump dysfunction
progressively emerges as amyloid aggregates in the heart
tissue [17]. ECGs of patients already diagnosed with the
disease are seldom normal, the most frequent abnormal-
ities for both AL and ATTRwt CA being low voltage
QRS and a pseudoinfarction pattern. Conduction disor-
ders and arrhythmias are also common, especially atrial
fibrillation and atrioventricular disorders [18, 19]. None-
theless, amyloidosis is probably still under-diagnosed, es-
pecially in subsets of the population like elderly patients
with HF [20]. Endomyocardial biopsy remains the gold

standard of CA amyloidosis’ diagnosis [21]. Regarding
AL, fat pad biopsy has been proven to have great sensi-
tivity to confirm the diagnosis [22]. A quick and efficient
diagnostic approach in CA is of great significance given
the accelerated deterioration observed in advanced
stages of the disease. It is known that the onset of a re-
strictive pathophysiology is independently linked to a
significantly poor prognosis in CA [23]. Additionally,
early diagnosis offers more therapeutic options, as ad-
vanced cardiac failure is a contraindication for other
therapies such as orthotopic liver transplantation [24].
The diagnostic modalities that will be discussed below
represent efforts to offer the clinicians with tools in
order to minimize lost cases, significantly reduce the
time needed for making the diagnosis, whilst simultan-
eously maintaining reasonable cost-effectiveness.

Methods
Adhering to PRISMA guidelines and aiming to procure
the latest literature on the subject of the methods used
to diagnose cardiac amyloidosis, all studies would be
evaluated for eligibility based on the following criteria:
Only (1) original studies (2) published in peer-reviewed
journals (3) within the past 5 years were considered eli-
gible for inclusion in this systematic review. (4) Only
studies written in English were evaluated for inclusion.
Studies were looked up on MEDLINE, EMBASE, PMC

and the Cochrane Database of Systemic Reviews through
PubMed and Google Scholar. Several search terms were
used, such as “cardiac amyloidosis diagnosis”, “staging
cardiac amyloidosis”, “TTR amyloidosis imaging” and
“cardiac amyloidosis ultrasound”, “cardiac amyloidosis
GLS”, “cardiac amyloidosis EFSR”, “cardiac amyloidosis
MRI”, “cardiac amyloidosis LGE”, “cardiac amyloidosis
CMR”, “cardiac amyloidosis nuclear imaging”, “cardiac
amyloidosis FDG-PET”, “cardiac amyloidosis PET”. All
studies in the first three pages of results for each search
query were evaluated for inclusion in this systematic re-
view based on the aforementioned eligibility criteria.
The search results that appeared eligible on the basis of
their title, publication date and abstract were given full
consideration and were included in the systematic re-
view, provided a comprehensive examination of their full
text confirmed their eligibility (Fig. 1).

Results
The search that was conducted yielded 674 results, of
which 60 were confirmed to be duplicates. Seven studies
included were recommended by experts on the field. 621
records were screened on the basis of title and abstract,
of which 602 were excluded from the review. Of the
remaining 19 studies, 2 were not suitable for our review.
The remaining 17 articles were finally included in the
systematic review.
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Imaging methods
Cardiac ultrasound
Cardiac ultrasound is a widely available, easy to use,
radiation-free and relatively inexpensive bedside tool. Car-
diac ultrasound has been established as the first step in the
amyloidosis diagnostic workup, as a tool of “ruling in” the
diagnosis, identifying patients likely to have the disease and
prompting further workup. Nowadays, advanced ultra-
sonographic protocols, utilizing state of the art ultrasound
technology are hugely improving the method’s sensitivity
and specificity.
The most common two-dimensional (2D) echocardio-

graphic findings observed in CA are biatrial dilatation and
increased left and right ventricular wall thickening [25, 26].
It should be noted that there is a mismatch between ECG
and echocardiographic findings, as low QRS voltage is not
consistent with ventricular hypertrophy. Granular sparkling
appearance of myocardium is a common echocardiographic
finding in CA, which is attributed to the increased echogeni-
city of the amyloid protein [25, 26]. Furthermore, valvular
thickening could be also found in specific types of CA, such
as TTR amyloidosis. However, it should be noted that the
frequency of these findings increases at the later stages of
the disease. Clinical data demonstrated the importance of a
more multiparametric approach, including the evaluation of
more advanced techniques such as Tissue Doppler Imaging
(TDI) and 2D strain imaging. Findings of RCM are typical in
CA. The severity of diastolic function is related to the degree
of amyloid infiltration, while high filling pressures and re-
strictive mitral inflow pattern are also observed. At the initial
stages, an abnormal relaxation pattern is observed. However,
the increase of wall thickness with the progression of the dis-
ease leads to shortened deceleration time, high early velocity

