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Abstract 

Background:  Calcium imaging is a powerful technique for recording cellular activity across large populations of neu-
rons. However, analysis methods capable of single-cell resolution in cultured neurons, especially for cultures derived 
from human induced pluripotent stem cells (hiPSCs), are lacking. Existing methods lack scalability to accommodate 
high-throughput comparisons between multiple lines, across developmental timepoints, or across pharmacological 
manipulations.

Results:  To address this need we developed CaPTure, a scalable, automated Ca2+ imaging analysis pipeline (https://​
github.​com/​Liebe​rInst​itute/​CaPTu​re). CaPTuredetects neurons, classifies and quantifies spontaneous activity, quanti-
fies synchrony metrics, and generates cell- and network-specific metrics that facilitate phenotypic discovery. The 
method is compatible with parallel processing on computing clusters without requiring significant user input or 
parameter modification.

Conclusion:  CaPTure allows for rapid assessment of neuronal activity in cultured cells at cellular resolution, rendering 
it amenable to high-throughput screening and phenotypic discovery. The platform can be applied to both human- 
and rodent-derived neurons and is compatible with many imaging systems.
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Background
Because transient dynamic changes in intracellular cal-
cium concentration occur rapidly during the course 
of neuronal activity, calcium imaging is frequently 
employed for assessing neuronal activity. Measurements 
of intracellular calcium levels can be used to quantify cel-
lular activity at both network-wide and single-cell reso-
lution. In  vivo two-photon microscopy via thin-skull or 
cranial window preparations has been employed for 
over a decade to perform calcium imaging in head-fixed 

rodents, and more recently used to measure activity 
dynamics in the brains of awake, behaving animals using 
fiber photometry or miniaturized microscopes coupled 
with endoscopic imaging. Advances in methodology and 
technology have rapidly increased the experimental capa-
bilities of calcium imaging (as recently reviewed [1–3]), 
and with this have emerged a number of computational 
methods to analyze calcium imaging data both at the 
level of bulk calcium dynamics and in single cells [4–8].

However, due to differences in signal-to-noise ratios 
and background fluorescence in intact tissue versus cell 
culture systems, collecting and analyzing calcium imag-
ing data from in  vitro cell culture models requires dif-
ferent computational approaches. For example, in  vitro 
cell model systems are comparatively less active and 
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more synchronous than intact brain samples. Many of 
the existing methods for calcium imaging analysis detect 
changes in activity, and then combine those synchronous 
signals into the signal attributed to a single cell [6, 9]. Due 
to the high degree of synchronicity in in  vitro systems, 
these methods erroneously combine activity measure-
ments for multiple cells that are firing as an ensemble. 
With advancements in human induced pluripotent stem 
cell (hiPSC) technologies and in  vitro genetic modeling 
of disease, the need to accurately measure neuronal 
activity in cultured neurons is increasingly important. 
As current models often involve either co-culture sys-
tems with multiple species as source material (e.g. rodent 
glial cells co-cultured with human neurons) or mixed 
cell-type assemblages (e.g. primary cortical tissue, or 
hiPSC-derived organoids), genetically encoded calcium 
indicators (GECIs) enable important cell-type specific 
targeting. Thus, strategies for measuring neuronal activ-
ity that use AM-dye based Ca2+ indicators or multi-elec-
trode arrays, where a priori targeting or characterization 
of a specific cell population is not feasible, result in lim-
ited cell-type specific information.

Acquisition of this information enables comparisons 
between hiPSC lines derived from different individual 
donors, or from transgenic rodent models. Reviewing 
the existing literature, we found that most analysis meth-
ods, e.g. ‘findpeaks’ in MATLAB, require a high degree 
of user input to define parameters [10, 11], or extensive 
knowledge of the data being acquired to provide informa-
tion for specific functions. On the other hand, FluoroSN-
NAP—Fluorescence Single Neuron and Network 
Analysis Package—accurately detects events, but is GUI 
based and thus is not compatible with high performance 
computing clusters [12]. Utilizing a field-based thresh-
olding approach requires a high degree of similarity 
between all acquired time-lapse movies, or the selection 
of amplitude and intensity thresholds to be performed for 
each field independently, which is not scalable for large 
datasets.

