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Inhibitory effect of ultrasonic stimulation 
on the voltage‑dependent potassium currents 
in rat hippocampal CA1 neurons
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Abstract 

Background:  Transcranial ultrasonic stimulation is a novel noninvasive tool for neuromodulation, and has high spa-
tial resolution and deep penetration. Although it can increase excitation of neurons, its effects on neuron are poorly 
understood. This study was to evaluate effect of ultrasonic stimulation (US) on neurons in vitro. In this paper, the effect 
of US on the excitability and voltage-dependent K+ currents of CA1 pyramidal neurons in the rat hippocampus was 
studied using patch clamp.

Results:  Our results suggest that US increased the spontaneous firing rate and inhibited transient outward potas-
sium current ( IA ) and delayed rectifier potassium current ( IK ) . Furthermore, US altered the activation of IK channels, 
inactivation and recovery properties of IA channels. After US, the IK activation curves significantly moved to the nega-
tive voltage direction and increased its slope factor. Moreover, the data showed that US moved the inactivation curve 
of IA to the negative voltage and increased the slope factor. Besides, US delayed the recovery of IA channel.

Conclusions:  Our data indicate that US can increase excitation of neurons by inhibiting potassium currents. Different 
US decreased the voltage sensitivity of IK activation differentially. Moreover, the more time is needed for US to make 
the IA channels open again after inactivating. US may play a physiological role by inhibiting voltage-dependent potas-
sium currents in neuromodulation. Our research can provide a theoretical basis for the future clinical application of 
ultrasound in neuromodulation.

Keywords:  Ultrasonic stimulation, Delayed rectifier potassium current, CA1 pyramidal neuron, Transient outward 
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Background
Therapeutic brain stimulation is a vital part of brain 
function research. Although they have been shown to 
be effective in treating neurological diseases, most of 
the current methods of stimulating the brain have some 
limitations. For instance, as a popular tool of brain stim-
ulation, transcranial magnetic stimulation can modu-
late cognitive tasks while it is limited by poor spatial 
resolution [1–3]. Transcranial direct current stimulation 
also does not reach specific areas of the deep brain [4]. 

Deep brain stimulation has precise targeting specificity 
whereas requires surgery and electrode implantation [5]. 
Focused ultrasound can stimulate specific areas of nerve 
tissue with a diameter of a few millimeters [6]. Transcra-
nial ultrasound stimulation (TUS) requires no surgery 
and has high spatial resolution and deep penetration [7–
10]. William J. Tyler et al. determined low intensity and 
low frequency ultrasound (LILFU) can exciting neurons 
and network activity remotely and noninvasively. Their 
results indicate that LILFU can activate voltage-depend-
ent Na+ channels and Ca2+ channels to induce neuronal 
activity [11]. Nicolas Wattiez et  al. demonstrated that 
the neuromodulation effect of TUS on conscious behav-
ioral monkeys can be assessed by real-time recording 
of discharge activity in brain regions connected to the 
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stimulated region [12]. Using extracellular electrophysi-
ology, Hongsun Guo and Mark Hamilton II et  al. used 
TUS and performed brain mapping studies in guinea 
pigs. And they found an indirect auditory mechanism 
[13]. Whether it is the central nervous system or tumor, 
ultrasound provides a novel and effective strategy for tar-
geted therapy [14–17].

Ultrasound stimulation (US) refers to TUS in  vitro. 
US can produce the intramembrane mechano-electrical 
effect without tissue damage. US involves mechano-
electrical coupling. Such coupling is linked to changes of 
capacitance [18, 19]. Inducing cavitation of lipid bilayer 
membranes, ultrasound can produce a mechano-elec-
trical effect leading to neuronal excitation. It primarily 
is attributed to currents changes caused by the change 
of capacitance. The negative pressure of the ultrasonic 
waves pulled the leaflets apart each other whereas the 
positive pressure pushed forward. The average mem-
brane capacitance is influenced by the dynamic deformed 
leaflets. Besides, ultrasound can affect mechanically sen-
sitive ion channels to conduct currents [20]. The previ-
ous reported results verified that the activity of neurons 
can be excited by ultrasound through activation of some 
channel, which indicated great potential in the ultra-
sound therapy in ion channels [20–22].

