
RESEARCH ARTICLE Open Access

Target sequencing reveals genetic diversity,
population structure, core-SNP markers,
and fruit shape-associated loci in pepper
varieties
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Abstract

Background: The widely cultivated pepper (Capsicum spp.) is one of the most diverse vegetables; however, little
research has focused on characterizing the genetic diversity and relatedness of commercial varieties grown in
China. In this study, a panel of 92 perfect single-nucleotide polymorphisms (SNPs) was identified using re-
sequencing data from 35 different C. annuum lines. Based on this panel, a Target SNP-seq genotyping method was
designed, which combined multiplex amplification of perfect SNPs with Illumina sequencing, to detect
polymorphisms across 271 commercial pepper varieties.

Results: The perfect SNPs panel had a high discriminating capacity due to the average value of polymorphism
information content, observed heterozygosity, expected heterozygosity, and minor allele frequency, which were
0.31, 0.28, 0.4, and 0.31, respectively. Notably, the studied pepper varieties were morphologically categorized based
on fruit shape as blocky-, long horn-, short horn-, and linear-fruited. The long horn-fruited population exhibited the
most genetic diversity followed by the short horn-, linear-, and blocky-fruited populations. A set of 35 core SNPs
were then used as kompetitive allele-specific PCR (KASPar) markers, another robust genotyping technique for
variety identification. Analysis of genetic relatedness using principal component analysis and phylogenetic tree
construction indicated that the four fruit shape populations clustered separately with limited overlaps. Based on
STRUCTURE clustering, it was possible to divide the varieties into five subpopulations, which correlated with fruit
shape. Further, the subpopulations were statistically different according to a randomization test and Fst statistics.
Nine loci, located on chromosomes 1, 2, 3, 4, 6, and 12, were identified to be significantly associated with the fruit
shape index (p < 0.0001).

Conclusions: Target SNP-seq developed in this study appears as an efficient power tool to detect the genetic
diversity, population relatedness and molecular breeding in pepper. Moreover, this study demonstrates that the
genetic structure of Chinese pepper varieties is significantly influenced by breeding programs focused on fruit
shape.
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Background
Pepper are members of the genus Capsicum, which orig-
inated in South America and represents one of the most
economically important vegetable crops worldwide [1–
3]. To date, 38 species of Capsicum have been reported
(USDA-ARS, 2011). Of these, C. annuum, C. frutescens,
C. chinense, C. baccatum, and C. pubescens are thought
to have been domesticated [4]. Globally, the most pre-
dominant species is C. annuum, which has numerous
commercial varieties varying greatly in size, shape, pun-
gency, and color.
As the seed trade has developed and globalized, the

commercial quality of seeds, which is based on authenti-
city and purity, has become increasingly important [5].
Traditionally, cultivar characterization was completed by
field investigation of morphological traits; however, this
process is time-consuming and labor-intensive and is
thus not suitable for modern inspection demands [6]. A
more high-throughput approach to distinguish varieties
is the used of molecular markers [5]. Indeed, genetic
markers have been used for DNA fingerprinting, diver-
sity analysis, variety identification, and marker-assisted
breeding of multiple commercial crops [7, 8]. Moreover,
several PCR-based tools have been used to detect genetic
diversity in peppers, including random amplified poly-
morphic (RAPD), restriction fragment length poly-
morphism (RFLP), and amplified fragment length
polymorphism (AFLP) [9–12].
Recently, the genomes of two C. annuum cultivars,

Zunla-1 and CM334, were sequenced [3, 13], which pro-
vided an important platform for the detection and devel-
opment of genome-wide simple sequence repeats (SSR)
and insertion or deletion (InDel) markers [14–20]. Al-
though a large number of SSR and InDel markers have
become available, these technologies are not suitable for
large scale germplasm characterization. Thus, there is an
unmet need for an efficient, rapid, and high-throughput
system capable of characterizing thousands of
germplasm.
One approach for meeting such high standards is the

use of single-nucleotide polymorphisms (SNPs), which
are good markers for genotyping because of their whole
genome coverage and primarily biallelic nature. Accord-
ingly, multiple high-throughput SNP genotyping plat-
forms have been developed, including the GoldenGate
[21] and Infinium [22], TaqMan [23], and KASPar plat-
form (KBiosciences, www.kbioscience.co.uk). In recent
years, high-throughput transcriptome sequencing and
genotyping-by-sequencing (GBS) have been successfully
used in pepper, generating highly informative genome-
wide SNP data [24–30]. However, SNP marker genotyp-
ing is considered expensive as it requires a comprehen-
sive technical platform and special equipment and
reagents.

Genotyping by target sequencing (GBTS) is a targeted
sequence-capture strategy that can genotype more than
thousands of SSRs or SNPs using high-throughput se-
quencing technology. The two main types of GBTS are
multiplex PCR and probe-in-solution-based target se-
quencing; the technology has been commercialized as
AmpliSeq [31], NimbleGen [32], SureSelect [33], Geno-
Baits, and GenoPlexs [34]. To date, this technology has
been widely used for medical applications but has rarely
been used for agriculture species. However, a Target
SSR-seq technique, which is a multiplex PCR-based ap-
proach, was successfully applied to the study of genetic
diversity and structure in 382 cucumber varieties [35].
The results of this study demonstrated that GBTS is a
customizable, flexible, high-throughput, low cost, and
accurate sequencing tool.
Peppers from China constitute one-third of the world’s

pepper production [36]. Until now, the genetic diversity
of pepper accessions in China has primarily been investi-
gated using SSR markers, but these surveys only exam-
ined either several Chinese germplasm (up to 32) [37] or
a small number of SSR markers (up to 28) [36]. How-
ever, high-throughput SNP platforms used for genotyp-
ing and the identification of pepper varieties have lagged
significantly behind those for SSRs, and studies on the
genetic diversity between the varieties of peppers in
China has not yet been extensively analyzed. Therefore,
the main objectives of the present work were: 1) to de-
velop a Target SNP-seq technique suitable for genotyp-
ing pepper varieties; 2) to characterize composite core-
SNP markers for use with the KASPar platform to
maximize variety identification; 3) to examine the level
of genetic diversity, structure, and differentiation within
271 pepper varieties. This study demonstrated that a
novel Target SNP-seq can be used as a rapid and effi-
cient tool for genotyping peppers, and the genetic struc-
ture of these cultivated varieties have been strongly
impacted by breeding programs that select for fruit
shapes.