Here we introduce CaPTure, which is an automated 
analysis pipeline that facilitates (1) the accurate detec-
tion of neurons, (2) the identification of calcium events 
in individual cells, and (3) the calculation of image-based 
network connectivity metrics. Utilizing a construct that 
expresses both a fluorescent cellular label and GECI in 
the cell type of interest, we extended the FluoroSNNAP 
software package by introducing additional data pre-
processing steps to detect regions of interest (ROIs) to 
focus subsequent analysis, and normalize fluorescence 
intensity over time [12]. We added data-driven motifs 
representing events observed in our data, and calculated 
synchrony metrics including clusters of synchronous 
cells to assess ensemble activity. We demonstrate that 

our method accurately quantifies dynamic measurements 
in selected cells, while incorporating both per-field and 
individual per-ROI neuronal activity metrics. Thus, this 
method has the advantage of facilitating comparisons of 
neuronal and network activity between genetic models of 
disease and pharmacological manipulations. The method 
is highly amenable to parallel computing and high-
throughput screening.

Implementation
Sample preparation
hiPSC‑derived neurons
Fibroblast donors were male and of European ances-
try—these research subjects were enrolled in the Sib-
ling Study of Schizophrenia at the National Institute of 
Mental Health in the Clinical Brain Disorders Branch 
(NIMH, protocol 95M0150, NCT00001486, Annual 
Report number: ZIA MH002942053, DRW PI) as previ-
ously described [13]. Early passage fibroblasts (< 5 pas-
sages) were reprogrammed into hiPSCs as previously 
described [14], and subsequently differentiated through 
neural progenitor stages into cortical neurons. Neurons 
were co-cultured in 24-well ibidi plates (Cat. No. 82406, 
ibidi GmbH, Munich, Germany) with astrocytes pre-
pared from the cortices of neonatal rats to promote neu-
ronal maturity as previously described [13, 15]; and were 
maintained with partial media changes twice a week for 
up to 10 weeks (Day in Vitro (DIV70)).

Animals
Timed-pregnant Wistar rats for astrocyte cultures were 
obtained from Charles River Laboratories (Wilming-
ton, MA, USA; stock Crl:WI003). To obtain fetal tis-
sue, pregnant dams were euthanized by carbon dioxide 
asphyxiation followed by cervical dislocation. Mice were 
purchased from Jackson laboratories (Bar Harbor, ME, 
C57BL6/J; stock #000,664), and bred for the generation 
of postnatal day 0 mice primary neuronal cultures. To 
obtain neonatal tissue, pups were anesthetized by being 
placed on ice, followed by rapid decapitation, and dams 
were returned to the breeding colony. All rodents were 
housed in a temperature-controlled environment with a 
12:12 light/dark cycle and ad  libitum access to standard 
laboratory chow and water.

Mouse primary cortical cultures
Mouse cortical neurons were cultured as previously 
described with modifications [16]. Briefly, on the day 
of birth, mice were anesthetized by being placed on ice, 
then rapidly decapitated and their cortices removed. Cor-
tical tissue was dissociated using papain, and plated at 
a density of 2.5 × 10^5 per well on a 24-well ibidi plate 
(Cat. No. 82406, ibidi GmbH, Munich, Germany) coated 
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with poly-D-lysine and laminin. Neurons were main-
tained in culture with partial media changes every 2 days, 
and imaged between DIV14 and DIV15.

Viral transduction
hiPSC-derived neurons were transduced at DIV23 
with adeno-associated virus expressing mRuby2 and 
GCaMP6s under the control of a synapsin promoter 
(MOI ~ 6 × 10^4, Addgene viral prep # 50,942-AAV1 
[17]. Following a full media exchange on DIV25, neurons 
were cultured for at least 21  days and imaged on DIV 
42 or 63. Mouse primary cultures were transduced with 
1:10 viral concentration used in human experiments of 
the same virus (human synapsin 1 promoter was ubiq-
uitously expressed in mouse neurons). Mouse primary 
cultures were infected at DIV5–DIV8 prior to DIV14–
DIV15 recordings.

Image acquisition
LSM780 confocal microscope
Primary mouse cortical cultures and hiPSC-derived neu-
rons were imaged in culture media on a Zeiss LSM780 
equipped with a 10X/0.45NA objective, a temperature- 
and atmospheric-controlled enclosure to maintain neu-
rons at 37° and 5% CO2. A reference image was acquired 
for each field of mRuby fluorescence followed by a time-
series was acquired at 4 Hz for 8 min. In some cases, tet-
rodotoxin (TTX, 1uM) was then added to block synaptic 
transmission and incubated for at least 5  min prior to 
imaging to equilibrate.