Ion channels are excellent targets for diagnosis and 
therapy [23]. Whether as a major cause or as a mediator 
in the pathogenesis, they are involved in many diseases, 
such as epilepsy. In membranes of excitable and inexcit-
able cells, potassium channels are common and abundant 
[24, 25]. By setting the membrane potential, potassium 
channels regulate the electrical excitability of the neu-
rons, which is a major function of potassium channels. 
Furthermore, K+ channel activity exerts an enormous 
function on signal pathways, among cell proliferation, 
differentiation and fusion [26, 27]. It is necessary to pro-
mote calcium entry that increased K+ channel activity 
and enhanced potassium efflux maintenance membrane 
hyperpolarization [28]. Besides, additional pathways for 
potassium channels such as to control the cell volume, 
are thought to involve in cell proliferation for which the 
membrane hyperpolarization is an essential require-
ment [29, 30]. For shaping the action potential, voltage-
dependent potassium currents are important and can be 
divided into rapidly inactivating currents IA and non-
inactivating currents IK  broadly [31, 32].

In our studies, we recorded the firing rates and the 
total current by whole-cell patch clamp apparatus and 
speculated that US affects potassium currents, which 
caused the increased spontaneous action potential fre-
quency. Here, we investigated the impact of the US on 
potassium current, which is a major part of the outward 
current. During neuronal excitation, voltage-dependent 

potassium currents play a significant role in making the 
depolarized cell resting [33]. During the repolarizing 
phase, IA and IK  are the main currents of the neuronal 
action potential [34]. In this study, we observed whether 
US has effects on IA and IK  of CA1 pyramidal neurons.

Methods
Brain slices preparation
1–2 weeks old juvenile Sprague–Dawley male rats, were 
purchased from Chinese People’s Liberation Army Acad-
emy of Military Medical Laboratory Animal Center. 
Upon arrival, the rats were placed in a 23 ± 1  °C cham-
ber with a cycle of 12 h day and 12 h night. Veterinarians 
performed standard monitoring for a period of time prior 
to the experiment. Rats can get diet. The experimental 
animal studies were worked on the basis of institutional 
guidelines for animal experiments and the International 
Pain Research Association’s ethical guidelines. Brain slice 
cultures were prepared from the rats. The intraperito-
neal of rats were injected with pentobarbital (130  mg/
kg), and then the rats were anaesthetized. The anesthe-
tized rats were decapitated, and the brains were removed. 
The brains were transferred into cold (0 °C) slicing solu-
tion (in mmol: 2.40 KCl, 6.00MgCl2 , 1.00 CaCl2 , 24.50 
NaHCO3 , 1.25 NaH2PO4 , 11.00 glucose, 225.00 sucrose; 
adjusting pH 7.4, with KOH and HCl) aerated with a mix-
ture of gas with 95% O2 and 5% CO2 for 30 s. In the ice 
cold slicing solution, the brain was rapidly cut into hemi-
spheres, and 330 μm thick horizontal slices was prepared 
by using a microtome (VT1200S, Leica, Nussloch, Ger-
many). The brain tissue slices were cultured at a tempera-
ture of 37–39 °C inside a holding chamber on an interface 
between oxygenated artificial cerebrospinal fluid (aCSF; 
in mmol: 11.00 glucose, 3.00 KCl, 2.00 CaCl2 , 2.00 MgCl2 , 
123.00 NaCl, 1.25 NaH2PO4 , 24.50 NaHCO3 ; adjusting 
pH 7.4 with KOH and HCl) and 95% O2/5% CO2 for at 
least 45 min.

