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Abstract
Background  Understanding the genetic mechanisms underlying gray leaf spot (GLS) resistance in maize is crucial 
for breeding GLS-resistant inbred lines and commercial hybrids. Genome-wide association studies (GWAS) and gene 
functional annotation are valuable methods for identifying potential SNPs (single nucleotide polymorphism) and 
candidate genes associated with GLS resistance in maize.

Results  In this study, a total of 757 lines from five recombinant inbred line (RIL) populations of maize at the F7 
generation were used to construct an association mapping panel. SNPs obtained through genotyping-by-sequencing 
(GBS) were used to perform GWAS for GLS resistance using a linear mixture model in GEMMA. Candidate gene 
screening was performed by analyzing the 10 kb region upstream and downstream of the significantly associated 
SNPs linked to GLS resistance. Through GWAS analysis of multi-location phenotypic data, we identified ten candidate 
genes that were consistently detected in two locations or from one location along with best linear unbiased 
estimates (BLUE). One of these candidate genes, Zm00001d003257 that might impact GLS resistance by regulating 
gibberellin content, was further identified through haplotype-based association analysis, candidate gene expression 
analysis, and previous reports.

Conclusions  The discovery of the novel candidate gene provides valuable genomic resources for elucidating 
the genetic mechanisms underlying GLS resistance in maize. Additionally, these findings will contribute to the 
development of new genetic resources by utilizing molecular markers to facilitate the genetic improvement and 
breeding of maize for GLS resistance.
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Introduction
Maize gray leaf spot (GLS) is a severe foliar disease that 
poses a significant threat to maize production and yield 
[1]. Maize GLS was initially reported in the United States 
[2], and has since become endemic in several countries, 
including Brazil, Uganda, South Africa and other coun-
tries of South America and Africa [3–7]. In China, GLS 
was first reported in 1991 [8]. Maize GLS resistance is a 
complex quantitative trait controlled by multiple genes. 
Numerous studies have demonstrated the high heri-
tability of GLS and revealed that the quantitative trait 
loci (QTL) associated with maize GLS resistance exhibit 
mainly additive effects, with some displaying minor dom-
inant effects [3, 9]. Studies have revealed that the causal 
agents of GLS are primarily two main fungus species, 
Cercospora zeae-maydis and Cercospora zeina, respon-
sible for causing GLS in maize worldwide [10]. However, 
there are regional variations in the causal fungus species. 
For instance, in the United States and Brazil, at least two 
fungus species are present [4, 11], while in Africa, it is 
primarily Cercospora Zeina [12]. In Northern China, GLS 
is primarily caused by the fungus Cercospora zeae-may-
dis, whereas in Southwest China and other regions like 
Yunnan, it is predominantly caused by Cercospora zeina. 
The economic losses inflicted by GLS on maize yield are 
substantial, and studies have shown that developing resis-
tant varieties is the most effective approach to combat 
GLS [11]. Therefore, the identification of candidate genes 
associated with GLS resistance, unravelling the genetic 
basis of GLS resistance in maize, and subsequent breed-
ing of resistant maize varieties are of utmost importance 
in sustaining maize yields and meeting the food demands 
of the growing global population.

Due to advancements in sequencing technology and 
analytical methods, QTL mapping [13] and GWAS [14] 
have emerged as important approaches in discover-
ing candidate genes related to maize GLS resistance. 
Researchers have successfully identified numerous QTLs 
and SNPs associated with maize GLS resistance by 
employing diverse varieties and lines from maize popu-
lations through QTL mapping and GWAS. These studies 

have laid a crucial foundation for elucidating the genetic 
mechanisms underlying GLS resistance in maize. How-
ever, these studies have rarely utilized tropical or subtrop-
ical maize germplasm as the analyzed population, despite 
the importance of tropical and subtropical germplasms 
in combatting maize diseases. In our study, we selected 
one subtropical and four tropical GLS-resistant RILs as 
the female parents and one temperate GLS-susceptibility 
RIL as the common male parent. The objectives of the 
study were to (1) exploit tropical and subtropical maize 
germplasm resources to uncover important genetic loci 
and candidate genes regulating GLS resistance; (2) lay the 
foundation for fine mapping and cloning of GLS resis-
tance genes in maize; and (3) provide a theoretical basis 
for genetic improvement of GLS resistance in maize.

Results
Maize GLS levels based on phenotypic data
In this study, a descriptive statistical analysis was per-
formed to assess the infection level of GLS in five RIL 
populations at two different locations. The results 
showed that the average infection level of GLS in the 
plants from the five RIL populations in Dehong (DH) and 
Baoshan (BS) ranged from 3 to 6 (Table  1). Meanwhile, 
the absolute values of skewness and kurtosis coefficients 
for the five populations in both locations were close to 1, 
indicating that the GLS levels in the test populations at 
both locations followed a normal distribution and exhib-
ited typical quantitative trait characteristics. GWAS was 
performed based on this phenotypic data.