(E-wave) and low atrial velocity (A-wave) leading to E/A ra-
tio > 2 and deceleration time < 150ms, compared to E/A ra-
tio < 1 at the early stages [23, 27, 28]. Peak early diastolic
velocity (E’) assessed by TDI is decreased in the earliest
stages of the disease, and further decreases with the disease
progression, a fact that also helps in the differential diagnosis
with other diseases, such as constrictive pericarditis or
hypertrophic cardiomyopathy (HCM), in which E’ is normal
or mildly reduced [29]. Furthermore, numerous studies con-
firmed that impaired longitudinal function assessed by TDI
plays key role in the early diagnosis of CA. It has been dem-
onstrated that basal and mid LV longitudinal myocardial de-
formation were significantly decreased in asymptomatic CA
patients [27]. This abnormal finding was observed before
wall thickening. Interestingly, it was shown that impaired
longitudinal function assessed by TDI could discriminate be-
tween patients with CA and patients with amyloidosis with-
out cardiac involvement [27, 28]. However, it should be
noted that the TDI technique has significant limitations re-
lated to the Doppler effect as well the influence of noise and
angle dependence on measurements. Beyond TDI, myocar-
dial performance index (MPI also called Tei index), calcu-
lated by combining systolic and diastolic time intervals,
could provide significant information on myocardial func-
tion of CA patients, while it could also serve as an outcome
indicator [30, 31].
Speckle tracking technique for the evaluation of

myocardial deformation helped us to overcome these
limitations. Based on the interaction between ultra-
sounds and tissues and the use of specific software,
two-dimensional speckle tracking (2DST) is able to
evaluate longitudinal, radial and circumferential defor-
mations. From the very first studies, it has been

Fig. 1 Flowchart of literature review process
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demonstrated that global longitudinal strain (GLS),
circumferential and radial deformations were signifi-
cantly decreased in CA patients, compared to patients
with hypertrophic cardiomyopathy or hypertensive
heart disease [32]. Notably, it has been reported that
patients with AL and TTR cardiac amyloidosis and
preserved ejection fraction (EF) had impaired basal
and mid LV longitudinal strain (LS), also visible via
TDI, while apical LS was preserved [33]. Further, Phe-
lan et al. compared the global and regional strain pa-
rameters of 55 patients diagnosed with AL CA to
that of 30 patients with HCM of different etiology.
They used the parameter of relative apical longitu-
dinal strain (RALS), average apical LS/(average basal
LS + average mid-LS). An abnormally high RALS dis-
played a sensitivity of 93% and a specificity of 82% at
detecting CA. Relative apical sparing is characteristic
of both AL and TTR CA [34]. Pagourelias et al. used
the ratio of GLS to the EF, which is characteristically
disrupted by amyloid deposits. They introduced the
ejection fraction strain ratio (EFSR) as a reliable tool
to diagnose CA [35] and confirmed that it is cur-
rently the most specific (91.7%) and sensitive (89.7%)
echocardiographic parameter in diagnosing CA. The
apical sparing parameter proposed by Phelan et al.
was also investigated in the study, but yielded a
markedly low sensitivity of 37.5% in that sample
population, utilizing the proposed cut-off values [36].
The study also confirmed that EFSR displays low

inter-observer variability, being a standardized param-
eter, and demonstrably retains its high diagnostic
value in populations with either increased wall thick-
ness or preserved EF. Figure 2 is representative of
echocardiographic findings in CA.
One of the recent developments is the clinical implemen-