Spinning disk confocal microscope
Neurons were removed from culture media and were 
continuously perfused with artificial cerebro-spinal fluid 
(ACSF) containing (in mM): 128 NaCl, 30 glucose, 25 
HEPES, 5 KCl, 2 CaCl2, and 1 MgCl2 (pH 7.3) [15]. Imag-
ing was performed at DIV56 or DIV70 on a custom-
built Zeiss AxioExaminer Z.1 equipped with a live-slice 
Yokogawa spinning disk module, Flash4.0 V3 sCMOS 
camera, and a 20X/1.0NA water immersion objective. A 
reference image was acquired using mRuby fluorescence, 
then a time-series was acquired at 10 Hz for 5 min. For 
experiments in which pharmacological blockers were 
added, TTX (1 uM) was included in the perfusate for at 
least 5 min prior to imaging.

Acquisition parameters
From all microscopes, two image types are collected: a 
time-series of GCaMP6s fluorescence and a reference 
image of mRuby to demarcate infected neurons. The ref-
erence image of the LSM780 scope is downsampled using 
the MATLAB function imresize to match the time-series 
image in X and Y dimensions.

Scope Reference 
image
X Y

Pixel to micron Time-series 
image X Y

Pixel to micron

LSM 780 1024 × 1024 
pixel

0.83 × 0.83 μm per 
pixel

256 × 256 
pixel

3.32 × 3.32 μm 
per pixel

Spin-
ning 
disk

1024 × 640 
pixel

0.645 × 0.645 μm  
per pixel

1024 × 640 
pixel

0.645 × 0.645 μm 
per pixel

Toolbox installation and software requirements
All data processing for CaPTure is conducted in MAT-
LAB (Version 2017a or later). The processing pipeline is 
divided into several steps as described below, the execu-
tion of which are explained in the following repository 
https://​github.​com/​Liebe​rInst​itute/​CaImg_​cellc​ultur​es. 
The repository consists of a `toolbox` directory whose 
path needs to be added to the MATLAB working direc-
tory to run any of the processing steps. The directions 
to download and install the toolbox are described in the 
‘installation’ step of the repository.

Statistics
To calculate the effect of pharmacological manipulations, 
the lmerTest R package [18] was used for performing 
linear mixed effects modeling as a function of treatment 
main effect (Baseline versus TTX) and used cell line and 
the cell culture experimenter as the random intercepts to 
control for variability in the cell culturing process.

Using CaPTure
In this section we describe the analysis workflow: first 
we identify ROIs by segmenting neurons in the cell-fill 
channel, and then extract fluorescence intensity. Then we 
identify "peaks,” which are used to calculate per-image 
and per-cell summary and aggregate metrics to assess 
network and cellular activity.

Step1: Convert .czi time series files to.mat files
A time-series of images was collected for each imaging 
field, and saved using the Zeiss proprietary.czi file format 
to maintain image metadata. Since all of the image data 
processing is performed in MATLAB, we recommend 
that users convert the raw data to MATLAB format for 
fast and easy access. We use the Bio-Formats package 
called `bfmatlab` [19] to load the. czi data into MATLAB 
and the MATLAB save function to save it to .mat for-
mat. The `bfmatlab` package supports the conversion of 
multiple proprietary file formats obtained from different 
microscope systems, thus enabling the use of CaPTure on 
calcium imaging data obtained from various systems.

https://github.com/LieberInstitute/CaImg_cellcultures
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Fig. 1  Nuclei Segmentation: A Raw ‘.czi’ image of neuronal cultures. B Background filtered image of the raw ‘.czi’ image. We used the MATLAB 
function ‘imhmin’ (with 2 times the standard deviation of image as threshold) to suppress the signal derived from the neurites. C Segmented 
(using ‘Region Growing’) binary image of neuronal cell bodies. D Final watershed segmentation of ROIs from the binary image (inserts of ROI 13 and 
14). Watershed was performed for better extraction of individual ROIs that are spatially in close proximity. We adjusted parameters (ROI size and 
eccentricity of ROI) to ensure that unintended splits and mergers were minimal. E ROIs (e.g., 4, 7, 11) with total pixel sizes below the size threshold 
are excluded from the final segmentation. F ROIs with an eccentricity > 0.99, indicating a line, and ROIs on the image border (i.e., 31) are excluded
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Fig. 2  Extracted calcium traces: the graph shows the calcium activity for each ROI segmented in Step2, and highlights traces 16, 19, and 23 as 
examples of low-, medium- and high-activity ROIs, respectively. The x-axis is the frame number of the time series and the y-axis range reflects the 
minimum and maximum fluorescence intensity of the ROIs in this image series (29 and 7387 units of mean fluorescence intensity, respectively, in 
this example trace). Scale bar indicates: 12 s on x-axis and 5000 units of mean fluorescence intensity on y-axis