Stimulation protocol
The brain slice culture chamber is composed of a holder 
with a cylinder in a beaker and an outer wall. The pulsed 
ultrasound signals were generated by a radio-frequency 
power amplifier (Model 150A 100C, AR, WA, USA), an 
ultrasonic transducer (V308, Olympus, Tokyo, Japan) and 
an arbitrary waveform generator (33500B, KEYSIGHT, 
CA, USA). Ultrasonic transducer immersed in aCSF and 
was 1.5  cm above brain slice. The ultrasonic beam pro-
duced by the transducer (diameter = 24  mm) stimulates 
the entire brain slice (length < 9  mm, width < 6  mm). 
The ultrasound settings were 0.5 MHz center frequency, 
20  Hz pulse repetition frequency, 50% duty cycle and 
20  ms pulse length, and the pulse-average ultrasound 
intensities were 15 mW/cm2 or 30 mW/cm2 . The current 
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of brain slice without any stimulation and with ultrasonic 
stimulations were recorded as a control status (CTRL), 
15 mW/cm2 ultrasonic stimulation status (15 mW/cm2 
US) and 30  mW/cm2 ultrasonic stimulation status 
(30 mW/cm2 US, Fig. 1), respectively. The number of rats 
for each control and experimental group is 12 (n = 12). 
Four brain slices of each rat were used for control and 
experimental groups. All stimulations lasted 15 min.

Patch clamp electrophysiology
Bathing in aCSF, the slices were visualized using infrared 
differential interference contrast microscopy (U-TV1X-2, 
Olympus, Tokyo, Japan). The voltages and currents of 
neuron cell membrane were collected by the amplifier 
of the patch clamp (EPC 10, HEKA, Pfalz, Germany). 
Borosilicate glass pipettes with resistances ranging from 
4 to 9 MΩ. The pipettes were shaped by using the laser 
micropipette puller (MODEL P97, Sutter Instruments, 
CA, USA). All experiments were at 24  °C. The data was 
sampled at a frequency of 20 kHz, and was filtered at a 
frequency of 2  kHz using Patchmaster software. For 
recording of spontaneous action potential, pipettes 
were filled with the solution (in mmol): 133.00  K-glu-
conate, 2.00 MgCl2, 2.00 MgATP, 10.00 EGTA, 10.00 
HEPES (keeping pH 7.4 with KOH and HCl). When 
the action potential was recorded, brain culture was in 
aCSF. For the recording of potassium currents, we filled 

the pipettes with the solution (in mmol): 2.00 CaCl2, 
121.00 KCl, 10.00 EGTA, 1.00 MgCl2, 10.00 HEPES, 3.00 
Na2ATP (keeping pH 7.4, with KOH and HCl). When 
the patch clamp experiments were performed, brain cul-
ture was bathed in a recording solution (in mmol) 6.00 
KCl, 1.00 MgCl2, 130.00 NaCl, 2.00CaCl2, 10.00 Glucose, 
10.00 HEPES (pH 7.4 with KOH and HCl). When tran-
sient outward potassium current was indicated, it was 
pharmacologically isolated with (in mmol) 20.00 TEA-
Cl, 0.10 CdCl2 and 0.001 Tetrodotoxin (TTX) injected 
to the bath solution to block the other channels. When 
delay rectifier potassium current was indicated, it was 
pharmacologically isolated with (in mmol) 4.00 AP, 0.10 
CdCl2 and 0.001 TTX injected to the bath solution. Three 
hippocampal CA1 neurons were recorded on each brain 
slice from 12 different rats respectively.

Statistical analysis
Statistical analysis was performed using Patchmaster 
(HEKA, Pfalz, Germany), Origin Pro 8.0 (OriginLab, 
Hampton, VA, USA), GraphPad Prism 7.0 (GraphPad 
Software, CA, USA) and SPSS 23 (IBM, NY, USA). The 
recording data were calculated as mean ± SEM. We used 
one-way analysis of variance to statistically analyze the 
data. When P < 0.05, the data were considered significant.

Results
The spontaneous action potentials were recorded with-
out current injection for 6  s in the current-clamp mode 
(Fig.  2). Both the action potential frequency and ampli-
tude in neurons were analyzed (Table  1). There were 
significant the increased firing frequency and ampli-
tude of action potentials both in 15 mW/cm2 US and 
30 mW/cm2 US. It indicated that the exposure to US 
increased excitability of the neurons.

For the recording of potassium currents, the membrane 
was maintained at a voltage of − 80 mV, and a 90 ms volt-
age pulse from − 50 to + 100 mV was applied in increase 
of 10 mV. When delay rectifier potassium currents were Fig. 1  Ultrasonic stimulation of brain slice

Fig. 2  Effects of US on spontaneous firing action potentials of neurons. a Control. b 15 mW/cm2 US. c 30 mW/cm2 US
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indicated, the membrane was at a voltage of − 40 mV and 
300 ms voltage pulses were applied from − 40 to + 50 mV 
in incremental steps of 10 mV. The application of differ-
ent US to brain slices produced obvious effects on the 
amplitudes of IA and IK  in a different way (Figs. 3 and 4). 