tation of three-dimensional (3D) echocardiography and 3D
speckle tracking (3DST) technique. In one of the first stud-
ies, LV regional dyssynchrony was measured via a
16-segment dyssynchrony index in AL patients and was
found significantly impaired compared to control subjects
[37]. In addition, very recent studies used deformation and
rotational 3DST parameter in order to differentiate CA pa-
tients from patients with other forms of myocardial hyper-
trophy [37]. One of the studies has further confirmed with
the use of 3DST that the basal rotational strain was signifi-
cantly reduced compared to apical rotational strain, a find-
ing that could efficiently differentiate CA patients from
patients suffering from HCM [38]. However, it is important
to mention that 3D echocardiography is still not widely used
compared to 2D echocardiography in clinical routine. Fur-
ther developments and clinical studies are needed in order
to develop measures and techniques that could offer a sig-
nificant additive value compared to 2D echocardiography.

Cardiac MRI
Cardiac Magnetic Resonance (CMR) is considered a very
sensitive and specific diagnostic modality for both ATTR
and AL, although it is more time-consuming and

Fig. 2 Mitral valve inflow pulsed wave Doppler (a) and Tissue Doppler Imaging of the mitral valve annulus (b) of a patient with CA
demonstrating an early diastolic dysfunction pattern. Circumferential (c) and longitudinal deformation by 2D strain imaging (c and d)
mainly shows an impairment of global longitudinal deformation. In patients with CA, an impaired deformation in basal segments
compared to apical segments could be found
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expensive when compared to cardiac ultrasound [39,
40]. CMR demonstrated high sensitivity in diagnosing
further diseases, such as in myocardial iron overload
[41], although cardiac ultrasound remains the first
choice as it is easy to use and widely available, as dem-
onstrated in studies which compared the sensitivity of
normal echocardiography compared to CMR [42, 43].
The deposition of amyloid in the heart leads to an in-
crease in myocardial extracellular volume (ECV). This
increase is readily detected by CMR through the Late
Gadolinium Enhancement (LGE) test. Gadolinium-based
contrasts rapidly extravasate are not absorbed by healthy
cardiomyocytes and is rapidly removed from the circula-
tion, while any in the elimination of contrast indicates
an increase in ECV, and it is this tissue that shows up
positive in LGE tests CA characteristically leads to dif-
fuse subendothelial LGE in the left ventricle as well as
the atria [44].During the disease progression, LGE ex-
pands transmurally and gradually to all chambers of the
heart tissue [45].
CMR with LGE demonstrated 80% sensitivity and 90%

specificity in detecting cardiac involvement in amyloid-
osis [46]. Since then its predictive value has improved
even further [47], in great part thanks to the develop-
ment of phase-sensitive inversion recovery (PSIR). This
technique, which allows the use of different inversion
times, alleviates some previous technical problems of
LGE CMR, which would cause discrepancies in LGE
measurement, leading to an underestimation of LGE ex-
tent and severity in cases where the majority of cardiac
tissue would be affected [48]. Based on the increasing
accuracy CMR findings, many clinicians actually forgo
the step of confirming the diagnosis through endomyo-
cardial biopsy (EMB), when a typical LGE pattern is de-
tected and no other causes of focal increase in cardiac
ECV, such as myocarditis, are likely. Although it is diffi-
cult to assess the implications of this approach, the in-
clusion of CA patients in studies whose diagnosis has
not been confirmed through EMB has been contested
[39]. Furthermore, it has been claimed that CMR can
also differentiate between ATTR and AL, due to differ-
ences in the pattern of LGE [49], although further inves-
tigation is necessary.
CMR’s role in the differential diagnosis between amyl-

oidosis and other diseases such as Fabry disease, and
HCM has also been examined. Specifically, while HCM
shows a patchy LGE pattern mainly located in the mid-
dle of the hypertrophic wall and Fabry disease shows a
more located LGE pattern in the basal segment of the
LV, CA shows atypical signal intensity related to the
amyloid deposition pattern and faster clearance of gado-
linium [50]. Due to this faster clearance of gadolinium,
CA patients also present a diminished T1 difference be-
tween myocardium and blood pool. However, because of

the reduced specificity of CMR in distinguishing be-
tween the aforementioned diseases in some cases, the
simultaneous examination of LGE and the relative apical
strain sparing was necessary to yield the best results, be-
ing capable of very reliably detecting CA patients (Fig. 3)
[51]. A technique that attempts to quantify the LGE
findings, the Look-Locker magnetic resonance sequence,
was tested in real-life patient series and yielded mixed
results [52]. Higher T1 inversion times (roughly the time
it takes for T1 signals to drop to pre-contrast levels) cor-
related with amyloid load but not patient prognosis.
Non-contrast T1 CMR imaging constitutes a very