Genotyping-by-sequencing and SNP data profile
We employed the GBS approach to sequence 757 RILs. 
After filtering, each RIL had an average of 3.78 Gb clean 
reads with a depth of 12.68X and a coverage of 12.12%. 
On average, the alignment rate of the samples was 
98.56%, and the coverage of at least four bases was 4.91%. 
These results indicated that the sequencing coverage for 
each sample was sufficient to adequately cover the refer-
ence genome, meeting the requirements for re-sequenc-
ing analysis.

Table 1  Statistical analysis of GLS phenotypes of the five RIL populations in DH and BS
Location Population Mean Standard Deviation (SD) Skewness kurtosis Coefficient of Variation (CV)(%)
DH RIL-CML312 3.490 1.357 0.275 -0.373 38.879

RIL-YML32 6.181 1.132 -1.222 1.764 18.321
RIL-YML16 5.548 1.295 -0.718 0.08 23.346
RIL-YML226 5.378 1.181 -1.163 1.578 21.961
RIL-D39 5.936 1.076 -0.972 1.097 18.125

BS RIL-CML312 3.927 1.272 -0.025 -0.529 32.386
RIL-YML32 5.502 1.360 -0.709 1.406 24.720
RIL-YML16 3.610 1.568 0.434 -0.055 43.450
RIL-YML226 3.822 1.777 -0.109 -1.075 46.491
RIL-D39 3.674 1.830 0.203 -0.714 49.821
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Principal component analysis, population structure and 
kinship analysis
The results of the principal component analysis (PCA) 
showed that 757 maize RILs could be classified into five 
main groups based on PCA1 and PCA2 (Fig.  1A). We 
performed evolutionary tree construction based on the 
filtered SNP dataset, and the results showed that 757 
maize RILs could be clustered into five major clusters 
(Fig.  1B). The ancestral component analysis was consis-
tent with the results of PCA and evolutionary tree, and 
the population structure was clear and realistic at K = 5 
(i.e., grouped into five clusters) (Fig.  1C). Therefore, we 
selected the first three PCAs as covariates to be included 
in the model of GWAS analysis along with the kinship.

LD decay analysis
Raw SNP dataset from each RIL population was used for 
linkage disequilibrium (LD) decay analysis. We calcu-
lated the LD delay for each population and found that the 
physical distances were approximately 10 to 20 kb when 
the rates of r2 decrease leveled out (Fig.  2). Meanwhile, 
we chose 10  kb as the criterion for screening candidate 

genes, taking into account that the longest repeat ele-
ment in the maize genome is 10 kb.

Genome-wide association study
GWAS was conducted using the linear mixed model 
(LMM) in GEMMA, incorporating SNPs and the mean 
GLS phenotypic data from DH and BS, and as well as the 
BLUE values. A significant association between SNPs and 
traits was determined when the p < 5.346707e-05 (DH 
and BLUE) and 5.346707e-06 (BS) (Fig. 3). To address the 
problem of multiple testing during association analysis, 
the Bonferroni correction method was applied. The QQ-
plot (Fig. 3) indicated the appropriateness of the selected 
statistical model for the association analysis. Using the 
phenotypic data from DH, we identified 438 SNPs sig-
nificantly associated with GLS resistance, which were 
distributed across chromosomes 1, 2, 3, 4, 5, 7, and 10 
of maize. Similarly, using the phenotypic data from BS, 
we localized 397 SNPs significantly associated with GLS 
resistance, distributed on chromosomes 1, 3, 4, 6, 8, and 9 
of maize. Furthermore, we identified a total of 683 SNPs 
significantly associated with GLS resistance using the 

Fig. 1  The population structure of 757 recombinant inbred lines (RILs). (A) Principal component analysis shows the clustering of RILs, with purple, pink, 
red, yellow, and green dots representing the RIL-CML312, RIL-YML32, RIL-YML16, RIL-YML226, and RIL-D39 population, respectively. (B) The evolutionary 
tree with purple, pink, red, yellow, and green branches represent RIL-CML312, RIL-YML32, RIL-YML16, RIL-YML226, and RIL-D39, respectively. (C) Ancestral 
component analysis, where purple, pink, red, yellow, and green bars represent RIL-CML312, RIL-YML32, RIL-YML16, RIL-YML226, and RIL-D39, respectively
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BLUE values, distributed across chromosomes 2, 3, 4, 5, 
6, 8, and 9 of maize.