Results
Genome-wide perfect SNPs used for target SNP-seq
Re-sequencing of the 31 pepper lines (C. annuum) in
this study generated a total of 872 Gb of paired-end se-
quence data, at an average depth of ~ 8.4. After mapping
to the Zunla-1 genome [3], 40,700,040 SNPs were de-
tected across the genomic sequences of the 31 re-
sequenced lines and four previously published cultivars
(Dempsey, Zunla-1, Perennial, and Chiltepin) [3, 13].
Approximately 11.3% of the C. annuum genome con-
tains variable SNP sites. A total of 21,237,194 SNPs, with
minor allele frequency (MAF) > 5% and missing data <
10%, were considered high-quality SNPs for downstream
analyses. Using C. annuum’s progenitor cultivar,
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Chiltepin, as an outgroup, the phylogenetic tree showed
that pepper lines could generally be classified according
to fruit shapes, except for three long horn-fruited lines
that grouped with the linear-fruited lines. Based on the
genetic distance, the transitions in fruit shapes were
from Chiltepin-like peppers followed by the linear-
fruited, short horn-fruited, long horn-fruited, finally to
blocky-fruited peppers, which were the furthest from the
Chiltepin-like peppers (Fig. 1a). Furthermore, the 35
lines can be divided into two major groups based on the
optimal number of K = 2 by STRUCTURE (Fig. 1b);
Group 1 consisted of the nine bell-fruited lines and ten
of the long horn-fruited lines, whereas the remaining
peppers, including three long horn-fruited, all the linear-
fruited, and all the short horn-fruited peppers, as well as
two cultivar progenitors Perennial and Chiltepin were
assigned to Group 2. The clustering of these pepper
lines appeared to be more related to fruit type, when
K = 5. Group 1 was divided into Subgroup 1 (mostly
blocky-fruited) and Subgroup 2 (long horn-fruited),
whereas Group 2 was composed of Subgroup 3 (admix-
ture, mostly short horn-fruited), Subgroup 4 (linear-
fruited), and Subgroup 5 (cultivar progenitors with small
fruit).
Given that pepper genomes are highly repetitive, strict

criteria were used to identify the perfect SNPs (See
Methods). In total, 521 perfect SNPs were identified, and

92, which were distributed across the genome (Fig. 2;
Additional file 9: Table S2), were selected as multiplex
PCR targets. Based on the previous annotation [3], 83
and 9 perfect SNPs fall within intergenic and genic re-
gions, respectively. The nearest flanking annotated genes
for each perfect SNP are shown in Additional file 9:
Table S2.

Genotyping analysis of pepper varieties using the target
SNP-seq
In total, 271 pepper varieties, including 90 blocky-, 113
long horn-, 25 short horn-, and 43 linear-fruited var-
ieties, were genotyped using the Target SNP-seq (Add-
itional file 8: Table S1). A total of 55.9 million reads
were generated from the 271 varieties, with an average
target read depth of 2064, and approximately 82% of the
samples were sequenced at a depth greater than
1000 × (Additional file 2: Figure S2A). Among the 271
varieties, 238 varieties (87.8%) aligned to the Zunla-1
genome [3] at a rate of more than 90% (Additional file 2:
Figure S2B). Of these aligned reads, 221 varieties (81.5%)
exhibited an align rate to the target SNP region of over
80% (Additional file 2: Figure S2C). Furthermore, the
Target SNP-seq uniformity index was analyzed, which
was used to calculate the proportion of the coverage
above 10% of the mean depth value for each variety. The
average uniformity index in this study was 93.68%

Fig. 1 Population structure across pepper lines. Phylogenetic relationships (a) and population structure (b) based on the total SNPs of the 31
pepper inbred lines sequenced in this study and the previously sequenced C. annuum cultivars Zunla-1, Chiltepin [3], Perennial, and Dempsey
[13]. Fruit shapes are presented as colored shapes
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(Additional file 2: Figure S2D), which indicated a high
uniformity of sequence depth among the 92 SNPs.

Perfect SNPs in 271 pepper varieties
The genetic parameters, MAF, Ho, He, and PIC revealed
by each perfect SNP are given in Additional file 10:
Table S3. MAF is a measure of the discriminating ability
of the markers; as such, the closer the MAF is to 0.5 for
biallelic markers, the better discriminatory properties. In
this study, 28.26% of perfect SNPs showed a MAF be-
tween 0.4 and 0.5, whereas only four SNPs had MAF
below 0.1 (Additional file 3: Figure S3A). The Ho value
of each SNP ranged from 0.01 (CaSNP079) to 0.59
(CaSNP009) with an average of 0.28, and 11 SNPs exhib-
ited higher Ho (> 0.4) (Additional file 3: Figure S3B;
Additional file 10: Table S3). Furthermore, the He values
ranged from 0.01 (CaSNP079) to 0.5 (CaSNP043 and
CaSNP094) (Additional file 3: Figure S3C; Add-
itional file 10: Table S3), whereas PIC values varied
among perfect SNPs from 0.01 (CaSNP079) to 0.38

(CaSNP043, CaSNP094 and CaSNP117) with a mean of
0.31 (Additional file 3: Figure S3D; Additional file 10:
Table S3). 71.74% of the perfect SNPs had PIC values
greater than 0.30, whereas only four SNPs showed PIC
values below 0.2. These values indicate that the perfect
SNPs panel has a high discriminating capacity for var-
ieties, and that CaSNP043, CaSNP94, CaSNP117, and
CaSNP009 were the best at discriminating between var-
ieties. Overall, the results indicate that the Target SNP-
seq can be used as a rapid tool for genotyping peppers.

Perfect SNPs across the fruit shapes
The average values of the genetic parameters across the
four fruit shape populations were also compared for gen-
etic diversity, and the results showed that the blocky-
fruited population had the lowest average values for He
(0.18), Ho (0.16), and PIC (0.15) (Table 1), indicating the
lowest genetic diversity within this population. In con-
trast, the long horn-fruited population exhibited the

Fig. 2 Characteristics of the perfect SNPs used to genotype pepper varieties by Target SNP-seq. a Distribution of the 92 perfect SNPs in the
ideogram of the genome of C. annuum Zunla-1 [3]. b Observed heterozygosity (Ho) per SNP locus, colored in red. c Expected heterozygosity (He)
per SNP locus is presented in green. d Polymorphism information content (PIC) per SNP locus is presented in blue. e Minor allele frequency
(MAF) per SNP locus is given in yellow. This figure was generated using Circos (http://circos.ca/) with the SNP region magnified to 2 Mb
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highest genetic diversity as defined by the highest aver-
age values of He (0.39), Ho (0.36), and PIC (0.31).
A total of 21 SNP loci did not indicate any diversity

(PIC = 0) within certain fruit populations, of which 16, 1,
3, and 5 loci were for the blocky-, long horn-, short
horn-, and linear-fruited population, respectively (Add-
itional file 10: Table S3). These fruit shape-specific loci
may have been under selection during breeding or were
selected owing to linkage with genes that determine fruit
traits.