Fig. 3  Delta fluorescence/fluorescence: the graph shows the normalized calcium traces extracted from the calcium activity shown in Fig. 2. 
The x-axis is the frame number of the time series and the y-axis range reflects the normalized minimum and maximum fluorescence intensity 
(− 0.87349 and 10.7162) of the ROIs 16, 19 and 23 which shows low, medium and high activity. Scale bar indicates: 25 s on x-axis and 5 units of 
normalized mean fluorescence intensity on y-axis
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Step2: Identify ROIs
CaPTure allows the user to automate detection of ROIs, 
and then to select ROIs based on their shape or size. 
The strategy allows us to detect cells that express the 

cell-type specific GECI, but are inactive. From each ref-
erence image, we identify infected neurons from which 
to measure calcium dynamics (Fig.  1A). Neurons have 
a complex morphology, and we aimed to identify signal 

Fig. 4  Motif correlation maps: A the normalized traces (4 frames/sec) from step4 are interpolated to 10 frames/sec to match the frame rate of the 
motifs being correlated. B Motif correlation map showing frames in yellow when the event predominantly matches a motif, and frames in blue 
when the event is less matched with the same motif. The frames in turquoise represent the background. C The correlation matrix is thresholded 
(threshold = 0.7). Frames where the maximum correlation (of 23 motifs) is above the threshold are shown as yellow

Fig. 5  Extract calcium events: A the thresholded correlation map from Fig. 4 is converted to a binary map, in which events are colored as yellow, 
while background is teal. B We then displayed the xtracted event location and duration based on the binary map in A on the dff traces from Step2
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Fig. 6  Frequency of a motif occurrence: A the barplot shows the frequency of occurrence of a motif in the specific field. The x-axis shows individual 
motif and the y-axis shows the total number of times the motif appeared in the field. B The barplot shows the percentage of events in a ROI that 
correlates with a specific motif. The x-axis shows the ROIs 16, 19, 23 and the y-axis shows the percentage of events of the ROI

Fig. 7  Network synchronicity: A heatmap showing pairwise correlation of the calcium activity in the field. Synchronicity Index (0–1) represents a 
measure for network synchrony of the field. B showing calcium activity of the field to visually analyze network synchronicity. Scale bar indicates: 50 s 
on x-axis and 3 units of normalized mean fluorescence intensity on y-axis
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from the soma, and not from surrounding neuropil. 
Thus, we used the MATLAB function ‘imhmin’ to sup-
press the background signal coming from the neurites 
(Fig.  1B). We then used the region growing technique 
[20] for segmenting ROIs from the red image, where 
the pixel with the minimum fluorescence intensity of 
the image is chosen as the initial seed location, and 
the region is iteratively grown by comparing all unal-
located neighboring pixels to the seed region. The dif-
ference between the intensity value of each pixel and 
the mean of the region is used as a measure of similar-
ity. The pixel with the smallest difference measured this 
way is allocated to the respective region. This process 
stops when the intensity difference between the region 
mean and that of the new pixel becomes larger than a 

user specified threshold, in this case, the standard devi-
ation of the image (Fig. 1C). The fully grown region is 
termed the background, thus leaving out the regions 
with high intensity which become the final segmented 
ROIs (Fig.  1D). To select for neurons and to remove 
noise, debris and neuropil from further inclusion in 
the data, we used eccentricity (a measure of the round-
ness of the ROI calculated by the MATLAB function 
‘regionprops3’) and a minimum size threshold to filter 
out ROIs from neuropil and noise (Fig. 1E, F). The out-
put of Step 2 provides the identification of all ROIs. The 
output of alternative segmentation algorithms [21] can 
be integrated and used for extraction of downstream 
activity traces.