Candidate genes screening and functional annotation
Based on the significantly associated SNPs obtained from 
the GWAS, candidate genes were screened within a 10 kb 
region upstream and downstream of these SNPs. The 
screening resulted in the identification of a total of 38 
genes associated with GLS resistance (Table S1). Among 
them, thirteen genes were identified at DH location. They 
were located on chromosomes 2, 3, 4, 5, and 7. Fourteen 
genes were identified at the BS location and they were 
distributed on chromosomes 1, 3, 4, 6, and 9. Twenty-one 
genes were identified through the association analysis 
using the BLUE values and these genes were distributed 
on chromosomes 2, 3, 4, 5, 6, and 8. Furthermore, the 
association analysis revealed that five candidate genes co-
localized for the BS location and BLUE values, and five 
candidate genes were found to be overlapped for the DH 
location and BLUE values (Table 2).

Haplotype-based association analysis
Three adjacent polymorphic SNPs were used as a sin-
gle haplotype block, and association analysis was per-
formed using the GLS phenotype to identify significant 
haplotype blocks. The identified significant haplotype 
blocks were then compared with the candidate genes 
screened earlier, resulting in the discovery of nine hap-
lotype blocks that overlapped with five candidate genes 
(Table  3). Among them, haplotype blocks WIN247913 
and WIN247914 on chromosome 2 were shared by 
BS, DH and BLUE, and these two haplotype blocks 
overlapped with the gene Zm00001d003257. Haplo-
type block WIN457430 on chromosome 3 overlapped 
with the gene Zm00001d043188. Haplotype block 
WIN1043856 on chromosome 6 overlapped with the 
gene Zm00001d035465. Haplotype blocks WIN1043864, 
WIN1043865, WIN1043868 and WIN1043869 over-
lapped with the gene Zm00001d035466. Additionally, the 
haplotype block WIN1043918 on chromosome 6 over-
lapped with the gene Zm00001d035467.

Fig. 2  The LD decay of five recombinant inbred line (RIL) populations. LD decay determined by squared correlations of allele frequencies (r2) against the 
distance between polymorphic sites in RIL-YML226 (red), RIL-YML32 (black), RIL-D39 (blue), RIL-CML312 (purple) and RIL-YML16 (green)
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Fig. 3  Results of GWAS for GLS resistance. (A) Manhattan plot(left) and QQ plot(right) for Dehong (DH) phenotype mean, (B) Manhattan plot(left) and QQ 
plot(right) for Baoshan (BS) phenotype mean, (C) Manhattan plot(left) and QQ plot(right) for best linear unbiased estimates (BLUE). The y-axis represents 
–log10(p) values for marker–trait association and the x-axis represents the chromosomes with position. The horizontal red dashed line in the Manhattan 
plot indicates the significance threshold, and the different colored dots represent the physical location of SNPs on the corresponding chromosomes. The 
red dashed line in the QQ plot indicates the expected significance value, and the blue dots indicate the actual significance value
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Phenotype differences in haplotype blocks
The candidate gene Zm00001d003257 overlapped with 
two significant haplotype blocks, viz. WIN247913 and 
WIN247914. Significant phenotypic differences in plant 
GLS scales were observed between these two haplotype 
blocks. Within the WIN247913 block, three haplotype 
variants were identified: ACT, ATC and TCT (Fig.  4A). 

All three haplotypes exhibited resistance to GLS based on 
the corresponding phenotypic data. However, the TCT 
haplotype block demonstrated the strongest resistance to 
GLS, with resistance predominantly concentrated around 
scale 3. Similarly, within the WIN247914 block, three 
variants were identified: CTC, CTT and TCC (Fig.  4B). 
All three haplotypes corresponded to phenotypic data 

Table 2  Putative candidate genes associated with GLS resistance in maize
Chromosome Start End Candidate genes Description Data for GWAS
2 38,091,293 38,098,388 Zm00001d003257 26 S proteasome non-ATPase regulatory subunit 6 homolog DH and BLUE
2 38,097,924 38,102,928 Zm00001d003258 Elongator complex protein 3 DH and BLUE
2 38,105,379 38,121,803 Zm00001d003259 Galactose oxidase/kelch repeat superfamily protein DH and BLUE
3 190,965,694 190,973,192 Zm00001d043188 NA-(apurinic or apyrimidinic site) lyase chloroplastic DH and BLUE
3 191,414,936 191,416,171 Zm00001d043199 Disease resistance protein RGA4 BS and BLUE
3 191,416,497 191,430,313 Zm00001d043200 / BS and BLUE
5 51,914,095 51,915,783 Zm00001d014530 Phenolic glucoside malonyltransferase 1 DH and BLUE
6 28,058,154 28,062,105 Zm00001d035465 E3 ubiquitin-protein ligase RHF2A BS and BLUE
6 28,062,742 28,064,462 Zm00001d035466 Protein root UVB sensitive 2 chloroplastic BS and BLUE
6 28,070,797 28,073,319 Zm00001d035467 Putative CRINKLY4-like receptor protein kinase family protein BS and BLUE