Identification of a core-SNP set
The perfect SNP panel distinguished 97.7% of the 271
pepper varieties (Fig. 3), the remaining displayed the
same multilocus genotypes that were also difficult to dis-
tinguish from field phenotypes. Given that some varieties
may exist with multiple names, varieties with identical
genotypes may be redundant and were discarded to
build non-redundant genotype varieties. Thus, a

minimum of 27 perfect SNPs could distinguish between
all non-redundant varieties (Fig. 3).
To develop a core-SNP set for the KASPar platform,

each perfect SNP marker was tested on a set of 23 to 95
pepper varieties with two allele-specific forward primers
and one common reverse primer. The results showed
that 35 SNP primers (Additional file 11: Table S4; Add-
itional file 4: Figure S4) produced consistent and repeat-
able results with Target SNP-seq. Finally, 35 SNPs with
a high discrimination power of up to 97% across all var-
ieties and 100% in non-redundant varieties were pro-
posed as a core SNPs set for use with the KASPar
platform (Fig. 3 and Additional file 4: Figure S4; Add-
itional file 11: Table S4).

Genetic structure in pepper varieties
The principal component analysis (PCA) was performed
using the 92 perfect SNPs to investigate population clus-
ters across the 271 varieties (Fig. 4a). Accordingly, the
PCA plot indicates that the four fruit shape populations
were generally clustered separately. The distribution of
blocky-fruited varieties was very concentrated, whereas
that of the long horn-fruited varieties was relatively dis-
persed. Linear-fruited varieties were more closely related
to the short horn-fruited varieties than to either the long
horn- or blocky-fruited varieties. Linear and blocky-
fruited populations were the most diverse, and these
clusters did not overlap, suggesting considerable genetic
divergence throughout their breeding history. Notably, a
selection of both long horn- and short-fruited varieties
showed close relatedness to the linear-fruited
population.

Table 1 Genetic diversity in fruit shape populations and across
all varieties

Fruit shapes Varieties size PICa He Ho MAF

Blocky-fruited 90 0.15 (4)b 0.18 (4) 0.16 (4) 0.13 (4)

Long horn-fruited 113 0.31 (1) 0.39 (1) 0.36 (1) 0.30 (1)

Short horn-fruited 25 0.29 (2) 0.37 (2) 0.34 (2) 0.29 (2)

Linear-fruited 43 0.25 (3) 0.31 (3) 0.33 (3) 0.23 (3)

Total 271 0.31 0.40 0.28 0.31
aFor each fruit population: polymorphism information content (PIC), expected
heterozygosity (He), observed heterozygosity (Ho), and minor allele
frequency (MAF)
bThe numbers in parentheses refer to the numerical ranking of diversity in a
descending order

Fig. 3 Discriminating saturation curve of 92 perfect SNPs in pepper varieties. The maximum discrimination power was 97.7% across all 271
varieties using 35 perfect SNPs, and 100% across non-redundant varieties using 27 perfect SNPs
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The population structure of the 271 varieties was fur-
ther inferred using the cluster program, STRUCTURE,
testing for 2 to 5 number of clusters (K). Evanno’s cor-
rection [38] showed the peak of delta K at K = 2, which
suggests the presence of two main populations, denoted
as Pop1 and Pop2. Pop1 comprised 160 varieties
(59.0%), containing all blocky-fruited varieties, 60.2% of
long horn-fruited varieties, and only two linear-fruited
varieties (Fig. 4b; Additional file 8: Table S1). The
remaining 111 varieties (41.0%) were assigned to Pop2,

which included all the short horn- and linear-fruited var-
ieties, as well as 39.8% of long horn-fruited varieties
(Fig. 4b; Additional file 8: Table S1). When K = 3, Pop1
was subdivided into two clusters, blocky- or long horn-
fruited types. At K = 4, a mixture of 56% short horn-, 15
long horn-, and two linear-fruited varieties were
assigned to a new cluster from Pop2, and these short
horn- and a new long horn-fruited groups were assigned
to independent clusters, respectively, when K = 5. Of
note, the linear-fruited types were never assigned to an

Fig. 4 Population structure across pepper varieties. a Principal component analysis (PCA). b Population structure inferred using STRUCTURE. All
varieties were divided into two main populations (Pop1 and Pop2) when K = 2, which was the optimal K. The populations were subdivided into
five subpopulations, Subpop1~Subpop5, which correlated with fruit shape. c Phylogenetic tree analysis. The tree was produced using the
neighbor-joining method based on the 92 perfect SNPs. The scale bar indicates simple matching distance
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independent cluster as K was increased. Considering that
the classification of populations appeared highly corre-
lated with fruit types when K = 5, the two main popula-
tions were further subdivided into five subpopulations
(Subpop1~Subpop5; Fig. 4b; Additional file 8: Table S1).
Subpop1, 2, 3, and 4 showed a clear-cut structure with
no or very few admixtures. Subpop1 comprised 98 var-
ieties, 90 of which belong to blocky-fruited varieties and
the remaining eight to long horn-fruited varieties. Long
horn-fruited varieties were members of both Subpop2
and Subpop3, which is not surprising as long horn-
fruited varieties were distributed across both Pop1 and
Pop2. Subpop2 comprised 44 long horn-fruited varieties.
Subpop3 comprised 24 varieties, 22 of which were long
horn-fruited varieties and the remaining two were
linear-fruited varieties. Subpop4 comprised 14 short
horn-fruited varieties. Consistent with the results of
PCA analyses, admixtures were mostly located in Sub-
pop5, which contained 41 long linear-fruited varieties as
well as a minority of short horn- and long horn-fruited
varieties.
The unrooted phylogenetic tree (Fig. 4c) is consistent

with the aforementioned PCA and model-based popula-
tion structure, and indicated a clear distinction in the
four fruit shapes, despite having admixtures. Images of
the representative varieties, which were selected based
on the lowest average genetic distance to other varieties
within corresponding subpopulations, are presented in
Fig. 4c. The representative images for two long horn-
fruited varieties from Subpop2 and Subpop3 clearly indi-
cate distinct morphologies.
In summary, three independent analysis methods

strongly supported the division of pepper varieties into
five well-differentiated genetic populations, which were
correlated with distinct fruit shapes, indicating that the
genetic structure of these cultivated varieties may have
been strongly affected by fruit shape selection through
breeding practices.