Fig. 8  Primary mouse cortical neuronal culture data processed through CaPTure: A the raw fluorescent image of mRuby-expressing neurons, its 
corresponding color-coded neuronal segmentation and the GCaMP6s time-series. B Extracted raw calcium traces, the motif correlation map of the 
interpolated dff traces and event detection on the interpolated dff traces using the motif correlation maps. Scale bar indicates: 25 s on x-axis and 
y-axis is 15000 units of mean fluorescence intensity for raw traces (column 1), 3 units of normalized mean fluorescence intensity for normalized 
traces (column 3). C Correlation map of inter-neuron calcium activity grouped by the cluster. D Final extracted metrics at image (field) level and ROI 
(neuron) level
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Step3: Extract traces from each ROI
Calcium imaging allows for measurement of calcium lev-
els in each individual cell by measuring dynamic fluores-
cence intensity. From each identified neuron, i.e., ROI, 
we extract calcium signals by measuring the fluorescence 
intensity over time. Traces (signal) are extracted from the 
green video using the ROI segmentations from Step 2. 
Each point on the trace is the average intensity of all the 
pixels of the segmented ROI at that Z frame in the green 
video. The output of Step 3 (Fig. 2) is raw traces for each 
ROI. For ease of illustration, in subsequent figures we 
focus on three ROIs: ROI 16-low activity (light teal), ROI 
19-moderate activity (medium blue) and ROI 23-high 
activity (royal blue).

Step4: Extract delta fluorescence/fluorescence (dff) 
from step3
Due to fluctuations in viral transfection efficiency, base-
line activity, expression of the virus and the position of 
the cell within the sample, there can be differences in 
the baseline fluorescence intensity fluctuations between 
ROIs. We thus normalized dynamic fluorescent inten-
sity to baseline by calculating the change in fluorescence 
using a rolling average [22] to obtain the DF/F following 
standard methodology. The output of Step 4 provides 
normalized traces with smoothing (Fig. 3).

Step5: Construction of correlation maps
To identify calcium events, a correlation map is con-
structed to compare the pattern of fluorescence inten-
sity changes with known motifs representing calcium 
events. Prior to the calculation of the correlation map, 
the dff traces needed to be interpolated because the motif 
library, created by FluoroSNNAP [12], utilized a frame 
rate of 10 frames/sec (Fig. 4A). We utilized the FluoroSN-
NAP motifs (Additional file 1: Figure S1: 1–16) and con-
structed seven motifs (Additional file 1: Figure S1: 17–23) 
based on observations from our data. A matrix (‘Ca’, 
rows = motifs, columns = x axis of the trace) of correla-
tion coefficients of all motifs across the trace is computed 
(Fig.  4B). The correlation coefficients are set to a value 
of zero at locations across the trace where the intensity/
height of the trace are below a certain threshold that rep-
resents the background, to avoid noise (Fig. 4C). The out-
put of Step 5 aligns normalized traces to motifs (Fig. 4).

Step6: Extract event location and duration
We next extract the event location and duration for each 
event in each ROI (Fig.  5). A final row matrix is com-
puted by picking the maximum correlation coefficient 
from each column of ‘Ca’. The points that exceed the user 
given correlation threshold (0–1) on the row matrix rep-
resent the events of that trace. A high correlation thresh-
old might result in missing some events, while a low 
correlation threshold will potentially pick noise as events, 
so an optimal threshold of ~ 0.7 was used for our datasets 
(Fig. 5B). The total number of all the consecutive points/
frames that cross the threshold is taken as the event dura-
tion in frames. The output of Step 6 counts and classifies 
motifs (Fig. 5). We illustrate the occurrence of each motif 
in our example data set (Fig. 6A), and the occurrence of 
each motif within each ROI (Fig. 6B).

Step 6A (optional): Synchronicity
Because neurons in in vitro networks are highly intercon-
nected, we aimed to estimate the degree to which cal-
cium events were synchronous across a given field. To do 
this we quantified how synchronous the calcium activity 
is between the ROIs of a given field using the functions 
(‘SCA’) provided by the FluoroSNNAP package (Fig.  7). 
The package provides different methods to quantify syn-
chrony including phase correlation, entropy, and Fourier 
Transforms of the calcium traces and events. We used 
the correlation method applied on calcium activity and 
corresponding surrogate traces of pairwise neurons in a 
field to quantify the network synchronicity [12]. Eigen-
value decomposition is used on the pairwise correlation 
matrix of the ROIs, which decomposes the matrix into 
clusters of ROIs with similar activity and quantifies the 
synchronization of each ROI cluster. The output of Step 
6 shows the degree to which events in each ROI are cor-
related with events in other ROIs.