Table 3  Haplotype blocks overlapped with the candidate genes†
Candidate gene Overlapped haplotype blocks Data for haplotype-based GWAS
Zm00001d003257 WIN247913 and WIN247914 BS, DH and BLUE
Zm00001d003258 NA NA
Zm00001d003259 NA NA
Zm00001d043188 WIN457430 BS
Zm00001d043199 NA NA
Zm00001d043200 NA NA
Zm00001d014530 NA NA
Zm00001d035465 WIN1043856 BS, DH and BLUE
Zm00001d035466 WIN1043864/WIN1043865/WIN1043868/WIN1043869 BS, DH and BLUE
Zm00001d035467 WIN1043918 BS, DH and BLUE
†NA = not applicable

Fig. 4  Phenotype differences in haplotype blocks of the gene Zm00001d003257. (A) Haplotype block WIN247913; (B) Haplotype block WIN247914. The 
vertical axis represents the GLS disease scales. The boxes represent different haplotype block groups. The numbers between any two groups represent 
P values from t test
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indicating resistance to GLS. However, the CTT haplo-
type block displayed the strongest resistance to GLS, 
with resistance primarily concentrated around scale 4.

Expression analysis of candidate genes
Comparing the fragments per kilobase of exon model 
per million mapped fragments (FPKM) values of 
the ten candidate genes overlapped with haplotypes 
shown in Table  3, we found that, except for five genes 
(Zm00001d035465, Zm0001d035466, Zm00001d035467, 
Zm00001d043199 and Zm00001d043200), all the other 
five genes had FPKM values near 20 under Cercospora 
zeina stress (Fig.  5A). Among them, the candidate gene 
Zm00001d003257 had FPKM values about 25, and the 
candidate gene Zm0001d003258 had FPKM values 
above 20 under Cercospora zeina stress (Fig. 5A). Addi-
tionally, all five candidate genes (Zm00001d003257, 
Zm00001d003258, Zm00001d003259, Zm00001d014530 
and Zm00001d043188) had FPKM values greater than 10 
when the plants were infected with GLS, with the candi-
date gene Zm00001d003257 having FPKM values above 
20 and the candidate gene Zm00001d003258 having 
FPKM values above 25 (Fig. 5B).

Discussion
The studies on GLS resistance in maize have primar-
ily focused on QTL mapping. Bubeck et al. [15] located 
QTLs associated with GLS resistance on all 10 maize 
chromosomes in three F2:3 mapping populations, with 
nearly all markers exhibiting additive action. Balint-
Kurti et al. [16] identified five significant QTLs for GLS 
resistance, including one at bin 2.04 that conferred resis-
tance to southern leaf blight, using an RIL population 
derived from a cross between the resistant line Mo17 
and the susceptible line B73. Zhang et al. [17] detected 
four QTLs (on chromosomes 1, 2, 5, and 8), designating 

qRgls1 and qRgls2 as major QTLs on chromosomes 
8 and 5, respectively. Subsequently, Zhong [18] fine-
mapped and validated the qRgls1 QTL, further identify-
ing and confirming ZmWAK-RLK as a GLS resistance 
gene. In another study, Benson et al. [19] found 16 QTLs 
employing a nested association mapping (NAM) popu-
lation, three (qGLS1.04, qGLS2.09 and qGLS4.05) of 
which reduced GLS severity by over 10%. Liu et al. [9] 
identified seven QTLs associated with GLS resistance, 
with qRgls.yaas-8-1, located within the bin 8.04 inter-
val of chromosome 8, having the highest effect. Chen 
et al. [20] genotyped two RIL populations, (CML373 × 
Ye107 and Chang7-2 × Ye107) and discovered 11 QTLs 
associated with GLS resistance, with individual QTLs 
explaining 2.05–24.00% of the phenotype variation. 
Qiu et al. [21] used a near-isogenic line (NIL) popula-
tion to localize QTL-qGLS8 for GLS resistance on chro-
mosome 8. Sun et al. [22] identified a QTL, qRgls1.06, 
associated with GLS resistance, explaining 55% of the 
phenotypic variation using bulked segregant analy-
sis (BSA) and QTL mapping in a backcross population. 
In our study, three candidate genes, Zm00001d035465, 
Zm00001d035466 and Zm00001d035467, located 
within the previously reported QTLGLSchr6 (26909746-
120538443kb) [23] region. Moreover the other three 
candidate genes, Zm00001d043188, Zm00001d043199 
and Zm00001d043200, were very close to the previously 
reported significant SNP qGLS3.07 (196,578,413 kb) [24].