promising technique with a reported 92% accuracy in
detecting cardiac involvement in amyloidosis. Notably, it
is safe for patients with renal failure, which is a common
problem among patients with amyloidosis [53, 54]. Ef-
forts to quantify amyloid load using T1 images have
yielded several techniques that boast reliable detection
of increased ECV, which is tied to higher amyloid load
in EMB specimens and worse patient outcome in small
studies [55–57].

Nuclear imaging
Nuclear imaging of the heart pertains to the intravenous
administration of radioactive substances and the inter-
pretation its absorption throughout cardiac tissues by
measuring the emitted radiation. Radio-labeled phospho-
nates, generally referred to as bone tracers, such as
[99mTc]-DPD show strong affinity for TTR amyloid fi-
brils in cardiac tissue. This has been extensively utilized
in the CA diagnostic process [58, 59]. The exact mech-
anism of [99mTc]-DPD binding to the amyloid fibrils is
yet to be elucidated, although the higher calcium con-
tent of the TTR fibrils may play a decisive role [60].
[99mTc]-DPD scans showed a surprisingly high sensitiv-
ity and specificity approaching 100% for ATTR CA
whilst being capable of very reliably excluding AL CA
[61]. This latter finding has been somewhat contested, as
AL amyloid deposits exhibiting uptake have been re-
ported [62]. Its sensitivity in asymptomatic patients has
also been challenged [63], potentially limiting
[99mTc]-DPD use to assessing cardiac involvement in
patients already diagnosed with ATTR amyloidosis.
Similar claims have been made about another

radio-labeled compound, [99mTc]-PYP. Bokhari et al.
proved in a study, which included 25 patients, that
[99mTc]-PYP imaging could efficiently discern be-
tween ATTR and AL CA [64]. They also developed a
standardized [99mTc]-PYP protocol for the diagnosis
of ATTR CA [65]. However, larger studies reported
significant absorption in patients suffering from AL
CA as well. Further studies concerning both tracers
would definitely shed some light on their potential
use [4].
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PET scans with 18F-florbetapir, a tracer originally devel-
oped for amyloid imaging in the brain, also represent a
promising tool for early diagnosis of cardiac amyloidosis, as
well as quantification of cardiac amyloid and extracardiac
amyloid load [66]. It must be noted that 18F-florbetapir
binds to both AL and ATTR deposits, although a higher af-
finity for AL amyloid was reported in vitro studies [67].
18F-FDG PET/CT scans are a mainstay of clinical oncology
and have also been examined as a potential imaging tool
for detecting ATTR and AL amyloidosis. Unfortunately,
many organs, including the heart, demonstrated variable
avidity to the tracer. This fact limited the scan’s sensitivity
of detecting cardiac involvement to 62.5%. 11C-Labelled
Pittsburgh compound B (11C-PiB) is a radio-labeled deriva-
tive of thioflavin-T that has been thoroughly used to detect
Αβ amyloid deposition in Alzheimer’s disease [68]. The po-
tential application of 11C-PiB PET scans in ATTR and AL
amyloid imaging was explored, with promising results. The
findings of 11C-PiB PET tomography correlated well with
post-mortem histopathological samples [68]. Further stud-
ies are definitely needed to confirm and build upon this
work, but the ability to image amyloidosis with 11C-PiB
would greatly increase PET’s accessibility, as this is a rela-
tively common tracer.
Finally, 123I-MIBG scintigraphy has the capability of de-

tecting cardiac sympathetic denervation in amyloidosis
patients with cardiac involvement [69]. Specifically in the
case of ATTR CA, 123I-MIBG can return positive results
before echocardiographic evidence of disease [70]. Al-
though the increased likelihood of lethal arrhythmias has
been proven in the setting of denervation of viable myo-
cardium in patients’ post-myocardial infarction, scarce
data exists, with regard to amyloidosis patients. Such a
finding would imply that positive 123I-MIBG findings
place the patient at heightened risk of arrhythmias.