Step7: Extract final data
A custom MATLAB script was written to extract two types 
of metrics: individual ROI metrics in the file long_dat and 
image metrics in the file man. This allows us to make com-
parisons across individual cells and across fields. The final 
man.csv file represents the image level summary statistics 
(in columns) for each image (in rows) in the dataset.

Table 1  Summary of data extracted from two in  vitro data sets: human iPS-derived neuronal cultures and mousecortical neuron 
cultures.

Sample Cells ROIs Active ROIs Avg field activity/ 60 secs Synchronicity Clusters

Figure 1 Human 22 16 0.9 events/ROI 0.03 4

Figure 8 Mouse 41 41 3.48 events/ROI 0.08 3
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Name Image name

Metadata Biological and metadata associated 
with the image

num_ROI Number of cells identified in the 
red image

num_active_ROI Number of cells that fire at least one 
calcium event

prop_active_ROI Proportion of active cells in the 
image

corrSYN Synchronicity index describes how 
synchronous are the cells in the 
image in firing events

motif(1–23) Frequency of occurrence of each 
motif in the time series of the all the 
ROIs in the image

The final long_data.csv file represents the ROI level 
summary statistics (in columns) for each ROI (in row) in 
the dataset.

Name Image name which the ROI belongs to

Metadata Biological and metadata associated with the image

events_ROI Number of calcium events that a cell produced

avg_width Average duration (frames) of events for that ROI

Volume Number of pixels in red image that corresponds to the ROI

Eccentricity Describes if the ROI is more elongated or more circular in 
shape. An ROI whose eccentricity is 0 is actually a circle, 
while an ROI whose eccentricity is 1 is a line segment

motif(1–23) Frequency of occurrence of each motif in the time series of 
the ROI

Results
To demonstrate the utility of the workflow, we apply 
CaPTure to several in vitro preparations of neurons (e.g. 
mouse primary cortical neurons and hiPSC-derived 
neurons), and demonstrate versatility by applying the 
workflow to data acquired on an additional microscope 

Fig. 9  Image registration to correct physical drift: A Red image overlaid on the maximum intensity projection of the green time series of the raw 
data (left) and the registered data (right). B Graphs showing correlation (y-axis) of each frame (x-axis) with the mean intensity image of the time 
series for raw data (left) and registered data (right)



Page 11 of 14Tippani et al. BMC Neuroscience           (2022) 23:71 	

system. Finally, we demonstrate the robustness of the 
method by blocking neuronal activity in iPSC-derived 
neurons with pharmacological agents and assessing algo-
rithm performance.

We first applied this toolbox to mouse cortical neurons 
in culture. These cultures are both more dense and more 
mature than hiPSC-derived neuronal cultures. We con-
firmed that our ROI detection method accurately identi-
fied ROIs and extracted calcium events in an active, dense 
mouse culture system (Table 1, Fig. 8A, B). We identified 
unique patterns of synchronicity, which suggests that 
some sets of neurons preferentially fire together (Fig. 8C). 
We then extract image- and ROI-based metrics for final 
data analysis (Fig. 8D).

Additionally, we applied CaPTure to images acquired 
on a higher-resolution microscope with a smaller field 
of view. An additional challenge with this data set was 
the presence of drift over the time series. Unlike in vivo 

calcium imaging data, in which movement of the active 
neuron population is generally due to movement of the 
animal [23], in this case, the continuous perfusion of 
ACSF over the coverslip containing neurons resulted in 
the movement of the sample and thus, the need for rigid 
registration of images. Since the drift was physical and of 
known direction, and no landmarks, such as vasculature, 
are present in cultured neurons, we registered the images 
by aligning each frame iteratively to the preceding frame, 
and then aligning the green GCaMP6s time-lapse to the 
red cell-fill image (Fig.  9A, [24]). To demonstrate the 
utility of this approach, we show the correlation of the 
fluorescence of each frame with the mean of the entire 
time series (Fig. 9B). Prior to registration, the mean of the 
time series is not highly correlated, and the correlation is 
variable by frame. After registration, correlation of each 
frame is highly correlated. Following registration, we 
applied CaPTure to this set of data, identifying ROIs and 
individual peaks (Fig. 10).

