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Abstract
Background  Studies have found dysbiosis of the gut microbiota in individuals infected with the hepatitis B virus 
(HBV). Tenofovir dipivoxil (TDF) is one of the preferred oral antiviral drugs used for the treatment of chronic hepatitis B 
(CHB), but the extent to which TDF is able to affect the gut microbiota and inflammatory factors of a patient remains 
largely unexplored. In this study, we collected stool samples from HBV patients prior to medication and from CHB 
patients treated with TDF.

Results  The gut microbiota and inflammatory factors were assessed in 42 healthy subjects (HC group), 109 HBV-
infected subjects, including 48 CHB patients who were not medicated with nucleoside analogue drugs (No-NAs 
group), and 61 CHB patients who were medicated with TDF (TDF group). 16 S rRNA sequencing revealed that TDF 
treatment caused significant changes in the gut microbiota of HBV-infected individuals; however, the gut microbiota 
of HBV-infected individuals did not fully recover to a pre-dysbiosis state. The relative abundance of Bacteroidota 
gradually decreased from the HC group to the No-NAs and TDF groups. The relative abundance of Fusobacteriota 
was significantly higher in the No-NAs group than in the HC group. At the genus level, Dialister, Eubacterium_hallii_
group, Halomonas, Collinsella, Sphingomonas, Xanthomonadaceae_unclassified, and Rhizobiaceae_unclassified were 
overrepresented; while the abundance of Bacteroides and Fusobacterium decreased significantly in the No-NAs and 
TDF groups.

Conclusions  This study showed that TDF treatment significantly improved the regulation of the gut microbiota 
and aided in dysbiosis recovery. We did not observe significant improvement in serum inflammatory factor 
concentrations, which may be related to the relatively short duration of TDF administration in this study.
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Background
Hepatitis B virus (HBV) is a noncytopathic hepatotropic 
virus. Chronic hepatitis B (CHB) caused by HBV infec-
tion is a worldwide epidemic and can lead to severe liver 
diseases such as liver fibrosis, cirrhosis, and hepatocel-
lular carcinoma (HCC) [1]. The World Health Organi-
zation reports that there are approximately 257  million 
patients infected with chronic HBV worldwide, of whom 
887,000 died from complications caused by chronic HBV 
infection in 2015 [2]. Intestinal bacteria play an impor-
tant role in maintaining immune system homeostasis and 
may serve as a barrier to protect the intestinal mucosa 
against invasion by potential pathogens [3, 4]. Emerging 
evidence suggests that the gut microbiota may influence 
the development and progression of liver disease. A shift 
in the gut microbiome can trigger inflammation, hepa-
tocyte apoptosis, and the progression of liver failure and 
cirrhosis [5–7]. Viral hepatitis (hepatitis B and C) also 
has a major impact on the gut microbiota [8], and several 
studies have reported gut dysbiosis in CHB patients [1, 
9]. Enterococci are intestinal flora in humans, and it has 
been shown that patients with CHB and cirrhosis exhibit 
increased abundance of Enterococci [10]. In most liver 
diseases, intestinal dysbiosis increases the relative abun-
dance of Proteobacteria, while decreasing the abundance 
of Bacteroidetes [11]. It has been reported that bacte-
rial translocation occurs in the guts of chronic hepati-
tis patients [12, 13]. Studies have shown that cirrhotic 
patients diagnosed with CHB show a decrease in the 
abundance of Bifidobacteria and Lactobacillus, while sig-
nificantly increasing levels of Enterococcus [14]. Lu et al. 
(2011) have suggested that the abundance of Faecalibac-
terium prausnitzii, Enterococcus faecalis, Bifidobacteria, 
and lactic acid bacteria differ significantly in the intes-
tines of patients with HBV cirrhosis [12]. Dysregulation 
of the intestinal microbiota contributes to further exac-
erbation of HBV infection [15]. Hepatic viruses can dis-
rupt intestinal permeability, lead to intestinal dysbiosis, 
and release proinflammatory cytokines that contribute to 
the development of cirrhosis and HCC [16]. In chronic 
infection with HBV, disruption of the gut microbiota can 
lead to systemic immune activation [17, 18]. Currently, 
it is believed that the cause of liver injury is not due to 
the replication of HBV in hepatocytes, but instead the 
immune response caused by HBV [18]. Lipopolysaccha-
ride (LPS), also known as endotoxin, is a key component 
of the outer membrane of Gram-negative bacteria. LPS 
can secrete many proinflammatory cytokines, includ-
ing tumor necrosis factor-α (TNF-α), interleukin (IL)-1, 
and IL -6, which cause liver injury via the NF-κB path-
way [19]. In addition, patients infected with HBV have 

altered intestinal permeability, increasing the endotoxin 
load in the portal vein, leading to hepatic toll-like recep-
tor activation that further promotes immune-mediated 
liver injury [18, 20, 21]. Standard treatment regimens 
with interferon (IFN)-α and nucleoside/nucleotide ana-
logs are used for the treatment of CHB [22]. However, the 
exact role of gut microbiota equilibrium in the treatment 
of patients infected with HBV is still unknown. Animal 
studies have shown that the gut microbiota plays an 
important role in the initiation and development of CHB 
[23, 24]. Alternatively, during an HBV infection, bacteria 
from the Leptospiraceae family might play a role in the 
management of an HBV infection by reducing bacterial 
translocation and decreasing LPS content [25, 26]. Chou 
et al. reported that the gut microbiota plays a key role in 
the HBV-related immune response [27]. Recent studies 
have shown that entecavir administration could amelio-
rate HBV-induced disruption of the gut microbiota in 
humans [28]. However, there are no reports of changes 
in the intestinal microbiota after treatment with teno-
fovir dipivoxil (TDF). Therefore, in this study, we aimed 
to investigate the changes in the intestinal microbiota 
before and after treatment with TDF and the association 
with inflammatory factors.