Genetic variation assessment of pepper populations
Comparison of the results between Pop1 and Pop2 using
analysis of molecular variance (AMOVA) revealed that
33.04% of the total genetic variation was partitioned
among Pops, 8.47% within Pops, and the remaining
58.49% within varieties (Table 2). AMOVA analysis of
the five Subpops further indicated that the maximum

variation (63.83%) occurred within varieties, the mini-
mum variation (3.54%) was accounted for within Sub-
pops, and 32.63% of the variation occurred between
Subpops (Table 2), suggesting relatively moderate differ-
entiation among Subpops.
To test for significant variations between Pops and

among Subpops, a randomization test was performed
(Additional file 5: Figure S5). The output revealed six
histograms representing the distribution of the
randomization strata. The observed results in the output
showed significant differentiation of the structure of
Pops and Subpops considering all levels of Pops and
Subpops strata (Additional file 5: Figure S5). These re-
sults also supported the separation of the varieties into
two Pops and five Subpops. Furthermore, pairwise esti-
mates of Fst showed that population differentiation be-
tween Pop1 and Pop2 was high (Fst = 0.35). The pairwise
Fst between the five Subpops ranged from 0.13 between
Subpop2 and Subpop3 (both consist largely of long
horn-fruited varieties) to 0.48 between Subpop1 (mostly
blocky-fruited varieties) and Subpop4 (short horn-
fruited varieties) (Table 3). Notably, high genetic differ-
entiation (Fst = 0.43) was observed between Subpop1 and
Subpop5 (mostly consisting of linear-fruited varieties),
whereas lower genetic differentiation was observed be-
tween Subpop4 and Subpop5 (Fst = 0.14).

Identification of the loci associated with fruit shape
A wide range of variation was observed for fruit shape
index (FSI) in the 271 pepper varieties (Additional file 12:
Table S5). The average FSI was 1.34, 4.98, 4.70, and
16.56 in blocky-, long horn-, short horn-, and linear-
fruited populations, respectively. Significant differences
were observed among blocky-, horn-, and linear-shaped
populations (p < 0.01), but no differences were detected
between long horn and short horn-fruited populations.
FSI values of more than 9.5 are typical of linear fruits.
Having observed concordance between the population

structure and fruit shapes (Fig. 2), we next performed as-
sociation analyses of the FSI in 271 varieties and 165
genetic loci, including 92 SNPs and an additional 73
SSRs, which were all detected using Target sequencing
(Additional file 6: Figure S6). Using the K +Q mixed lin-
ear model (MLM), a total of nine loci (CaSSR013,
CaSSR090, CaSSR105, CaSSR091, CaSSR039, CaSSR044,
CaSSR107, CaSSR077, and CaSNP112) were identified as

Table 2 Analysis of molecular variance (AMOVA) among Pops and Subpops

Sum of squares Variance components Percentage of variation

Among Pops / Subpops 4013.64 / 5368.25 14.88 / 13.46 33.04% / 32.63%

Within Pops / Subpops 9137.06 / 7782.44 3.81 / 1.46 8.47% / 3.54%

Within varieties of Pops / Subpops 7137.53 / 7137.53 26.34 / 26.34 58.49% / 63.83%

Total 20,288.23 / 20,288.23 45.03 / 41.26 100.00 / 100.00%
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significantly associated with FSI under a threshold p-
value of 0.0001 (Additional file 7: Figure S7; Add-
itional file 13: Table S6). To pair the associations with
previously identified quantitative trait loci (QTL), the
physical position of the nine loci in both the reference
genome of Zunla-1 [3] and CM334 [13] are provided in
Table 4. Loci CaSSR091 and CaSSR039 are within 820
kb on the same chromosome and were considered a
unit. Therefore, the nine loci were located at eight
chromosomal regions on six chromosomes, including
chromosomes 1, 2, 3, 4, 6, and 12, and the phenotypic
variation explained by each locus ranged from 7.9 to
12.7%. Two loci, CaSSR044 and CaSSR107, spanning ap-
proximately 39Mb on chromosome 6, explained the
highest phenotypic variation, which was 12.4 and 12.7%,
respectively (Table 4 and Additional file 13: Table S6;
Additional file 7: Figure S7).

Discussion
High-throughput genotyping by target SNP-seq
High-throughput genotyping technology has become es-
sential for effective crop breeding programs. Target SSR-
seq, which combined the multiplexed amplification of
perfect SSRs with high-throughput sequencing, was re-
cently developed and applied to the identification of cu-
cumber varieties, leading to the characterization of a set
of core SSRs [35]. This sequencing technology can ac-
quire thousands of data points in under 72 h, costs less

than $7/sample, and is associated with genotyping accur-
acy up to 100% due to the high coverage. The cost of
Target SNP-seq developed in this study was similar as
that of Target SSR-seq because the same procedure was
used for target library construction in these two
technologies.
In this study, re-sequencing tools were used to identify

92 perfect SNPs from the genomes of 35 C. annuum
based on strict screening criteria. Only 9.8% of the per-
fect SNPs fell within genic regions, which is in agree-
ment with the previous result that variant density is
significantly lower in the genic region than in the inter-
genic regions [30]. The identified perfect SNPs were
then used for target SNP sequencing to assess genetic
diversity across 271 pepper varieties that are popular in
China. The results showed that the perfect SNP panel
had a high discriminating capacity for varieties, as
71.74% of the perfect SNPs had PIC values of > 0.30
(Additional file 10: Table S3). Further, a minimum of 27
perfect SNPs could distinguish between all non-
redundant varieties (Fig. 3). Notably, the mean PIC value
was found to be 0.31, which is lower than the values de-
rived from studies using SSR markers [17, 39]. These
discrepancies may be explained by the nature of the dif-
ferent types of markers; SSRs are multiallelic and more
polymorphic than SNP markers, which are biallelic [40].
Another reason for the discrepancies may be due to the
commercial varieties tending to be less variable com-
pared to the landraces or the wide germplasm collection.
A set of 35 core SNPs that had the same discrimin-

ation power as the 92 perfect SNPs was successfully con-
verted into KASPar markers, representing another
robust genotyping choice for pepper varieties (Fig. 3;
Additional file 11: Table S4). Unlike SSR markers, SNP
markers do not require reference cultivars to be in-
cluded in each experiment and will also overcome the
confusion between labs regarding SSR alleles.