For neurons exposed to 15 mW/cm2 US and 30 mW/cm2 
US, the amplitudes of IA and IK  were significantly lower 
than the Control neurons, which were indicated by cur-
rent–voltage curves (Fig.  5). Therefore, we could deter-
mine that the potassium current values of US exposed 
neurons were significantly lower than other neurons.

The conductance was calculated by G = I/

(Vm − V rev) . I , Vm and V rev denotes current den-
sity, the membrane voltage and the channel rever-
sal potential. Figure  6a, b showed activation curves 
of IA and IK  after different stimulations respectively. 
We fitted the curves with a Boltzmann equation: 
G/Gmax = I/{1+ exp[(Vm − Vh)/k]} , in which Vh 
was the potential value in the semi-active state, k was 
the slope factor. The effect of stimulation on IA and IK  

Table 1  Effects of  stimulations on  spontaneous action 
potentials of neurons

n = 12, mean ± SEM

*P < 0.05 versus control

Group Frequency Amplitude

Control 1.19 ± 0.32 101.91 ± 4.19

15 mW/cm2 US 1.80 ± 0.29* 106.17 ± 3.29*

30 mW/cm2 US 1.65 ± 0.27* 105.33 ± 3.72*

Fig. 3  IA of neurons after different stimulation. a Control. b 15 mW/cm2 US. c 30 mW/cm2 US

Fig. 4  IK of neurons after different stimulation. a Control. b 15 mW/cm2 US. c 30 mW/cm2 US
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activation parameters was summarized in Table  2. It 
indicated that 15 mW/cm2 US and 30 mW/cm2 US have 
no significant effect on the activation characteristics of 
IA . Furthermore, 15 mW/cm2 US and 30 mW/cm2 US 
induced a negative movement in this curve and decrease 
the slope factor.

The inactivation characteristics of IA were recorded by 
the double-pulse protocols (Fig.  7). But the inactivation 
of IK was not recorded because it is a type of long-lasting 

channels. The membrane was maintained at − 80  mV, 
changed to varying 90  ms prepulse voltages from − 100 
to 10 mV in increase of 10 mV and to an 80 ms test pulse 
at + 50  mV. After the peak amplitude of IA was normal-
ized, it was drawn with above prepulse potential. We fit-
ted the inactivation curves of IA with Boltzmann equation 
I/Imax = I/{1+ exp[(Vh − Vm)/k]} , there I/Imax was 
a normalized current of IA , Vh was the semi-inactivation 
voltage value, k was the curve’s slope factor (Fig. 9a). Both 
15 mW/cm2 and 30 mW/cm2 US could significantly shift 
inactivation curve of IA to negative voltage direction and 
enhance its slope factor (Table 3).

In order to comprehend the recovery properties from 
inactivation, the membrane was maintained at − 80 mV 
and stepped up to + 50  mV for 90  ms (depolarizing 
pulse), then repolarized to − 80  mV varying from 15 
to 125  ms in 10  ms increments before a test pulse of 
+ 50 mV for 90 ms (Fig. 8). The amplitude of IA , caused 
by above conditioning pulse, was defined as I1, and I2 
was the peak current amplitude of the IA induced by test 
pulse. The characteristics of recovery after the inactiva-
tion can be analyzed using the value of I2/I1. We fitted the 
I2/I1 time curve with a mono-exponential equation:

Fig. 5  The current–voltage relationship of a IA and b IK. Data are represented as mean ± SEM (n = 12, *P < 0.05 vs. control, **P < 0.01 vs. control)

Fig. 6  The steady-state activation curves of a IA and b IK after different stimulation

