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Abstract

Background: Fruit skin color play important role in commercial value of cucumber, which is mainly determined by
the content and composition of chlorophyll and anthocyanins. Therefore, understanding the related genes and
metabolomics involved in composition of fruit skin color is essential for cucumber quality and commodity value.

Results: The results showed that chlorophyll a, chlorophyll b and carotenoid content in fruit skin were higher in Lv
(dark green skin) than Bai (light green skin) on fruit skin. Cytological observation showed more chloroplast existed
in fruit skin cells of Lv. A total of 162 significantly different metabolites were found between the fruit skin of the
two genotypes by metabolome analysis, including 40 flavones, 9 flavanones, 8 flavonols, 6 anthocyanins, and other
compounds. Crucial anthocyanins and flavonols for fruit skin color, were detected significantly decreased in fruit
skin of Bai compared with Lv. By RNA-seq assay, 4516 differentially expressed genes (DEGs) were identified between
two cultivars. Further analyses suggested that low expression level of chlorophyll biosynthetic genes, such as chiM,
por and NOL caused less chlorophylls or chloroplast in fruit skin of Bai. Meanwhile, a predicted regulatory network
of anthocyanin biosynthesis was established to illustrate involving many DEGs, especially 4CL, CHS and UFGT.

Conclusions: This study uncovered significant differences between two cucumber genotypes with different fruit
color using metabolome and RNA-seq analysis. We lay a foundation to understand molecular regulation
mechanism on formation of cucumber skin color, by exploring valuable genes, which is helpful for cucumber
breeding and improvement on fruit skin color.
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Background

Fruit skin color is an essential trait with commercial
values, mainly determined by content and composition of
anthocyanins and chlorophyll [1, 2]. Chlorophyll provides
green pigmentation and comprises with chlorophyll a and
chlorophyll b molecules. Chlorophyll metabolism can be
classified into three major steps: chlorophyll synthesis,
chlorophyll cycle and chlorophyll degradation. A series of
important enzymes were involved in chlorophyll metabol-
ism, such as glutamyl-tRNA reductase (HemA), porphobi-
linogen synthase (HemB), magnesium chelatase subunit H
(chlH), magnesium-protoporphyrin O-methyltransferase
(chIM), protochlorophyllide reductase (por), chlorophyll b
reductase (NOL) [3, 4]. Most fruit skin was caused by
chlorophyll metabolism, which exhibit green color during
the fruit early development, whereas the predominant col-
orations of yellow, orange and red show in the post stage
[5-8].

Anthocyanins, the most prominent pigment influen-
cing fruit color, were catalyzed by complex enzymes
from phenylpropanoid and flavonoid biosynthetic path-
ways. A wide range of constructive genes were involved
in the anthocyanin biosynthesis, such as phenylalanine
ammonia lyase (PAL), 4-coumarate: coenzyme a ligase
(4CL), chalcone synthase (CHS) and anthocyanidin syn-
thase (ANS) [9-11]. Among them, PAL is an essential
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factor during the anthocyanin synthesis [12]. Flavonoid
secondary metabolites are synthesized by a branched
pathway of flavonols and anthocyanins synthesis. Previ-
ous study reported that various flavonoids exert crucial
roles in protecting against UV-light and phytopathogens,
development of male fertility, and transport of auxin
[13]. Enzymes involved in anthocyanins and flavonoid
synthesis are multi-enzyme complex [14], and pigments
tend to accumulate in vacuole (anthocyanins and
proanthocyanidins) or cell wall (phlobaphenes) [15].

Cucumber fruit skin color has great effect on com-
modity sale and varietal improvement. Previous studies
concerning cucumber fruit skin color mainly focus on
inheritance and gene primary mapping, such as white
fruit skin gene (w), dark green fruit skin gene (DG),
green fruit skin gene (dg), yellow green fruit skin gene
(yg), and dull fruit skin light green fruit skin gene [16,
17]. The w was rapidly mapped to a 33.0-kb region by
two SNP-based markers, ASPCR39262 and ASPC
R39229 [18]. However, the molecular mechanism and
pigment metabolism of fruit skin color in cucumber is
unclear.