Fat ultrasonography
Misumi et al. introduces fat ultrasonography, a novel
tool for the screening and diagnosis of ATTR amyl-
oidosis. The reported sensitivity is 85.1% and the spe-
cificity is 97.1%, under ideal imaging conditions [71].
Although the sample size and constitution is not
ideal, this study serves as a proof of concept for a
technique that constitutes both a potential screening
tool a promising research field.

Biomarkers
Cardiac involvement biomarkers
Serum troponin and NT-proBNP, biomarkers classically
associated with detecting and evaluating heart failure
from causes such as coronary heart disease [72], have
proven successful in assessing myocardial involvement
in amyloidosis.
Cardiac Troponin T (cTnT) is a reliable marker of car-

diomyocyte death and has proven itself a strong negative
prognostic factor for overall survival in AL and ATTR
amyloidosis [73, 74]. The introduction of a new, high
sensitivity assay for measuring cTnT, hs-cTnT, was
thought that could improve the staging of AL amyloid-
osis. It has been shown that although the use of
hs-cTnT does not improve the classic Mayo Staging Sys-
tem, it can render NT-ProBNP testing unnecessary, as
models indicate that the Staging System retains its
strength without it, when hs-cTnT is utilized [73–75].
The Brain Natriuretic Peptide (BNP) and the protein

that results from the N-terminal cleavage of BNP’s pro-
hormone, titled NT-proBNP, have been consistently
shown to be reliable prognostic markers for cardiac
amyloidosis, regardless of the nature of the amyloid (AL
or ATTR) [76]. For this reason, NT-proBNP levels have
been included in the Mayo Amyloidosis Staging System,

Fig. 3 Cardiac magnetic resonance (CMR) images of patients with cardiac amyloidosis. Amyloid fibril deposition pattern mainly affects
subendocardial CMR imaging, leading to a shortened T1 relaxation time and a diffuse LGE of the left ventricular endocardium
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which is widely used for the staging of AL amyloidosis
[77]. The logarithm of NT-proBNP levels is an inde-
pendent prognostic factor of mortality [78]. According
to the Transthyretin Amyloidosis Outcomes Survey
(THAOS), patients with elevated BNP and NT-ProBNP
levels at the time of diagnosis demonstrated poorer
prognosis, mainly attributed to renal insufficiency and
worsened functional status [79].

AL amyloidosis-specific biomarkers
Serum and urine immunofixation electrophoresis (IFE),
coupled with quantitative free light chain (FLC) mea-
surements, boast an impressive sensitivity in diagnosing
monoclonal gammopathies and have become a mainstay
in the diagnosis of AL amyloidosis [80]. Recent data sug-
gest that serum IFE alone, combined with FLC only mis-
ses 0.5% of monoclonal gammopathy cases with
abnormal urinary results [81].
It is of note, that positive FLC and IFE findings in pa-

tients with confirmed amyloid deposition, whether
through EMB or imaging studies, do not definitively
confirm the diagnosis of AL amyloidosis, as cases of
older patients with ATTRwt amyloidosis and concomi-
tant MGUS are repeatedly reported throughout the lit-
erature. In patients with risk factors for both diseases,
diagnostic modalities with the capacity to objectively dis-
cern amyloid composition are necessary [82].
dFLC is defined as the difference between the serum

levels of κ an λ Free Light Chains. It is a major inde-
pendent prognostic factor in AL amyloidosis, as well as
several other plasma cell disorders such as the multiple
and smoldering myeloma [83]. The pathophysiological
reasoning is that increased dFLC values reflect more
available free light chains, accelerating fibril formation.
Increased dFLC levels are associated with higher likeli-
hood and severity of heart disease, as well as worse re-
sponse to therapy, whilst a reduction post-therapy has
been tied to better outcomes [84].
The currently preferred staging system in AL amyloid-

osis is the Mayo Amyloidosis Staging System that uti-
lizes the aforementioned biomarkers cTNT, NT-proBNP
and dFLC to stratify disease severity in patients with AL
(Table 1) [77].