In this study, we conducted SNP-based and haplotype-
based GWAS and identified ten candidate genes. Though 
qRT-PCR is standard and preferred method for validat-
ing gene functions, due to some technical problems, the 
pathogen culture was not success in our lab. Instead we 
have used FPKM as a way to validate the candidate genes 
identified by this study. As the result, FPKM analysis 
allowed us to select five candidate genes with haplotypes 

Fig. 5  Expression of candidate genes. (A) FPKM (Fragment Per Kilobase Million) under GLS stress caused by Cercospora Zeina; (B) FPKM under GLS stress 
without specific GLS race identified. The vertical axis represents FPKM. Different colored boxes represent different candidate genes. The t test was per-
formed for FPKM of each gene. The bar chart with same letter indicate no significant difference and the black lines represent error bar
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showing significant differences in GLS scales from 
the ten candidate genes. Among these five genes, only 
Zm00001d003257 exhibited a haplotype block overlap-
ping with it, and this haplotype block was identified in 
the haplotype based-GWAS of BS, DH and BLUE. Nota-
bly, the TCT haplotype block within Zm00001d003257 
had higher FPKM values compared to other haplotypes 
under C. zeina stress conditions. The Zm00001d003257 
gene encodes the 26  S proteasome regulatory subunit 
Rpn7/COP9 signaling complex subunit 1. This gene has 
been shown to upregulate or downregulate gibberellins 
(GAs) in rice in response to external stresses [25], play-
ing a crucial role in plant growth and development, and 
immune responses. Both endogenous and exogenous 
GAs have been found to induce disease resistance and 
susceptibility in rice against different pathogens [26]. For 
instance, studies by Nahar et al. [27] revealed that GAs 
synthesis-impaired, GAs-insensitive, and SLR1 gain-of-
function mutants exhibited enhanced susceptibility, while 
SLR1 loss-of-function mutant slr1-1 displayed enhanced 
disease resistance during rice and Pythium graminicola 
intercropping compared to the wild type. Additionally, 
Hossain et al. [28] reported that exogenous gibberellins 
enhanced resistance to Hirschmanniella oryzae in rice. 
Furthermore, exogenous GAs and GAs synthesis inhibi-
tor treatments have been shown to decrease and enhance 
disease resistance against Magnaporthe oryzae and Xan-
thomonas oryzae pv. oyrzae, in rice, respectively [29–
31]. GAs-insensitive mutants and functionally acquired 
mutants of OsSLR1 also exhibited enhanced resistance to 
rice blast or rice bacterial leaf blight [29, 32]. Based on 
these previous studies and our findings, we hypothesize 
that the candidate gene Zm00001d003257 may possess a 
similar function in regulating gibberellin content, thereby 
affecting GLS resistance in maize.

Currently, marker-assisted introgression has been 
used as a valuable tool in maize breeding. For instance, 
researchers successfully introduced the β-carotene 
hydroxylase (crtRB1) gene into low- carotenoids maize 
varieties, resulting in an approximately 12-fold increase 
in β-carotene content [33]. In another study, the marker-
assisted introgression of qHSR1 improved maize resis-
tance to head smut [34]. Additionally, researchers have 
introduced maize germplasm lines introgressed with 
disease resistance genes from teosinte and successfully 
cloned the major QTL qLMchr7, which controls the spot-
like phenotype, using map-based cloning. The ZmMM1 
gene, located in qLMchr7, provides maize with broad-
spectrum resistance to the disease [35]. The genes we 
report here may serve as a basis for validating gene func-
tions and prove useful in marker-assisted introgression 
for maize breeding.

Conclusion
We identified five candidate genes associated with GLS 
resistance by employing SNP-based GWAS, haplotype-
based GWAS, and expression information from a public 
RNA database. Combined with previous studies, we fur-
ther detected one novel candidate gene associated with 
GLS resistance. The novel candidate genes we identified 
appeared to be associated with phytohormone regulation 
or synthesis. Previous studies have shown that phytohor-
mones play a crucial role not only in plant growth and 
development, but also in plant immune responses. Con-
ducting further functional validation of this candidate 
gene could offer new insights into GLS resistance mecha-
nisms in maize. Moreover, the genes and loci identified 
in this study can serve as references for future marker-
assisted breeding, and also provide reliable genetic 
resources for subsequent studies on the mechanisms 
underlying GLS resistance genes. Importantly, our study 
also highlights the potential value of tropical or subtropi-
cal maize germplasm in breeding maize varieties for GLS 
resistance.