The combination of different omics helps us deeply
understand several crucial genes involved in plant growth,
development, and responses to different stresses [19, 20].
For instance, combined transcriptomic and metabolomics
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Fig. 1 Phenotype of Bai and Lv about chlorophyll in fruit skins. a Fruit external characteristic of Lv and Bai. b Crosscutting observation of fruit
from Lv and Bai. ¢ Measurement of chlorophyll and carotenoid content of fruit skins from Lv and Bai. Scar bar in (a) 3 cm, (b) 2 cm. Data is
presented as the mean =+ standard deviation (n=9). *0.01 < P<0.05, **P < 0.01, Student's t test
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profiling offered some cues in explaining plant phenotype
[21-23]. Through comparative transcriptomic analysis, re-
ports showed that several novel genes functions were in-
volved in the flavonoid [24] and other biochemical
pathways [25]. In addition, metabolome efficiently analyzed
genes roles involved in metabolic pathway and provided es-
sential information on genes exploring [21]. The comparative
omics has been successfully applied in fruits to clarify the re-
lationship between different secondary metabolites and
expressed genes [23]. However, until now, reports on regula-
tion mechanism of cucumber fruit skin color by transcrip-
tomic and metabolomics analysis still lack.

The aim of our study was to excavate the genes in-
volved in development of cucumber fruit skin color
using conjoint analysis. Two high-inbred cucumber ge-
notypes, ‘Lv’ with dark green skin and ‘Bai’ with light
green skin from South China type cucumber variety
were applied. Comparison results showed that much
more content of anthocyanins, flavone, and flavonols in
the fruit skin of Lv compared with Bai. In addition, we
detected that the key structural genes, transcription fac-
tors and other regulators during chlorophyll and antho-
cyanins biosynthetic pathways. We offered crucial
information on fruit skin color and its complex effect on
cucumber fruit quality.
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Results

Phenotype analysis of Iv and Bai

Obvious differences were found between Lv and Bai in the
young fruit skin color, the fruit skin color of Lv is dark
green but Bai is light green (Fig. 1a, b). The content of
chlorophyll a and chlorophyll b were 0.99 mg/g and 0.90
mg/g in Bai, respectively, which were significantly lower
than the Lv (Fig. 1c). The result of carotenoid is consists
with chlorophyll a and chlorophyll b, the carotenoid con-
tent was higher in Lv than Bai (Fig. 1c). These results indi-
cating more pigments accumulated in Lv fruit skin.

The above results indicated that more pigments accu-
mulated in Lv fruit skin, which prompted us to further
determine whether difference of chloroplasts in Lv and
Bai cell. Through transmission electron microscopy
(TEM) assay, we found that less chloroplast existed in
Bai cells than Lv (Fig. 2a-c), and the number of thylakoid
in a chloroplast of Bai (Fig. 2d-f) was less than Lv, these
result was consistent with quantitative analysis of
chlorophyll a and chlorophyll b.

The paraffin section assay was carried out to observe
arrangement of skin epidermal cells. The results showed
that epidermal cells in Lv were more closely arranged
than Bai (Fig. 3a, b). The single cell area and single cell
perimeter of Bai were both lager than Lv (Fig. 3¢, d). In
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Fig. 2 Transmission electron microscopy observation of Bai and Lv fruit skins. a-c Transmission electron microscopic photos of cells from Lv. d-f
Transmission electron microscopic photos of cells from Bai. “T" in the figure represents thylakoid. Scar bar in (a), (c), (d) and (f) 20 um, (b) 2 um,
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0.05, **P <001, Student's t test

Fig. 3 Epidermal cells from Bai showed larger single cell area and perimeter. a, b Observation of paraffin section of fruit skins from Lv (a) and Bai
(b). ¢ Single cell area of epidermal cells from Lv and Bai fruit skins. d Single cell perimeter of epidermal cells from Lv and Bai fruit skin. e, f SEM
observation of fruit skin from Lv (e) and Bai (f). Scar bar in (a, b): 150 um. Data is presented as the mean + standard deviation (0 =9). *0.01 <P <

addition, the surface cells on the Lv fruit skin were
smaller than Bai in a same field of view by scanning elec-
tron microscope (SEM) assay (Fig. 3e, f, S1).

Metabolite identification

In order to excavate metabolites during the process of
cucumber fruit development (Fig. 1), a metabolome pro-
gram was performed in this study. Combing detection of
total ions current (TIC) and multiple reactions monitor-
ing (MRM) profiles, we finally identified 162 significant
metabolites (135 up- regulated and 27 down-regulated)
between Lv and Bai samples (Fig. 4a), including: 40 fla-
vones, 9 flavanones, 7 flavonols, 6 anthocyanins, and
other compounds (Table S1). The representative metab-
olites, especially anthocyanins, flavones, and flavonols
were listed in Table 1.