Table 3 Pairwise F statistics (Fst) estimates among
subpopulations

Subpopulations Subpop2 Subpop3 Subpop4 Subpop5

Subpop1 0.21 0.23 0.48 0.43

Subpop2 0.13 0.31 0.28

Subpop3 0.22 0.18

Subpop4 0.14

Table 4 Loci significantly associated with fruit shape index as identified by association analysis

Locia CM334 (v.1.55) [13] Zunla-1 (v2.0) [3] p-value Phenotypic
variation
explained
(%)

Chr. Physical position (bp) Chr. Physical position (bp)

CaSSR013 1 2,895,632 1 2,383,961 2.16E-06 9.7

CaSSR090 2 153,032,594 2 143,851,440 1.36E-06 8.2

CaSSR105 3 143,624,183 3 95,195,822 6.99E-05 9.1

CaSSR091 4 762,569 4 214,859,753 2.17E-05 8.9

CaSSR039 4 ND 4 215,677,699 1.99E-05 8.9

CaSSR044 6 234,686,966 6 1,041,327 6.95E-08 12.7

CaSSR107 6 193,777,105 6 39,731,428 1.88E-05 12.4

CaSSR077 12 226,618,758 12 9,517,953 7.54E-08 10.1

CaSNP112 12 47,349,405 12 181,587,490 8.45E-06 7.9
aThe interval between CaSSR091 and CaSSR039 was within ~ 820 kb; thus, these two loci were considered at the same associated region

Du et al. BMC Plant Biology          (2019) 19:578 Page 8 of 16



Population structure among inbred C. annuum lines
Since their initial domestication in Mexico, peppers have
been under strong selection for fruit shape and size [56].
Consumption habits and pepper type preference vary
globally. In the US alone, more than 20 market types are
recognized and consumed [57]. In China, most of the
pepper varieties commercially cultivated belong to the
species C. annuum, and the market types are classified
by fruit shapes, such as the popular blocky, long horn,
short horn, and linear fruits [58, 59]. To date, most ex-
periments have evaluated the genetic relationships
among several Capsicum species [29, 30, 36, 37, 60–62]
or the genetic diversity of C. chinense and C. baccatum
germplasm from relatively restricted regions [26, 63].
Phylogenetic analysis based on molecular markers, pan-
genome sequencing, and GBS confirmed that C. chinense
and C. frutescens are more closely related to each other
than to C. annuum [29, 61, 64]. Several studies
attempted to characterize the population relatedness of
cultivated C. annuum in restricted geographical areas
[29, 36, 40–42, 65]. They revealed that the population
structures of the C. annuum accessions were mainly as-
sociated to distinct cultivar types with respect to the
plant and fruit descriptors, and thus mostly result from
human selection for cultivar types in agreement with
consumption modes and adaptation to the highly diver-
sified agro-climatic conditions. Notably, the relationships
among the 35 re-sequenced C. annuum lines described
in this study align with previous reports grouping C.
annuum according to fruit traits [29, 41, 65]. Further,
clustering of blocky-fruited peppers in the furthest posi-
tions relative to small hot Chiltepin-like types can also
be observed in previous studies [29, 41, 65].

Genetic structure among C. annuum varieties
Although the previous work has shown that population
of C. annuum landraces in China clusters according to
cultivar type [36], the relationships among commercially
important C. annuum varieties from different companies
have not been investigated with a fine set of genetic
markers. In the present study, the relationships among
four fruit shape populations were assessed across a
broad range of pepper varieties cultivated in China.
Comparison of the genetic parameters showed the low-
est Ho was observed within the blocky-fruited popula-
tion, while the highest was detected in the horn-fruited
population (Table 1). These findings agree with the earl-
ier studies that found a reduction in diversity was associ-
ated with non-pungent blocky-fruited lines relative to
pungent lines [41–44]. The narrow genetic diversity as-
sociated with the blocky-fruited varieties may be a con-
sequence of inbreeding with a limited gene pool.
Additionally, the PCA and phylogenetic tree demon-

strated that the four fruit shape populations clustered

separately with a little or no overlap. This aligns with
the fruit shape classification system and demonstrates
that the genetic structure of pepper varieties in China
has been significantly influenced by breeding programs
that select for fruit shape. Similarly, STRUCTURE ana-
lysis grouped the varieties into two main populations,
Pop1 and Pop2, which were further divided into five
subpopulations, Subpop1 to Subpop5 (Fig. 4b). More-
over, the subpopulations correlated with fruit shape.
Notably, Subpop1, Subpop4, and Subpop5 corresponded
to the blocky, short horn, and linear-fruited varieties, re-
spectively. However, the majority of the long horn-
fruited varieties were divided into two subpopulations,
Subpop2 and Subpop3, which were statistically unique
(Additional file 5: Figure S5). The best fit of genetic
structures of the pepper lines and varieties were both di-
vided into two groups in this study, different to that ob-
served in the 368 Chinese C. annuum accessions
analyzed by Zhang et al. [36, 18], which included 28 SSR
markers to structure the accessions into three STRUCT
URE groups. These differences may be attributed to the
different types of pepper materials and the number of
markers used in the two studies. However, the clustering
of fruit types in both studies appeared to be somewhat
similar, although different classifications of fruit shape
were used. For example, Group1 mainly included rect-
angular, square, and triangular fruit types [36], which
were also mainly clustered in Pop1 of our study. Group
3 mainly comprised cultivars with small and long fruits
characterized by a very high fruit length: width ratio
[36], which is the characteristic of linear-fruited and
some short horn-fruited varieties in Pop2 of this study.
In summary, our study provided valuable insight into
the population structure underlying the fruit shapes of
pepper varieties, as well as confirmed the strong effect of
fruit shape selection by breeders on the genetic structure
of Chinese pepper varieties.