Materials and methods
Experimental materials and field design
Ye107, an important backbone inbred line in China and 
susceptible to GLS, was used as the common male par-
ent and crossed with four tropical (YML32, YML16, 
YML226, and D39) and one subtropical (CML312) 
inbred lines, all of which exhibit stronger resistance to 
GLS. Through continuous selfing for six generations 
using the single seed descent method, five RIL popu-
lations at the F7 generation were obtained. Approxi-
mately 200 samples were randomly selected from each 
RIL population, resulting in the construction of five RIL 
populations namely, RIL-CML312, RIL-YML32, RIL-
YML16, RIL-YML226 and RIL-D39. The parental line 
names, pedigrees, the heterotic group classification, and 
their ecotypes are presented in Table  4. The classifica-
tion of the heterotic groups was based on the “tri-het-
erotic group” theory, a breeding strategy to improve the 
selection efficiency of maize hybrids [36]. Initially, each 
RIL population consisted of 200 samples. However, due 
to inbreeding depression and other stresses common in 
inbred line development, few lines were lost during the 
selfing process. As a result, the final RIL-CML312 pop-
ulation consisted of 151 F7 RILs derived from the cross 
between Ye107 and CML312; the RIL-YML32 population 
comprised 162 F7 RILs derived from the cross between 
Ye107 and YML32; the RIL-YML16 population with 
141 F7 RILs derived from the cross between Ye107 and 
YML16; the RIL-YML226 population with 120 F7 RILs 
obtained from the cross between Ye107 and YML226; 
and the RIL-D39 population with 183 F7 RILs derived 
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from the cross between Ye107 and D39. In total, 757 F7 
RILs were utilized in this study.

These 757 F7 RILs were planted in 2019 at two loca-
tions, DH and BS, in Yunnan Province, China. Both loca-
tions are known as maize GLS hotspots, experiencing 
endemic GLS outbreaks almost every year. The experi-
ment was conducted in a randomized complete block 
design (RCBD) with three replications at each location. 
Each experimental plot consisted of two 3-m-long rows, 
with an inter-row spacing of 0.70  m and 14 plants per 
row. The field trials were conducted according to local 
standard agronomical practices.

Phenotyping for GLS and statistical analysis
The RILs of the multi-parent population were screened 
for GLS under filed conditions at two locations, BS and 
DH in Yunnan province, China, during the summer of 
2019.

The resistance to GLS was assessed starting in the 4th 
week after maize dispersal. Since the outbreak of maize 
GLS in Yunnan region occurs in every July when the 
temperatures range from 20 to 25  °C, with high relative 
humidity (above 81%), creating conducive conditions for 
the growth and spread of the GLS spore, five populations 

were screened during this time to assess the GLS levels. 
In July 2019, we surveyed GLS in five populations with 
natural outbreaks of GLS in BS and DH, Yunnan. The 
scoring criteria for GLS are presented in Table 5 [9, 37], 
and the GLS resistance score was determined for each 
RIL population based on the percentage of total leaf area 
infected by GLS. Descriptive statistical analysis was con-
ducted on the collected data using SPSS software (IBM 
Corp. Released 2020. IBM SPSS Statistics for Windows, 
Version 27.0. Armonk, NY: IBM Corp.). Additionally, 
we employed the lme4 version 1.1–30 [38] R package for 
calculating BLUE. The one-stage approach was selected, 
considering location and repetition as random factors, 
and variety as a fixed factor, to calculate BLUE values. 
The calculation formula used was: m1 = lmer(GLS ~ Cul 
+ (1|Location) + (1|Location:Rep). The calculated BLUE 
values, along with the average phenotypic data from BS 
and DH were used for the subsequent GWAS.

DNA extraction and genotyping-by-sequencing
A genotyping-by-sequencing (GBS) approach was 
employed to discover SNPs in the 757 maize RILs. 
Genomic DNA was extracted from seedling leaves of 
each accession using a modified cetyl trimethyl ammo-
nium bromide method. The modifications included using 
4mM tris (2-carboxyethyl) phosphine instead of 2-mer-
captoethanol, along with 2% polyvinylpolypyrrolidone 
and 40  mg RNase [39]. The DNA concentration was 
assessed using the Quant-iT PicoGreen dsDNA Assay 
Kit (Life Technologies, Grand Island, NY, United States) 
and standardized to 20ng/ml for library construction. 
For the construction of GBS libraries, the methodology 
described by Poland et al. [40] was followed. Initially, the 
genomic DNA was digested using PstI and MspI restric-
tion enzymes (New England BioLabs, Ipswich, MA, 
United States). Subsequently, barcoded adapters were 
ligated to the digested DNA fragments using T4 ligase 
(New England BioLabs, Ipswich, MA, United States). 
Afterward, the ligated products from each plate were 
pooled and purified using the QIAquick PCR Purification 
Kit (QIAGEN, Valencia, CA, United States). PCR amplifi-
cation was then performed using primers complementary 
to both adaptors. The resulting PCR products underwent 
additional purification with the QIAquick PCR purifi-
cation kit and were quantified using the Qubit dsDNA 
HS Assay Kit (Life Technologies, USA). To ensure the 
selection of appropriate DNA fragments, size selection 
was performed using an Egel system (Life Technologies, 
United States), targeting fragments ranging from 200 to 
300 bp. The concentration of each library was estimated 
using a Qubit 2.0 fluorometer and the Qubit dsDNA HS 
Assay Kit (Life Technologies, USA). Subsequently, the 
size-selected libraries were subjected to sequencing using 
an Ion Proton sequencer (Life Technologies, v 5.10.1) 