Functional analysis of metabolites

Six rosinidin O-hexoside, cyanidin O-acetylhexoside,
malvidin 3-O-glucoside, malvidin 3, 5- diglucoside, peo-
nidin O-hexoside, and peonidin were identified and all
these anthocyanins were significantly decreased in Bai
fruit skin compared with Lv. In Bai, peonidin and cyani-
din O-malonylhexoside were decreased with 0.00035-
and 0.16-fold increments in contrast to Lv, indicating
that lower content of anthocyanin partly caused slight
hue of Bai (Table 1). Most flavonols were found with
0.006- to 0.16- fold augment in Bai except fustin, while
content of fustin was prominently increased 981.85-fold
in Bai compared with Lv. Flavones were detected to be
the maximum number of metabolites among metabolites
with the significant content changes between two cu-
cumber genotypes. Among these, chrysoeriol O-hexosyl-
O-rutinoside, and tricetin O-malonylhexoside, luteolin
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Fig. 4 Comparison and KEGG analysis of different metabolites in fruit skin between Lv and Bai. a Different metabolites in fruit skins of Lv and Bai.
Red, green and black correspond to up-regulated, down-regulated, and unchanged content of metabolites, respectively. b KEGG enrichment of
annotated metabolites from Lv and Bai. The y-axis indicates the KEGG pathway and the x-axis indicates the enrichment factor
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O-sinapoylhexoside demonstrated significantly higher
content in Lv, while only tricin O-glucuronic acid was
3.62-fold increase in Bai (Table 1). In addition, KEGG
(Kyoto Encyclopedia of Genes and Genomes) analysis
demonstrated that different metabolites were mostly
enriched in flavonoid biosynthesis and tryptophan me-
tabolism, indicating flavonoid influenced fruit skin color
development to some extent (Fig. 4b).

Identification of differently expressed genes (DEGs) by
transcriptome

Total RNA from cucumber fruit skin were used for con-
struction of ¢cDNA libraries. After removing adaptor-
containing raw reads and low-quality reads, the total
number of clean reads was about 24 million for Lv and
Bai (Table S2). These clean reads were subsequently
mapped to cucumber 9930 genome (Huang et al., 2009).
Approximately 90% clean reads were mapped to the ref-
erence cucumber genome, with more than 98% uniquely
mapped (Table S2). The correlation coefficients in gene
expression level from three biological replicates of each
line were more than 0.84 (Fig. S2A), and principal com-
ponent analysis (PCA) showed that biological replica-
tions clustered together (Fig. S2 B). The correlation
coefficients and PCA suggested that expression patterns
have similarity between replicate samples (Fig. S2). In
total, 4516 DEGs with 2417 up-regulated and 2099
down-regulated genes were identified in Lv vs Bai.(-
Fig. 5a; Table S3). Combing transcriptome analysis, 205
DEGs belonged to 44 families encoding transcription
factors (TFs), including 87 and 118 DEGs expressed

down-regulation and up-regulation in Bai compared
with Lv, respectively (Fig. S3). The AP2/ERF, bHLH,
MYB, NAC and WRKY families were the top five TF in
DEGs (Fig. S3). A total of 15 genes were selected to con-
firm RNA-seq data by using qRT-PCR, including 9 and
6 genes were selected from down-regulatin and up-
regulation, respectively. The qRT-PCR results were con-
sistent with RNA-seq data (Fig. S4). In addition,
Csa3G904140 was detected different expressed in the Lv
and Bai, and Csa3G904140 is control immature fruit
color of cultivated cucumber [26].