Identification of associated loci for fruit shape
Fruit shape is an important trait in pepper breeding pro-
grams. A number of QTLs controlling FSI have been
identified in intraspecific and interspecific populations
from a cross between the bell pepper and a small-fruited
hot pepper [45–53]. The first FSI QTL in peppers,
named fs3.1, was detected on linkage group 3 [48]. This
QTL was subsequently detected in other linkage analyses
[46, 47, 51]. Using genome-wide associations in 373 pep-
per accessions, Colonna et al. (2019) recently identified
that the SNP 3:183386147 on chromosome 3, located in
the exon of gene CA03g16080, is significantly associated
with FSI [30]. In the current study, the FSI associated
loci CaSSR105 and its nearest upstream marker,
CaSNP029, are located within approximately 26Mb in-
tervals on chromosome 3 (Additional file 13: Table S6).
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This FSI association region covers the reported FSI asso-
ciated loci SNP 3:183386147 in the gene Longifolia 1-like
(CA03g16080) [30]. Zygier et al. (2005) mapped a fruit
shape QTL (fs2.1) on chromosome 2 [50]. This QTL was
also detected in other studies and was found to be close
to the Ovate gene (CA02g22830) at approximately 158
Mb of the CM334 genome [52, 53]. In the current study,
FSI associated loci CaSSR090 and its nearest down-
stream loci CaSSR024, with an interval spanning of ap-
proximately 12.6Mb on chromosome 2, covered the
reported Ovate gene (CA02g22830). The Ovate gene was
initially discovered in the tomato, where it controlled
the fruit shape transformation from round to pear-
shaped fruit [54, 55]. A single FSI QTL (fs4.2) was de-
tected at the end of chromosome 4, which explained the
26.1% phenotypic variation [50]. We found that two FSI
associated loci, CaSSR091and CaSSR039, were located
between CaSNP041 and the end of chromosome 4, cov-
ering approximately 12.9 Mb (Additional file 13: Table
S6). The presence of FSI association loci on chromo-
somes 1, 6, and 12 was also detected in this study (Add-
itional file 6: Figure S6 and Additional file 7: Figure S7;
Table 4 and Additional file 13: Table S6). After screen-
ing for protein function in these association loci, we
found that two Ovate genes, CA06g21580 and
CA12g07370, could be considered candidate genes, as
they had significant effects on fruit shape.

Future directions of target SNP-seq in pepper
Of note, foreground selecting markers that are suitable
for specific primer design could also be added to the
perfect SNP panel used in our Target SNP-seq. For ex-
ample, based on the functional site of the Tobamovirus
resistance gene L3 and L4 [66], the Phytophthora capsici
resistance genes CaDMR1 and Phyto5NBS1 [67, 68],
bacterial spot resistance gene Bs3 [69], and potato virus
Y resistance gene pvr1 [70], specific primers at the flank-
ing region of the functional site have successfully been
developed (Additional file 14: Table S7) and added to
the perfect SNP panel. These functional loci of resist-
ance genes, combined with the perfect SNP and SSR
markers, could be detected simultaneously across hun-
dreds of pepper accessions through Target SNP-seq.
The commercial application of this technique has the
potential to increase the efficiency of marker-associated
selection programs, as well as aiding in variety
identification.

Conclusions
The Target SNP-seq developed in this study is a high-
throughput and reliable tool for the investigation of gen-
etic diversity, variety identification, and characterization
of population structure in peppers. The use of PCA,
phylogenetic tree generation, and STRUCTURE revealed

that the genetic structure of commercially available pep-
per varieties in China had been significantly influenced
by fruit shape selection through breeding. Finally, associ-
ation analysis of a limited number of markers allowed
for the identification of previously reported and novel
genomic regions that control fruit shape.

Methods
Plant materials, fruit shape categorization, and DNA
extraction
A total of 271 pepper varieties, which were kindly sup-
plied by 60 different breeding companies in China, were
analyzed in this study. Information on these hybrid
seeds, including variety name and source, is available in
Additional file 8: Table S1. Fruit trait investigation and
genetic identification were carried out by the pepper
genetic breeding group and high-throughput molecular
breeding platform at the Beijing Vegetable Research
Center (BVRC).
Varieties were planted under greenhouse conditions at

the Vegetable Varieties Exhibition Center in the Tongz-
hou District of Beijing. The greenhouse temperature
ranged from 25 to 30 °C (08:00–20:00) and 20–25 °C (20:
00–08:00), with natural light. Each variety consisted of at
least four plants. The fruits were categorized into one of
four fruit shapes: blocky-, long horn-, short horn-, and
linear-fruited types (Additional file 8: Table S1).Exam-
ples of fruit shape classification are presented in Add-
itional file 1: Figure S1. Four to ten ripe fruits from each
plant were subjected to measurements of maximum
height and width using a Vernier caliper (Hangzhou
Tool and Measuring Tool Company, Hangzhou, China).
DNA was extracted from four young plantlet randomly

selected from individuals of each variety using a CTAB-
based method [71]. The DNA integrity was assessed
using 1.5% (w/v) agarose gel electrophoresis, and the
concentration was determined using a Nanodrop 2000
Spectrophotometer (Thermo Fisher Scientific, DE, USA).

Re-sequencing and perfect SNP identification
In total, 31 diverse pepper lines (C. annuum), including
30 inbred lines from our ongoing breeding programs in
BVRC and PI640446 provided by the U.S. National Plant
Germplasm System, were selected for re-sequencing on
the Illumina X Ten platform at Shanghai Majorbio Bio-
pharm Technology Co. Ltd. (Shanghai, China). The 31
pepper lines had diverse genetic backgrounds and horti-
cultural traits, including eight blocky-fruited lines, 13
long horn-fruited lines, five short horn-fruited lines and
five linear-fruited lines (Fig. 1).
The raw reads of the 31 re-sequenced lines and four

previously sequenced cultivars; Zunla-1 (C. annuum)
and its wild progenitor Chiltepin (C. annuum var. glab-
riusculum) [3], C. annuum cv. Perennial and C. annuum
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cv. Dempsey [13], were filtered into clean data using
Trimmomatic [72]. The clean reads were then mapped
to the reference genome of Zunla-1 chromosome ver-
sion 2.0 [3] using the Burrows-Wheeler Alignment Tool
(BWA) with default parameters, and SNPs were called
using the Genome Analysis Toolkit (GATK, v2.4-
7g5e89f01) [73]. SNPs with MAF > 5% and missing data
< 10% were imported into MEGA to build the rooted
phylogenetic tree using the cultivar progenitor, Chilte-
pin, as an outgroup with the neighbor-joining method
[74]. Population structure analysis was completed using
STRUCTURE v2.3. The number of populations (K) was
determined following the standard procedure [75] with a
burn-in period of 100,000 iterations and Markov Chain
Monte Carlo of 100,000. Twenty independent runs were
performed for K varying from 1 to 15. The optimum K
was defined according to Evanno’s delta K method [38].
To acquire a dataset of genome-wide SNPs for subse-

quent Target SNP-seq analysis, perfect SNPs were iden-
tified using the following criteria: (i) MAF > 0.4 to filter
out uninformative SNPs; (ii) miss rate < 0.2; (iii) hetero-
zygosity < 0.2; (iv) no sequence variation in the 100 bp
flanking sequence of the SNP locus; and (v) 2 alleles per
locus for the SNPs.