Table 4  Information about the parental lines of maize used for 
developing multi-parent populations
Parents pedigree Het-

erotic 
group

Eco- 
types

Symp-
toms 
scale 
of GLS

Ye107 Derived from US hybrid DeKalb 
XL80

Reid Temperate 9

CML312 S89500-F2-2-2-1-1-B*5-2-1-6-
1(DH)

Non-
Reid

Sub-
tropical

3

YML32 Suwan 1(S)C9-S8-346-2 (Kei 
8902)-3-4-4-6

Suwan Tropical 1

YML16 GLSIY01HGB-B-27-1-2-B-1-1-
2-1(DH)

Non-
Reid

Tropical 3

YML226 (CML226/(CA-
TETO DC1276/7619))
F2-25-1-B-1-2-1-1-2(DH)

Non-
Reid

Tropical 1

D39 Selected from Suwan1 Suwan Tropical 1

Table 5  GLS disease scale used for screening the RILs of Multi-
parent populations
GLS scale Plant reaction to the disease Area of 

total 
leaves

1 No spots on leaves 0–5%
3 A few spots on the lower leaves of the ear 6-10%
5 More spots on the lower leaves of the ear 11-30%
7 Many spots on the lower leaves of the ear and 

the upper leaves of the ear
31-70%

9 All leaves covered with spots and the leaves 
wilted

71-
100%
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with P1v3 chips after undergoing library preparation on 
an Ion Chef instrument (Ion PI HiQ Chef Kit). The Ion 
Torrent system generated sequence reads of varying 
lengths.

Quality control and filtering of the raw sequencing reads
Several steps were undertaken in the sequencing work-
flow to ensure the quality and accuracy of the sequenc-
ing data obtained through GBS. For sequencing data 
processing, FastQC version 0.11.8 was used, and the fol-
lowing criteria and parameters were applied to process 
the raw reads. Firstly, the adaptor sequence was removed 
from the samples. Then, reads with bases possessing a 
quality value of Q ≤ 5, accounting for more than 50% of 
the entire read, were classified as low-quality reads and 
removed. Subsequently, the P1 adaptors, each contain-
ing 4–8 bp barcode sequences, were added to the reads. 
This allowed the DNA fragments from different samples 
to be tagged with distinct barcode sequence, which assist 
in distinguishing between samples during sequencing. 
Consequently, the barcode bases were removed from the 
sequencing reads, allowing the analysis of the selected 
reads. Finally, reads that couldn’t be differentiated based 
on the barcode information were discarded. These 
steps ensured the retention of high-quality reads, which 
were subsequently used further processing, including 
sequence alignment and SNP identification.

Sequence alignment and SNP discovery
The high-quality sequencing reads obtained after qual-
ity control were aligned with the maize B73 reference 
genome (ftp://ensemblgenomes.org/pub/release-40/
plants/fasta/zea_mays/dna/Zea_mays.AGPv4.dna.top-
level.fa.gz) using BWA [41]. The alignment was per-
formed with the following parameter: mem -t 4 -k 32 
-M. In the resultinh alignment file, we identified and 
marked highly duplicated SNPs without any dedupli-
cation. For SNP detection and extraction, we followed 
the recommended process outlined in the following 
resource: (https://gatk.broadinstitute.org/hc/en-us/
articles/360036194592-Getting-started-with-GATK4). 
This process utilized GATK to perform SNP analysis and 
extraction.

SNP filtration
Following the SNP calling in the RILs, the quality of each 
SNP was assessed based on criteria such as minor allele 
frequency (MAF), the percentage of missing data points, 
and linkage disequilibrium. Plink v 1.9 [42] was utilized 
to filter the SNPs, with the parameters set to -geno 0.2 
and -maf 0.05, to exclude loci with deletion rates above 
10% and loci with minimum allele frequencies below 5%. 
Initially, the raw molecular marker dataset contained 
a total of 30,021,334 SNPs, but after filtering 1,730,811 

SNPs were retained for GWAS. Additionally, SNP datas-
ets that were filtered based on missing data points, minor 
allele frequency and linkage disequilibrium were used for 
population structure analysis.

Population structure and kinship analysis
Principal component analysis
To perform PCA, we used Plink version 1.9 on the fil-
tered SNP datasets. The default parameter values were 
used, and the top 20 PCAs were retained. The parameter 
is set to: --pca 20 --threads 10.

Ancestral component analysis
Ancestral component analysis provides a more accurate 
and reliable inference of an individual’s ancestral origin 
by comparing differences in allele frequencies between 
populations [43–45]. To achieve this, we utilized Admix-
ture, which employs a maximum likelihood estimation 
approach to determine individual ancestry based on 
multi-locus SNP genotype datasets [46]. While Admix-
ture employs the same statistical model as STRUCTURE 
[47], its fast numerical optimization algorithm allows for 
faster computational estimation without compromising 
accuracy compared to STRUCTURE [48]. Therefore, we 
selected Admixture version 1.3.0 to perform ancestral 
component analysis on the filtered SNP datasets. The 
analysis was conducted using default parameters.