Functional analysis of DEGs

In order to understand the role of DEGs in the forma-
tion of fruit skin color, three categories were classified
including biological process, molecular function, and cel-
lular components using GO (gene ontology) standard-
ized classification system, and total of 67 GO were
significantly enriched. In biological processes category,
46 GO terms were significantly enriched in DEGs, such
as thylakoid membrane organization, photosynthesis and
chlorophyll biosynthetic process. In molecular function
category, two GO categories, including pigment binding
and chlorophyll binding were found to be enriched. In
cellular component category, 19 GO terms, such as
photosystem I, photosystem II, plastoglobule, chloroplast
envelope, chloroplast, microtubule, chloroplast stroma
and chloroplast thylakoid, were identified to enrich in
DEGs (Table S4). Then, we used KEGG pathway data-
base to examine the DEGs-associated pathways. The top
20 pathway enrichment of annotated DEGs across the
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Table 1 Differentially identified metabolites in the skin of Lv and Bai fruit
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Class Compounds Lv Bai VIP Fold_Change
Catechin derivatives Protocatechuic acid O-glucoside 1.06E+ 06 1.73E+ 05 127 0.1633103
L-Epicatechin 1.07E+ 04 7.16E+ 04 1.30 6.675995
(+)-Gallocatechin (GO) 5.16E+ 03 3.84E+ 04 135 74370562
Catechin 1.64E+ 04 591E+05 1.83 36.056911
Anthocyanins Rosinidin O-hexoside 4.78E+ 04 1.30E+ 04 1.10 0.271777
Cyanidin O-acetylhexoside 5.92E+03 9.69E+ 02 1.19 0.1636466
Malvidin 3-O-glucoside (Oenin) 301E+04 3.56E+ 03 142 0.1182927
Malvidin 3,5-diglucoside (Malvin) 2.53E+04 1.60E+ 03 21 0.0632632
Peonidin O-hexoside 142E+ 04 9.00E+ 00 263 0.0006323
Peonidin 2.59E+ 04 9.00E+ 00 2.72 0.0003479
Selgin 5-O-hexoside 7448+ 04 1.97E+ 04 1.11 0.2653519
Chrysoeriol 1.97E+ 04 3.84E+ 03 1.18 0.1949239
Chrysoeriol 7-O-hexoside 5.67E+05 1.21E+ 05 1.20 0.2132785
Chrysoeriol 5-O-hexoside 1.97E+ 06 4.10E+ 05 1.21 0.2084746
Baicalein (5,6,7-Trihydroxyflavone) 5.73E+ 04 1.06E+ 04 1.26 0.1845751
Chrysoeriol O-hexosyl-O-pentoside 1.16E+ 04 3.27E+03 1.27 0.2815805
Tricin O-sinapoylhexoside 2.52E+ 05 3.83E+ 04 1.30 0.152053
Luteolin 7-O-glucoside (Cynaroside) 1.05E+ 05 1.35E+ 04 131 0.1286574
Tricin 7-O-feruloylhexoside 7.58E+ 04 8.38E+ 03 142 0.1105055
Chrysoeriol O-malonylhexoside 1.15E+ 06 1.23E+ 05 145 0.1066667
Acacetin O-acetyl hexoside 7.16E+ 05 6.70E+ 04 1.50 0.093622
Butin 6.69E+ 04 2.04E+ 03 197 0.0305229
Tricetin O-malonylhexoside 2.68E+ 06 2.03E+ 04 2.14 0.0075776
Chrysoeriol O-hexosyl-O-rutinoside 1.74E+ 06 1.21E+ 04 217 0.006912
Tricin O-sinapic acid 4.03E+ 04 1.78E+ 03 2.22 0.0441522
Chrysoeriol O-hexosyl-O-hexosyl-O-Glucuronic acid 4.33E+04 5.59E+ 02 238 0.0129176
Luteolin O-sinapoylhexoside 1.29E+ 04 9.00E+ 00 262 0.0006959
Tricetin 1.10E+ 05 9.00E+ 00 297 8.16E-05
Chrysoeriol O-sinapoylhexoside 141E+05 9.00E+ 00 3.02 6.37E-05
Tricin O-glucuronic acid 1.25E+ 04 4.52E+ 04 1.08 3.6246993
Flavone C-hexosyl-chrysoeriol O-hexoside 227E+04 6.84E+ 03 1.03 0.3007331
Isovitexin 347E+04 8.54E+ 03 1.07 0.2462056
8-C-hexosyl-apigenin O-feruloylhexoside 5.69E+ 04 1.57E+ 04 1.10 0.2754982
8-C-hexosyl-hesperetin O-hexoside 3.27E+05 6.46E+ 04 1.23 0.1972505
Apigenin 6-C-hexosyl-8-C-hexosyl-O-hexoside 501+ 05 847E+ 04 1.28 0.1690619
C-hexosyl-apigenin O-p-coumaroylhexoside 148E+ 04 2.68E+ 03 143 0.1806517
Naringenin C-hexoside 1.55E+ 04 2.77E+ 03 1.92 0.1792672
Chrysoeriol 6-C-hexoside 8-C-hexoside-O-hexoside 1.03E+ 07 1.82E+ 05 1.95 00177137
6-C-hexosyl chrysoeriol O-hexoside 1.36E+ 06 1.56E+ 04 2.05 0.0114481
Chrysoeriol 8-C-hexoside 1.61E+ 06 1.85E+ 04 2.06 0.0115145
6-C-hexosyl-chrysoeriol O-feruloylhexoside 5.80E+ 05 9.97E+ 03 2.12 0.017199
8-C-hexosyl chrysoeriol O-hexoside 1.57E+ 06 1.28E+ 04 213 0.0081529
6-C-hexosyl-apigenin O-feruloylhexoside 2.82E+ 06 1.98E+ 04 2.16 0.0070178
6-C-hexosyl-apigenin O-sinapoylhexoside 9.64E+ 04 7.99E+ 02 250 0.0082947
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Table 1 Differentially identified metabolites in the skin of Lv and Bai fruit (Continued)
Class Compounds Lv Bai VIP Fold_Change
di-C,C-hexosyl-apigenin 1.17E+ 04 9.00E+ 00 2.60 0.0007681
8-C-hexosyl-chrysoeriol O-feruloylhexoside 348E+ 04 9.00E+ 00 279 0.0002589
C-hexosyl-chrysoeriol O-sinapoylhexoside 6.55E+ 04 9.00E+ 00 2.88 0.0001374
Flavanone Eriodictyol O-malonylhexoside 2.87E+04 7.40E+ 03 1.10 0.2579559
Xanthohumol 2.39E+ 04 4.60E+ 03 125 0.1920613
Naringenin 7-O-glucoside (Prunin) 1.16E+ 05 1.04E+ 04 1.49 0.0900834
Naringenin 7.52E+ 04 2.73E+03 1.87 0.0362384
Hesperetin 7.10E+ 04 1.95E+ 03 197 0.027507
7-O-Methyleriodictyol 1.57E+ 04 9.00E+ 00 265 0.0005732
Homoeriodictyol 832E+04 9.00E+ 00 294 0.0001081
Naringenin chalcone 9.12E+ 04 9.00E+ 00 295 9.87E-05
Naringenin O-malonylhexoside 1.58E+ 05 9.00E+ 00 3.04 5.68E-05
Flavonol Quercetin 7-O-malonylhexosyl-hexoside 1.55E+ 05 249E+ 04 1.30 0.1612069
Kaempferol 3-O-rhamnoside (Kaempferin) 1.13E+ 05 1.70E+ 04 134 0.1502941
Kaempferol 3-O-rutinoside (Nicotiflorin) 221E+05 2.28E+ 04 146 0.1031627
Kaempferol 3-O-robinobioside (Biorobin) 2.22E+ 05 141E+ 04 161 0.0632684
Kaempferide 1.39E+ 04 9.00E+ 00 255 0.0006487
Kaempferol-3-O-robinoside-7-O-rhamnoside (Robinin) 1.50E+ 04 9.00E+ 00 265 0.0006
Fustin 9.00E+ 00 8.84E+03 2.55 981.85185
N
A Volcano plot B Statistics of Pathway Enrichment
Starch and sucrose metabolism
Pyruvate metabolism ®
] . Protein processing in endoplasmic reticulum
: Porphyrin and chlorophyll metabolism °
1501 ‘ Plant-pathogen interaction | @
3 - Photosynthesis - antenna proteins.
3 Photosynthesis [ ] DEGene_number
. . Phenylpropanoid biosynthesis [ ] ; ;3
T . Nitrogen metabolism @ 0
ug 100 . = e Glyoxylate and dicarboxylate metabolism ° o«
9_ * Down ) ‘ qvalue
o ' P o & (NGl Glycolysis / Gluconeogenesis Y 1.00
¥ bt Glycine, serine and threonine metabolism 075
0.50
Galactose metabolism 025
s Fatty acid degradation . 0.00
Cyanoamino acid metabolism
Carotenoid biosynthesis.
Carbon metabolism [ )
Carbon fixation in photosynthetic organisms °
04 beta-Alanine metabolism
g 2 Amino sugar and nucleotide sugar metabolism [ ]
-10 5 0 5 3 73 3
log2(FC) Rich factor