Target SNP-seq
The Target SNP-seq procedure was completed as previ-
ously described using the SNPs identified above [35]. In
brief, library construction for Target SNP-seq consisted
of the following two rounds of PCR: the first round
amplified and captured the target SNPs in DNA samples
using the multiplexed panel of perfect SNP primers
(Additional file 9: Table S2); the second round added a
unique barcode to the capture product for each DNA
sample. Thus, the samples are distinguished based on
the different barcodes. The multiplexed PCR was con-
ducted in a 30 μl reaction mixture, containing 50 ng gen-
omic DNA template, 8 μl of the multiplexed SNP-
capture panel primers (10 μM), 10 μl of 3M enzymes
(Molbreeding Biotechnology Company, Shijiazhuang,
China). The PCR mixtures were heated at 95 °C for 5
min followed by 17 cycles at 95 °C for 30 s, 60 °C for 4
min, 72 °C for 4 min with a final 4 min extension at
72 °C. The PCR products were purified using a magnetic
bead suspension and 80% alcohol. Similarly, the second
PCR amplification was performed in a 30 μl reaction vol-
ume containing 11 μl of purified PCR product from the
previous round, 10 μl of 3M Taq enzyme (Molbreeding
Biotechnology Company, Shijiazhuang, China), 8 μl
nuclease-free water, and 1 μl of primers with the follow-
ing sequences: forward 5′- AATGATACGGCGAC
CACCGAGATCTACACTCTTTCCCTACACGA
-CGCTCTTCCG-3′ and reverse 5′-CAAGCAGAAG
ACGGCATACGAGAT -XXXXXXXXGTGACTGGAG

TTCCTTGGCACCCGAGA-3′ (barcodes are indicated
by underlined sequences). The PCR procedure was 95 °C
for 3 min; 7 cycles of 95 °C for 15 s, 58 °C for 15 s, and
72 °C for 30 s with a final 4 min extension at 72 °C. The
PCR products were then purified with 100 μl of 80% al-
cohol and 23 μl Tris-HCl buffer (10 mM, pH 8.0–8.5).
After that, a Target SNP-seq library was sequenced
using an Illumina X Ten platform at Molbreeding Bio-
technology Company (Shijiazhuang, China).

SNP genotype analysis of target SNP-seq
The raw data from the Target SNP-seq was de-
multiplexed to determine the exact genotypes for each
variety based on the sample-specific barcodes using the
Illumina bcl2fastq pipeline (Illumina, San Diego, CA,
USA). Clean data were filtered out using Trimmomatic,
and the reads of each variety were mapped to the pepper
reference genome of Zunla-1 [3] using BWA with de-
fault parameters. Sequence depth, alignment rate, as well
as target alignment rate and uniformity for each variety
were calculated as follows to evaluate the results of tar-
geted sequencing.

Alignment rate ¼ the number of reads aligned on the genome=total reads:

Targetalignment rate ¼ the number of reads aligned on the target region=total reads:

Uniformity inferred to the proportion of the SNPs
with a depth of > 10% of the average depth.

Depth of each SNP ¼ total base generated in the perfect SNP=read length:

Average depth ¼ S= M�N� Lð Þ;

where S indicates the total base generated from Target
SNP-seq; M indicates the total number of varieties; N in-
dicates the total number of SNPs; L indicates the average
read length.
SNP genotypes were called using GATK. Based on the

high-throughput sequencing results, the SNP alleles with
the maximum numbers of reads and the second max-
imum numbers of reads were treated as the major and
minor allele for each target SNP locus. When the read
frequency of the major allele was higher than 0.7, the
locus was described as homozygous. If the read frequen-
cies of the major and minor allele were both more than
0.35, the locus was described as heterozygous.
Sequence depth for each variety = Total base generated

from variety / total base length of the 92 targeted gen-
ome region.
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Determination of genetic parameters for each perfect
SNP
Genetic parameter statistics of the perfect SNPs, includ-
ing the observed heterozygosity (Ho), expected heterozy-
gosity (He), and polymorphism information content
(PIC) [76] were calculated using a Perl script with the
following equation:

PIC ¼ 1−
Xl

i¼1

P2
i −

Xl−1

i¼1

Xl

j¼iþ1

2P2
i P

2
j

where l is the allele locus, and Pi and Pj represent the
population frequency of the ith and jth allele. The
chromosomal distribution of the perfect SNPs was
mapped using Circos software (http://circos.ca/) with
the SNP region magnified to 2Mb.

Genetic structure analysis
Genetic relationships among varieties were investigated
using three different methods: PCA, STRUCTURE, and
a phylogenetic tree. PCA was carried out using the Fac-
toMineR package in R [77]. The Bayesian-based model
procedure implemented by STRUCTURE v2.3 [75, 78]
was also used to determine population structure. The
number of populations (K) was determined as described
above, and the unrooted phylogenetic tree was con-
structed using the Ape and Poppr packages in R based
on the neighbor-joining method with the tree viewed
using MEGA v5.1 [79, 80].

Population diversity analysis
The different fruit shape populations, as well as the sub-
populations inferred from STRUCTURE, Ho, He, PIC,
and MAF analyses, were calculated using the methods
mentioned above. To measure genetic differences of
populations and subpopulations, AMOVA and pairwise
Fst were performed using poppr R package and the func-
tion pairwise.neifst in the Hierfstat R package, respect-
ively [81, 82]. Randomization tests were further
performed to test the significance of differentiation using
the function randtest in the ade4 package [81]. Detailed
instructions for the AMOVA and randomization tests
are available at https://grunwaldlab.github.io/Popula-
tion_Genetics_in_R/AMOVA.html and https://rdrr.io/
cran/poppr/man/poppr.amova.html.

Discrimination power of the perfect SNPs
To determine a minimal number of SNPs for distin-
guishing the maximum number of pepper varieties, a
Perl script was developed to determine the best discrim-
ination power for 1 to 92 perfect SNPs according to the
following algorithm.
1) Selection of the first SNP: a) pairwise comparison

between varieties were conducted for each SNP, which

included 36,585 comparisons for each SNP; b) Xij = 1 if
genotype difference existed for jth pairwise comparison
of ith SNP (i = 1, 2, 3, …, 92; j = 1, 2, 3, …, 36,585). Xij = 0
if genotype difference did not exist for jth pairwise com-
parison of ith SNP (i = 1, 2, 3, …, 92; j = 1, 2, 3, …, 36,

585); c) The SNP with a maximum value of
P36585

j¼1 Xij

among the 92 SNPs was selected as the first SNP. 2) Se-
lection of the best two SNPs: a) 91 SNP combinations of
the first selected SNP and each of the rest 91 SNPs were
formed; b) 36,583 pairwise comparisons were conducted
for each of the 91 SNP combination; c) Xmj = 1 if geno-
type difference existed for jth pairwise comparison of mth