Construction of phylogenetic tree
We used MEGA version 11.0.13 [49] software to calculate 
the distance matrix between the 757 RILs based on the 
filtered SNP dataset. We utilized this distance matrix to 
construct a phylogenetic tree using the neighbor-joining 
method. To ensure accuracy, we iteratively calculated 
the bootstrap values up to 1000 times, while keeping the 
remaining parameters set as default.

Kinship matrix estimation
An unbalanced pedigree among samples is a significant 
factor contributing to non-linked correlation of mark-
ers. The presence of small familial relatedness can lead 
to false positive in association analysis [50]. Therefore, it 
is essential to evaluate kinship as a covariate in GWAS. 
We used GEMMA version 0.98.5 [51] to calculate popu-
lation kinship matrices for the filtered SNP datasets. The 
default parameters were employed for the analysis.

LD decay assessment
Raw SNP data were used to assess LD decay using 
PopLDdecay v3.42 [52]. The parameters for calculat-
ing the r2 (correlation coefficient) value were set to their 
default values. The LD decay figure was drawn with 
default parameter.

ftp://ensemblgenomes.org/pub/release-40/plants/fasta/zea_mays/dna/Zea_mays.AGPv4.dna.toplevel.fa.gz
ftp://ensemblgenomes.org/pub/release-40/plants/fasta/zea_mays/dna/Zea_mays.AGPv4.dna.toplevel.fa.gz
ftp://ensemblgenomes.org/pub/release-40/plants/fasta/zea_mays/dna/Zea_mays.AGPv4.dna.toplevel.fa.gz
https://gatk.broadinstitute.org/hc/en-us/articles/360036194592-Getting-started-with-GATK4
https://gatk.broadinstitute.org/hc/en-us/articles/360036194592-Getting-started-with-GATK4
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Genome-wide association study
GWAS involves assessing genetic variation across the 
entire genome of multiple individuals to obtain their 
genotypes. These genotypes are then statistically ana-
lyzed in relation to the observed traits, or phenotypes, 
at the population level. The aim is to identify the genetic 
variants (markers) that are likely to affect the trait. Sta-
tistically significant p-values (with Bonferroni correction 
for calculation) are used to screen the markers, and sub-
sequently, the genes associated with the trait variation 
are mined [53]. In this study, we used the Linear Mixed 
Model (LMM) in GEMMA version 0.98.5 [51, 54]. We 
used PCA and kinship matrix as covariates, and the phe-
notypes of GLS resistance for GWAS analysis. The calcu-
lation formula is as follows:

	y = Wα + xβ + µ + ε; µ ∼ MVNn(0, λτ−1K), ε ∼ MVNn(0, τ−1In)

In the formula, y represents an n-vector of quantitative 
traits (or binary disease labels) for n individuals; W = 
(w1,···,wc) is an n × c matrix of covariates (fixed effects) 
including a column of 1s; α is a c-vector of the corre-
sponding coefficients including the intercept; x is an 
n-vector of marker genotypes; β denotes the effect size of 
the marker and is an estimate of the marker/SNP additive 
effect; µ  is an n-vector of random effects; ε  is an n-vec-
tor of errors; τ−1 represents the variance of the residual 
errors; λ  represents the ratio between the two variance 
components; K is a known n × n relatedness matrix 
and In is an n × n identity matrix. MVNn  indicates the 
n-dimensional multivariate normal distribution.

Haplotype-based GWAS
For our study, we used Plink version 1.07 to perform 
association analysis using the filtered SNP data set and 
the mean phenotype data of GLS resistance collected 
from BS, DH, and BLUE. The parameters were set to 
--hap-window 3 --hap-assoc --allow-no-sex --noweb. By 
applying the same threshold as SNP association analy-
sis, we identified and extracted the significant haplotype 
blocks.

Candidate gene expression analysis
We conducted a query on the public database (http://
ipf.sustech.edu.cn/pub/zmrna/) to retrieve informa-
tion related to the expression of the ten candidate genes 
identified though association analysis. We obtained the 
FPKM values of the candidate genes under the influence 
of GLS disease stress.

Analysis of phenotype differences in haplotype blocks
Based on the chromosome and physical location infor-
mation of SNPs within significant haplotype blocks, we 
extracted the corresponding haplotype block information 

of 757 RILs. This extraction was performed using vcftools 
v 0.1.16 [55]. We then compared the phenotypic data of 
these 757 RILs with their respective haplotype blocks, 
grouping the phenotypic data based on different haplo-
type blocks.
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