Fig. 5 Comparison and KEGG analysis of DEGs in fruit skin between Lv and Bai. a Analysis of DEGs in fruit skin of Lv and Bai. Red, green and blue
correspond to up-regulated, down-regulated, and normal content of metabolites, respectively. b Histogram of GO terms assigned to DEGs in fruit
skin of Lv and Bai. All GO terms are grouped into three ontologies: green for biological process, orange for cellular component, and purple for

molecular function
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comparisons of Lv and Bai was shown in Fig. 5b. Related
genes of carbon mechanism, amino sugar and nucleotide
sugar metabolism, photosynthesis, porphyrin chlorophyll
metabolism and phenoylpropanoid biosynthesis were in-
tensively enriched (Fig. 5b).

The GO and KEGG analysis results indicated that
DEGs involved in chlorophyll metabolism-related path-
way, these results are consist with chlorophyll a and
chlorophyll b difference between Lv and Bai. Therefore,
we further studied DEGs participate in chlorophyll me-
tabolism in detail and established a predicted chlorophyll
biosynthetic pathway (Fig. 6). Fourteen DEGs were iden-
tified in chlorophyll biosynthetic pathway. Interestingly,
most these DEGs were down-regulated expression in Bai
compared to Lv, except one DEG (Csa7G068600).