Table 2  Effects of  stimulations on  the  activation 
parameters of IA and IK

n = 12, mean ± SEM

*P < 0.05 versus control

Groups IA IK

Vh k Vh k

Control − 16.76 ± 2.32 12.45 ± 2.03 − 6.45 ± 2.61 19.87 ± 2.49

15 mW/
cm2 
US

− 15.19 ± 1.72 14.54 ± 1.57 − 10.83 ± 1.83* 20.60 ± 1.83

30 mW/
cm2 
US

− 16.68 ± 1.91 12.40 ± 1.68 − 16.38 ± 4.09* 22.20 ± 4.05*
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I is I2/I1 and Imax is the maximal value of I and, τ is 
the time constant (Fig.  9b). Table  4 showed the time 
constants τ. The results indicated that 15  mW/cm2 US 
and 30  mW/cm2 US could markedly increase the time 
constant of the recovery. Besides, 15  mW/cm2 US and 

I/Imax = A+ B exp(−t/τ).

30  mW/cm2 US shifted the recovery from inactivation 
curve of IA to negative potential.

Discussion
There are many evidences supporting the fact that US 
has neuronal effects [16, 22]. However, the lasting effects 
of US on neuronal excitability are not entirely clarified, 
especially the ion channel mechanism. Our study dem-
onstrates that US can increase the frequency, amplitude 
the duration of spontaneous action potential to enhance 
excitation of neurons. As a result of US, the durations 
of single action potential were prolonged. Therefore it 
might be inferred that the increasing frequency would be 
responsible for the delay of repolarization which depends 
on IA and IK .

Participating in early polarization, IA is crucial to the 
spike threshold. IK  cause the repolarization. The width of 
spike also depends on IK  [32, 35]. In addition, IK  is criti-
cal for post-peak hyperpolarization and affects the peak 
frequency of neurons.

Fig. 7  The inactivation of IA after different stimulation. a Control. b 15 mW/cm2 US. c 30 mW/cm2 US (n = 12, mean ± SEM)

Table 3  Effects of  stimulations on  the  inactivation 
parameters of IA

n = 12, mean ± SEM

*P < 0.05 versus control

Groups IA

Vh k

Control − 39.26 ± 0.85 7.72 ± 0.78

15 mW/cm2 US − 45.33 ± 2.32* 9.05 ± 2.08*

30 mW/cm2 US − 44.31 ± 2.86* 8.62 ± 2.55*

Fig. 8  The recovery from inactivation of IA after different stimulation. a Control. b 15 mW/cm2US. c 30 mW/cm2US
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Therefore, to identify the ion channel mechanisms, we 
examined ion channels by analyzing the changes of K+ 
currents characteristics by patch clamp recording. The 
results revealed that US enhanced excitability of neurons 
in CA1 pyramidal neurons of rat hippocampal, which 
may be mediated by a reduction of potassium currents. 
The US effectively inhibited IA and IK  , and this effects of 
30 mW/cm2 US were more than 15 mW/cm2 US.

Furthermore, US significantly moved the activation 
curves of IK  to the negative voltage. It is shown that 
different US affected the activation of IK  differentially. 
Besides, US increased the slope factor for IK  activation 
curve, indicating that the voltage sensitivity of activation 
reduced. Moreover, the data showed that US moved inac-
tivation curve of IA to the negative voltage and increased 
its slope factor. Besides, US delayed the recovery of IA . 
This means that the IA channel takes longer to open 
again after inactivation. These results suggest that US 
inhibited IA and IK  via reducing the open number of IA 
and IK  channels.

Conclusions
US can enhance neural excitation to activate the brain 
area, thereby altering the physiological processes in 
the brain. Potassium currents made the depolarized 
cell rest and are important during the action potential 
repolarizing. US can inhibit both IA and IK  to increase 
excitation of neurons, particularly in high intensity of 

US. In this sense, the fact that US enhance excitation of 
neuron and act differently on potassium currents could 
potentially be used to design neuromodulation tools 
for neurological diseases. Besides, ultrasound can pro-
vide a method for targeted ion channels therapy almost 
no side effects. In clinical use, ultrasound is a promis-
ing treatment for the diseases to improving excitability 
in certain brain area. For example, ultrasound may be 
achieve the purpose of treating neurological diseases 
such as treatment of dyskinesia, epilepsy, stroke seque-
lae by changing the local cortical excitability of the 
brain. This study provide a theoretical basis for clinical 
ultrasound application in neuromodulation.
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