Finally, we tested the accuracy of our peak detection 
methodology by applying tetrodotoxin (TTX), a phar-
macological agent that blocks sodium channels thus 
preventing neuronal activity, to hiPSC-derived neuron 
cultures. We measured calcium transients in neurons 
before and after the application of TTX (Fig. 11A, B). In 
this case, the background intensity or the height thresh-
old used in building Motif correlation maps are estimated 
based on the baseline, not based on the total data includ-
ing the manipulation (Fig.  11C). We see a decrease in 
the number of calcium events per ROI following TTX 
treatment, when controlling for various covariants in 
the data (Fig.  11D; mean ± SEM from 7 lines, Baseline 
13.83 ± 0.35; TTX 2.84 ± 0.068, linear mixed effects 
model p-value < 2e-16). This demonstrates that CaPTure 
is accurately detecting synaptic events.

When all data from a given dataset was processed, we 
compiled all metrics (Step 7). We used the extracted met-
rics to make comparisons across different experimental 
manipulations, and made a custom R script for further 
analysis, to compare the frequency and type of events 
between neurons derived from individuals diagnosed 
with schizophrenia and neurotypical controls as previ-
ously described [13].

Conclusions
Here we have demonstrated the utility of CaPTure to 
segment neurons and to detect and classify calcium 
events. CaPTure’s advantages include its ability to effec-
tively segment neurons from surrounding neuropil, 
which can cause noise in the activity traces and reduce 
the amplitude and prominence of true events. Addi-
tionally, CaPTure uses a rolling average (of 50 frames) 
intensity normalization (df/f ) that effectively estimates 

Fig. 10  CaPTure applied to secondary data set: A Raw ‘.czi’ image of 
nuclei and B the corresponding raw ‘.czi’ time series. C Segmentation 
of nuclei image. D Calcium activity extracted from times series for 
each segmented nuclei. E Different processing steps used in CaPTure. 
F Final metrics extracted into tables for image level and ROI level data
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the baseline background signal resulting in reduced inci-
dence of false positives in the final data. The workflow 
allows for parallel processing of data from large studies, 
without requiring significant user input or parameteriza-
tions. The motif-based method for picking events gives 
users more insight about the data, including the shape 

and duration of events. Additionally, the acquisition of 
high resolution images of cultured neurons could allow 
users to perform machine learning-based classification 
on neurons or traces. Calcium events are considered a 
proxy for neuronal activity, and thus CaPTure provides a 
powerful tool for researchers to make assessments about 

Fig. 11  Pharmacological blockade of synaptic transmission illustrates the specificity of CaPTure: A graph showing normalized calcium activity 
from a sample baseline field and the estimated background (0.5), Scale 0–3.1088. Scale bar indicates: 60 s on x-axis and 1.5 units of normalized 
mean fluorescence intensity on y-axis. B Graph showing normalized calcium activity of the same field following TTX treatment, with thresholds 
from baseline activity to minimize contribution of background noise to detected signal. C Graph showing normalized calcium activity of the same 
pharmacology sample from B with the respective intensity scale (y-axis) and background estimated from the TTX-treated sample, Scale 0–0.397. 
Scale bar indicates: 60 s on x-axis and 0.02 units of normalized mean fluorescence intensity on y-axis. D Boxplots showing the calcium activity of 
neurons from baseline and TTX-treated fields
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the relative cellular and ensemble activity of neurons in 
culture.

Availability and requirements
Project name: CapTure.

Project home page: https://​github.​com/​Liebe​rInst​itute/​
CaPTu​re

Operating system(s): MAC, Windows, linux.
Programming language: MATLAB.
Other requirements: MATLAB image processing tool-

box, version 2019a or newer.
License: GNU GENERAL PUBLIC LICENSE, Version 

3, 29 June 2007.
Any restrictions to use by non-academics: license 

required.

Abbreviations
hiPSC: Human induced Pluripotent Stem Cell; GECI: Genetically Encoded 
Calcium Indicator; ROI: Region of Interest; TTX: Tetrodotoxin; DFF, df/f: Delta 
fluorescence/fluorescence.
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