Regulatory network of predicted flavonoid, and
anthocyanidin biosynthetic pathways

In order to better understand the relationship between me-
tabolites and genes in predicted flavonoid biosynthesis be-
tween Lv and Bai, the metabolites and gene were combined
to establish a predicted network (Fig. 7). The 13 metabolites
were significantly expressed difference between Lv and Bai,
including 10 down-regulated metabolites (Naringenin chal-

cone, Naringenin, Tricetin, Kaemferide and six Anthocyanins

(Cyanidin ~ O-acetylhexoside, Peonidin, Malvidin 3-O-
glucoside, Malvidin 3, 5- diglucoside, Peonidin O-hexoside,
and Rosinidin O-hexoside)) and three up-regulated metabo-
lites ((+)-Catechin,(-)-Epicatechin, Gallocatechin). Seven
PAL genes (Csa4G008250, Csa4G008760, Csa6G445240,
Csa6G445760, Csa6G445770, Csa6G445780 and Csa6G4
46280) and one F3H (Csa6G108510) gene were up-regulated
in the Bai compared to Lv. In addition, two structural genes
4CL (Csa2G433350 and Csa3G638510) were showed — 2.44-
and - 1.70-fold decrement, and CHS (Csa3G600020) was —
1.14-fold down-regulation, this could largely explain the high
accumulation of Naringenin chalcone and Naringenin in the
Lv. Simultaneously, three UFGT genes (Csa3GI172390,
Csa6G109730 and Csa6G109750) showed - 5.30-, — 5.86-
and — 1.65fold down-regulation in the Bai, which also sup-
ports six anthocyanins significantly down-regulated in Bai
compared with Lv.

Discussion

Combining omics analysis of diverse genetic resources
provides crucial information in understanding molecular
basis of plant traits such as fig fruit color [22], Lilium
“Tiny Padhye” bicolor development [23], peanut resist-
ance on salt stress [27]. The cucumber shows a large
variation in fruit skin colour, such as dark green, yellow,
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light green and milk white, these colours are characteris-
tic of species or specific genotypes. In particular, the
dark green and light green skin color cucumber cultivars
have generated great interest in customer. In the study,
we characterized two different cucumber on fruit skin
color (Lv and Bai) using RNA-seq and metabolome. Lv
exerted dark green with much more chlorophyll content
and more closely arranged epidermal cells. Through ana-
lysis of different metabolites, flavones, flavanones, flavo-
nols, and anthocyanins were mostly responsible for skin
color differences. In addition, combining transcript level
by RNA-seq, we found that several DEGs related to

chlorophyll synthesis, anthocyanins synthesis and TFs
were possibly involved in the color development.

Regulatory network of DEGs associated with chlorophyll
synthesis pathway for skin color in v and Bai

Chlorophyll is an important pigment for determined the
skin color of many fruits. Chlorophyll synthesis has been
well studied and important related genes for chlorophyll
synthesis have been found in leave and fruits [8, 28].
Gang et al. [29] found that BpGLKI the function for de-
creased chlorophyll content and defective chloroplast
development by physiological and ultrastructural
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analysis. In addition, many key genes of coding enzymes
were involved in chlorophyll synthesis pathway, such as
HemA, HemB, chlH, chiM, por, NOL [3, 4]. For example,
HemA, which is initiated enzyme for chlorophyll synthe-
sis in plastid, catalyzes biosynthesis of 5-aminolevulinic
acid from glutamyl-tRNA [30]. The ChlH catalyzes pro-
toporphyrin IX to form Mg-protoporphyrin IX. The
magnesium protoporphyrin IX monomethyl ester forma-
tion was catalyzed magnesium protoporphyrin IX in
chlorophyll synthesis pathway by ChiIM [31]. The por is
an important enzyme that catalyzes protochlorophyllide
to generate chlorophyllide, and this step is a critical
intermediate step in converting chlorophyll [32]. Here,
14 DEGs were identified in chlorophyll synthesis path-
way. The expression of DEGs in synthesis of chloro-
phylls synthesis pathway, including one HemA, one
HemB, one HemC, two HemE, one HemF, one chlH, one
chiM, one chlE, one por, one CLH, two NOL, were
down-regulated in Bai compared to Lv. These down-
regulated expressions of many key genes involved in
chlorophyll synthesis pathway may lead to inhibition of
chlorophyll a and chlorophyll b synthesis. These results
were consistent with higher accumulation of chlorophyll
and more chloroplast in Lv than Bai.