ATTR amyloidosis-specific biomarkers
The V122I variant of the TTR protein is being in-
creasingly recognized as an underdiagnosed cause of
heart failure in elderly African American patients, 3–
4% of which appear to carry the gene [85]. Arvanitis
et al. discovered that Retinol Binding Protein 4
(RBP4) levels in ATTRm amyloidosis patients with
the V122I mutation have been found significantly di-
minished [86]. By combining ultrasound measure-
ments (LVEF, IVSD) and ECG parameters such as the

mean QRS alongside with serum RBP4 levels, the au-
thors proposed a clinical score with significant diag-
nostic accuracy [87].
A very similar staging system to that used in AL amyl-

oidosis has been proposed for ATTR-wt amyloidosis, in-
corporating cTnT and NT-proBNP values to stratify
patients in three stages, depending on the number of the
aforementioned lab values exceeding a certain cut-off
value [88].
Recently, Gillmore et al. devised a novel staging tool

that can be used for both ATTRwt and ATTRm amyl-
oidosis (Table 2). They validated its capability to predict
median survival in a study consisting of 869 patients.
This staging tool assesses eGFR and NT-proBNP, which
both correlate well with overall survival [89]. This ap-
proach elicited mixed results from the research commu-
nity. It has been lauded for its simplicity and
reproducibility, but criticized for the omission of cTnT
from the risk stratification, as well as the inclusion of
eGFR. In an insightful editorial, Singh and Falk pointed
out that a reduced eGFR in ATTR CA patients is mostly
a byproduct of either age-related comorbidities or renal
hypoperfusion secondary to heart failure, thus not a
good independent prognostic factor of mortality [90].
They also hint towards the general trend of machine
learning-based clinical prediction models [91, 92], and
their potential application to ATTR patients.

Conclusion
Cardiac amyloidosis is the main cause of morbidity and
mortality in AL and ATTR amyloidosis. Heart failure is al-
most inevitable during the course of the disease [93–95],

Table 1 AL Staging according to the revised Mayo AL staging
tool [55]

Number of
abnormal
laboratory tests

Stage (according to
revised staging
system)

Median Overall
Survival (months)

5-year
Survival

0 I 94.1 59%

1 II 40.3 42%

2 III 14 20%

3 IV 5.8 14%

(Laboratory tests: cTnT ≥0.025 ng/mL, NT-ProBNP
≥1800 pg/mL, dFLC≥18mg/dL)

Table 2 Proposed ATTR staging utilizing the staging tool
proposed by Gillmore et al. [67]

Number of
abnormal
laboratory tests

Stage (according to
revised staging
system)

Median Overall
Survival (months)

5-year
Survival

0 I 69.2 63%

1 II 46.7 37%

2 III 24.1 19%

(Laboratory tests: eGFR< 45ml/min/1.73 m2, NT-proBNP > 3000 ng/L)

Kyriakou et al. BMC Cardiovascular Disorders          (2018) 18:221 Page 7 of 11



greatly limiting therapeutic options. A timely diagnosis is
thus critical [96] but frequently proves difficult, as the
symptoms are rarely indicative of the disease. The low
cost, simplicity and lack of radiation render ultrasono-
graphic protocols an almost ideal tool to “rule in” amyl-
oidosis as a likely cause of congestive heart failure. Less
readily available and more expensive tools such as car-
diac MRI and nuclear imaging are better used to con-
firm and quantify cardiac involvement or to screen for it
in patients already diagnosed with amyloidosis. Both
diagnostic tools have yielded quantitative values (ECV
fraction and myocardial retention index respectively)
that appear to detect cardiac involvement in amyloidosis
patients, so their inclusion in the current staging
systems is an interesting avenue of research. These sta-
ging systems currently stratify patients solely through
the use of biomarkers, whose role in CA is constantly
re-evaluated. Current research aims at rendering exist-
ing tools more effective and sensitive, in addition to dis-
covering novel disease biomarkers, such as RBP4.
In summary, several novel diagnostic and staging

concepts have been established for cardiac amyloid-
osis in recent years (Fig. 4). Research is now focus-
ing on validating these novel concepts using larger
patient groups and better adjusting them for clinical
practice. The validation of diagnostic algorithms that
use simplified and cost-effective means of ruling in
the diagnosis and sensitive tools to confirm the dis-
ease and to quantify amyloid load are key elements
to shortening the time to diagnosis and improving
patients’ prognosis.
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