SNP combination (m = 1, 2, 3, …, 91; j = 1, 2, 3, …, 36,
583). Xmj = 0 if genotype difference did not exist for jth

pairwise comparison of mth SNP combination (m = 1, 2,
3, …, 91; j = 1, 2, 3, …, 36,583); d) the SNP combination

with a maximum value of
P36585

j¼1 Xmj was selected as the

best two SNPs. If the SNP combinations had the same
values, the SNP combination with the second SNP lo-
cated at a different chromosome as first SNP was prefer-
entially selected as the best two SNPs. 3) Selection of the
best three SNPs: a) 90 SNP combinations of the best two
SNPs and each of the rest 90 SNPs were formed; b), c),
and d) steps were conducted similarly as that in step 2)
to select the best three SNPs. If the SNP combinations
had the same values, the SNP combination with the
third SNP located at different chromosome as the first
and second SNPs was preferentially selected as the best
three SNPs. The best 4 to 92 SNPs were selected grad-
ually as in step 3). Discrimination power for 1 to 92 best
SNPs was calculated using the following formula: dis-
crimination power = the number of varieties showing
unique genotypes / 271. The saturation curve was plot-
ted by discrimination power for 1 to 92 best SNPs
(Fig. 3). High discrimination power referred to high sat-
uration value and high SNP discernibility.

Core SNPs set for variety discrimination
To develop a set of core SNPs that discriminates be-
tween varieties using the KASPar platform, two allele-
specific forward primers and one common reverse pri-
mer were designed for each perfect SNP marker. The 23
to 95 commercial varieties were then used to assess the
potential utility of the SNP markers through the KASPar
platform; fluorescence was detected as previously de-
scribed [83]. Detailed instructions are available at www.
kbioscience.co.uk. The Perl script, as mentioned above,
was used to select a core-SNP set from the successfully
verified SNP markers. Finally, the SNP markers associ-
ated with the maximum variety discrimination (the high-
est saturation value) were identified as a core-SNP set.
The primer sequences of the core-SNP markers are
shown in Additional file 11: Table S4.
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Association analysis
FSI for each variety was calculated as the ratio of max-
imum height to maximum width. Ninety-two SNP loci
(Additional file 9: Table S2) combined with 73 SSR loci
(Additional file 6: Figure S6), all developed in this study
and detected by target sequencing across 271 varieties,
were used for association analysis. The methods used for
SSRs target library construction and detection were the
same as those used in Target SNP-seq. The software
program TASSEL 5.2.25 was used for association ana-
lysis. The MLM that considered both the fruit shape
populations (Q matrix) and the kinship matrix (K
matrix), and a general linear model (GLM) using fruit
shape populations (Q matrix) as a fixed factor were used
for association identification of loci conferring fruit
shape. Significance of marker-trait association was indi-
cated when the p-value was less than 10− 4. Because it
has been popularly proved that the MLM +Q + K model
is more effective than other models in detecting loci [84,
85], only data from the MLM +Q +K model is pre-
sented in this study. The phenotypic variation explained
by each perfect SNP was the R2-value obtained from the
MLM. Candidate genes between the nearest up- and
down-stream SNP loci to the significantly associated loci
were identified from the protein annotation published
using the CM334 genome [3].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12870-019-2122-2.

Additional file 1: Figure S1. Examples of fruit shape classification. Fruit
shapes were categorized into four types as (A) blocky-fruited: blocky
shape, 5.0–12.5 cm wide at the shoulder, 7.0–18 cm long, 3–4 lobes, in-
cluding Fang Jiao, Chang Fang Jiao, and Ma La Jiao, as named in China;
(B) long horn-fruited: long horn shape, 3.0–8.0 cm wide at the shoulder,
10.0–35.0 cm long, without lobe, including Niu Jiao Jiao, Yang Jiao Jiao,
and Luo Si Jiao, as named in China; (C) short horn-fruited: cone-shaped,
medium-hot, 1.0–3.0 cm in diameter at the base, 3.5–10.0 cm in length,
and with very thin pericarp, including Gan Jiao and Chao Tian Jiao, as
named in China; (D) linear-fruited: cayenne type, 1.0–3.0 cm wide by
10.0–35.0 cm long, without shoulder and lobe, including Xian Jiao, Tiao
Jiao and Mei Ren Jiao, as named in China.

Additional file 2: Figure S2. Target SNP-seq genotyping analysis re-
sults. Distribution of the average read depths (A), reads alignment rate to
the pepper reference genome (B), target region alignment rate (C), and
uniformity for 271 pepper varieties (D).

Additional file 3: Figure S3. Genetic diversity analysis for the 92
perfect SNPs across 271 pepper varieties. Minor allele frequency (MAF; A),
observed heterozygosity (Ho; B), expected heterozygosity (He; C), and
polymorphism information content (PIC; D).

Additional file 4: Figure S4. Kompetitive allele-specific PCR (KASPar) re-
sults of the 35 core SNP markers genotyped across 23 to 95 pepper
varieties.

Additional file 5: Figure S5. Significance testing of differentiation
between Pops and among Subpops. The graphs show significant
population differentiation at all levels given that the observed line (black)
does not fall within the distribution expected of the permutation.

Additional file 6: Figure S6. Chromosomal map of a subset of markers
used in association analysis with fruit shape index (FSI). The physical
position of each marker on 12 chromosomes of C. annuum Zunla-1 [3]
are shown between brackets. Significantly associated markers are shown
in red color.

Additional file 7: Figure S7. Manhattan plots (A) and quantile-quantile
plots (B) of fruit shape index (FSI) in the 271 pepper varieties. Red dashed
line indicates high probability of associated loci with FSI.

Additional file 8: Table S1. Classification of and information on the
pepper varieties used in this study.

Additional file 9: Table S2. Multiplexed primers panel of the 92 perfect
SNPs used for Target SNP-seq.

Additional file 10: Table S3. Characteristics of the 92 perfect SNPs and
the diversity detected in the 271 pepper varieties and four fruit shape
populations.

Additional file 11: Table S4. Primer sequences of the 35 core-SNP
markers developed in this study.

Additional file 12: Table S5. Range, mean, and standard deviations
(SD) collected for fruit shape index (FSI) in the pepper varieties.

Additional file 13: Table S6. Association regions with fruit shape index
(FSI) in the reference genomes of CM334 and Zunla-1.

Additional file 14: Table S7. Specific primers used to detect functional
resistance loci against four pepper diseases through Target SNP-seq.
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