Analysis of anthocyanins and flavonols synthesis for fruit

skin color

Metabolites are the final products of cell biological regu-
lation process [33] and metabolomic analysis enables us
investigate the relationship between biological processes
and plant characteristic [34] . The content of anthocya-
nins and flavonoids has crucial effect on fruit color and
taste [22, 35]. The metabolome data combining with
transcriptome profiling were discovered genes involved
in anthocyanins and flavonols synthesis, thus searching
for useful information to illustrate phenomenon of dif-
ferent color in cucumber fruit. Anthocyanins are the
final products of the flavonoid biosynthetic pathways,
our search showed many DEGs are differently expressed
between Lv and Bai in this pathway, such as upstream
4CL, CHS, F3H and UFGT. Previous studies showed
4CL genes play an essential role at the divergence point
flavonols aynthesis [36]. The CHS has been found re-
sponsible for the anthocyanin biosynthesis during petal
coloration in Malus crabapple [37]. Our study identified
two 4CL (Csa2G433350 and Csa3G638510) and CHS
(Csa3G600020) genes were down-regulated in Bai com-
pared with Lv, and two metabolites (Naringenin chal-
cone and Naringenin) also down-regulated in Bai. It
indicated that CHS was significantly repressed in Bai,
and lead to down-regulation of two important metabo-
lites in anthocyanin synthesis. In addition, we detected
six types of anthocyanins have differently expressed be-
tween Bai and Lv. In anthocyanins biosynthesis, the
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glycosyl is a crucial progress, which catalyzed by UFGT
in Arabidopsis [38]. The UFGT expression was associ-
ated with anthocyanin accumulation in different plant
[39, 40]. Our results showed that three UFGT expres-
sions are suppressed in Bai, it maybe explain six types of
anthocyanins down-regulation in Bai compared to Lv.
Other searcher found that the Cyanidin-3-O-rhamnoglu-
coside, one type of anthocyanins is main anthocyanin
and played an important role in skin of figs [41, 42],
while cyanidin-3-O-rhamnoglucoside was not detected
in our data, indicating it might be not main anthocyanin
in cucumber fruit skin.

Analysis of TFs involved in biosynthesis of anthocyanin in
Iv fruit skin

Anthocyanins and flavonoid synthesis are regulated by
several structural genes and TFs such as MYB, bHLH and
WDR proteins. The bHLH proteins can interact with
R2R3-MYBs from various subgroups, and form ternary
complexes with WDR. The MBW (MYB-bHLH-WDR)
complexes participated in flavonols, anthocyanins, and
proanthocyanidins (PAs) biosynthesis pathway [43-45].
Among these, MYB as major determinant element for
anthocyanin accumulation regulation, could activate some
pivotal anthocyanin biosynthetic genes by interacting with
bHLH respectively [46, 47]. Ectopic overexpression of pear
PyMYBI0 in Arabidopsis contributed to its pigmentation
in immature seeds, indicating PyMYBI0 as positive factor
in regulating anthocyanin accumulation [48]. Overexpres-
sion of peach PpMYBI10.1 in tobacco could increase the
expression of UFGT, leading to higher anthocyanin accu-
mulation and deeper red flowers in transgenic tobacco
[49]. Similarly, MYB could regulate anthocyanin biosyn-
thesis by regulating the expression of UFGT in grape [50]
and apple [51]. In our research, 16 MYB TFs were de-
tected by transcriptome, and expression levels of eight
MYBs were up-regulated in fruit skin of Lv compared with
Bai, indicating MYBs in Lv contributed the expression of
related genes involved in anthocyanin synthesis.

The bHLH played an important role in anthocyanin syn-
thesis by forming a complex with MYBs [41]. Overexpres-
sion of SIPRE2, an atypical bHLH, accelerated seedling
morphogenesis and produced yellowing ripen fruits with re-
duced chlorophyll and carotenoid in tomato fruit [52]. Over-
expressing Arabidopsis GLABRA3 (bHLH) exhibited higher
anthocyanin accumulation than control sample in tomato
fruit [53]. In this study, 11 bHLHs were up-regulated in Lv
fruit skin, while seven bHLHs were significantly down-
regulated compared with Bai, suggesting bHLHs function as
different roles in biosynthesis of anthocyanin.

Conclusions
Overall, the regulation mechanism of fruit skin color on
cucumber was firstly carried out by metabolome and
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RNA-Seq. The content of chlorophyll a, chlorophyll b
and carotenoid were higher in Lv than Bai, and cyto-
logical observation showed more chloroplast existed in
Lv. Crucial anthocyanins and flavonols responsible for
fruit skin color development showed significantly differ-
ent expression between two cucumber genotypes by me-
tabolome. Several genes, especially por and NOL, CHS
and UFGT, which play important roles in chlorophyll
synthesis and anthocyanins biosynthesis pathway, re-
spectively, were differently expressed between Bai and
Lv fruit skin. Taken together, these different metabolites
and genes identified in our study provide an important
metabolic and functional role for chlorophyll synthesis
and anthocyanins biosynthesis pathway in cucumber
skin color.

Methods

Plant materials and growth conditions

Two cucumber high inbred lines (Lv and Bai) were used
in this study, and were inbred line selected by our re-
search group after multi-generation self-crossing. Lv and
Bai were both South China type variety with contrasting
differences in fruit skin color. Seeds were germinated on
culture dish in a dark environment. Then, the seedlings
were grown in a culture room under 14h/10h with
28°C/18°C in day/night. When plants were grown to
two true leaf stages, and were transferred to the open
field in Baiyun Area, Guangzhou City, China.

Analysis of chlorophyll and carotenoid content in fruit
skin between Bai and Iv

Chlorophyll and carotenoid content of fruit skin from Lv
and Bai were measured on the basis of the procedure de-
scribed by Xie et al. (2019) [6]. Approximately, 0.2 g fruit
skin were placed in 5ml solution (9:1 =acetone: 0.1 M
NH4OH).The samples were centrifuged at 3000 r for 20
min, and supernatants were collected. The same process
was repeated thrice and the supernatants were collected
using hexane. Finally, the mixed supernatant was mea-
sured by spectrophotometer at the absorption wave-
lengths of 663 nm and 645 nm (Beckman Coulter DU-
800, CITY, USA). The measurements were performed
with biological replicates.

Scanning and transmission electron microscopy

After cucumber fruit skin was air-dried, the epidermis
cells were visualized under a HITACHI SU8020 variable
pressure SEM (Hitachi, Japan). For TEM assay, fruit skin
were cut into small pieces, and were collected for fix-
ation, and the process was performed as according to
Wang et al. (2019) [54].
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Metabolomic analysis

Metabolite profiling was performed using a widely tar-
geted metabolome method by Wuhan Metware Biotech-
nology Co., Ltd. (Wuhan, China) (http://www.metware.
cn/). Freezing-dried fruit skin was crushed into powder
using a mixer mill (MM 400, Retsch). The fruit skin (1
cm wide and 0.2 cm thick along the fruit lengthwise)
were sampled 10-15 days after female flowers open, and
three replicates each of Lv and Bai. A total of 100 mg
powder was extracted overnight at 4 °C with 1.0 ml 70%
aqueous methanol, then centrifuged at 10, 000 g for 10
min. After that, these extracts were absorbed, filtrated,
and analyzed by an LC-ESI-MS/MS system. Analytical
conditions were based on the procedures as described in
Wang et al. (2017) [22]. Quantification of metabolites
was carried out using a MRM method [33]. Metabolites
with significant differences in content were set with
thresholds of variable importance in projection (VIP) >1
and fold change >2 or < 0.5 [55].

Transcriptome analysis

The fruit skin (1 cm wide and 0.2cm thick along the
fruit skin lengthwise in the middle part) were sampled
10-15 days after female flowers open. A total of twelve
samples (three replicates each of Lv and Bai) were pre-
pared for RNA extraction based on the instruction of
TRIZOL reagent (TaKaRa, Japan). RNA was purified and
concentrated using an RNeasy MinElute clean up kit
(Qiagen, Germany) after RNA extraction. Then, about
2.5ug RNA from each sample was prepared for con-
structing sequencing libraries and the library quality was
detected by Agilent Bioanalyzer 2100 system. The library
preparations were sequenced on Illumina Hiseq2500
platform and 125/150 bp paired-end reads were gener-
ated. Index of the reference genome was built using
Bowtie v2.2.3 and paired-end clean reads were aligned to
the reference genome using TopHat v2.0.12 [56].

Gene expression level was analysis by FPKM (frag-
ments per kilobase per million reads) method [57]. The
FPKM of genes were calculated by Cuffquant and cuff-
norm (v2.2.1) (v2.2.1) [58]. DESeq2 was used to identify
DEGs according to the two criteria(fold change =2 or <
0.5and q<0.01). WEGO software and KEGG database
were employed to GO enrichment and bigological path-
way enrichment, respectively [59, 60].

Quantitative real-time PCR (qRT-PCR) validation

The qRT-PCR reaction was performed on ABI PRISM
7900HT machine (Applied Biosystems, USA) by using
the SYBR Premix Ex Taq Kit (TaKaRa, Japan), and qRT-
PCR reaction process was performed according to Wang
et al. (2019) [54]. All primers used in qRT-PCR were
listed in Table S5.
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