Methods
Recruitment of subjects
The inclusion criteria for this study were hepatitis B 
virus (HBV)-infected patients with liver enzymes less 
than three times the upper limit of the normal range 
and without liver fibrosis. The inclusion criteria for this 
study were hepatitis B virus (HBV)-infected patients with 
liver enzymes less than three times the upper limit of the 
normal range and without liver fibrosis. Recognizing the 
potential for transient fluctuations in liver enzymes, we 
clarified our criteria to specify that patients with occa-
sional ALT levels exceeding 150 U/L were not excluded, 
provided these spikes were transient and not indicative of 
ongoing liver damage or fibrosis.

Exclusion criteria were: alcoholism, presence of genetic 
or metabolic liver disease, comorbidity with hepatitis C 
virus, hepatitis D virus, human immunodeficiency virus, 
or cytomegalovirus; concurrent malignancies, autoim-
mune liver disease, cirrhosis, nonalcoholic steatohepa-
titis, pregnant or lactating women, concurrent medical 
conditions such as diabetes, heart failure, inflammatory 
bowel disease, irritable bowel syndrome, kidney damage, 
acute gastroenteritis 8 days prior to enrollment, patients 
with Parkinson’s disease, Alzheimer’s disease, stroke, 
mental illness; patients who have had infections, used 
antibiotics, or used probiotics within 3 months. Patients 
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with a history of other antiviral therapies such as inter-
feron, adefovir, or telbivudine were excluded.

Detection of inflammatory factors
Serum samples from 48 No-NAs, 61 TDF, and 42 HC 
were collected for measurement of 20 human TH1-TH2-
TH17 cytokines, including granulocyte-macrophage 
colony-stimulating factor (GM-CSF), interferon gamma 
(IFNγ), interleukin (IL)-1 beta, IL-2, IL-4, IL-5, IL-6, 
IL-10, IL-12p70, IL-13, IL-17  A, IL-17  F, IL-21, IL-22, 
IL-23, IL-28  A (IFN-lambda 2), macrophage inflamma-
tory protein-3 alpha (MIP-3α), TGF beta 1, TNF alpha 
and TNF beta according to the manufacturer’s instruc-
tions (Quantibody ® Human TH17 Array 1, Cat. No. 
QAH-TH17-1, RayBiotech). IL-18 was detected using a 
human IL-18 ELISA kit (cat no. EHC127, Neobioscience).

Fecal samples collection and 16 S rRNA gene sequencing
Participant stool samples were collected and stored in 
a refrigerator at -80  °C before DNA extraction. Bac-
terial DNA was extracted according to the manu-
facturer’s instructions for DNA extraction using the 
E.Z.N.A.® Stool DNA Kit (Omega Bio-tek, Inc., GA). PCR 
amplification of the bacterial 16  S rRNA gene V3-V4 
region was performed using primers 341  F and 805R 
(341  F:5′-CCTACGGGNGGCWGCAG-3′; 805R:5′-
GACTACHVGGTATCTAATCC-3′). PCR products from 
each sample were indexed and mixed in equal ratios for 
sequencing using the Miseq platform (Illumina Inc, USA) 
according to the manufacturer’s instructions.

Bioinformatics analysis
Sequence read pairs were demultiplexed and reads were 
merged using USEARCH version 11.0. Sequences that 
could not be spliced and chimeras were both removed. 
Chimeras were eliminated using UCHIME software. 
Operational Taxonomy Units (OTUs) were clustered 
based on 97% similarity using UPARSE software [29] 
(version 7.1 http://drive5.com/uparse/) after chimeric 
sequences were removed. The phylogenetic affiliation of 
each representative 16 S rRNA gene sequence was anno-
tated using the SILVA database (SSU138). Mothur v1.42.1 
was used to calculate ACE, Chao1, Shannon and Simp-
son estimators of alpha diversity [30].

Principal coordinate analysis (PCoA) was performed 
using Bray-Curtis dissimilarity to visualize microbial 
communities. Permutational multivariate analysis of vari-
ance (PERMANOVA) was used to evaluate beta diversity 
using the adonis function of vegan [31]. Linear discrimi-
nant analysis (LDA) effect size (LEfSe) used the Kruskal-
Wallis rank sum test in combination with LDA to detect 
traits with significantly different abundances at the genus 
and functional levels.

Predictive functional profiling was performed with the 
taxonomic profiles obtained from 16 S rRNA gene ampli-
con sequencing using Pipeline Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States 
(PICRUSt) version 2.4.1 [32]. LEfSe, based on the func-
tional profiles predicted by PICRUSt, was used to predict 
the differences between the gut microbiota of the three 
groups.

Correlations between variables were calculated using 
Spearman’s rank correlation analysis of the R package 
Hmisc. Association p-values less than 0.05 were consid-
ered relevant.

Statistics analysis
Differences between groups were assessed with the non-
parametric Kruskal-Wallis and Mann-Whitney U tests. 
Relative abundance values for each bacterium were pre-
sented as mean or median. The chi-square test was used 
to compare categorical data. P values < 0.05 were consid-
ered statistically significant. Statistical analyzes were per-
formed using R 4.1.

Bonferroni correction was applied to account for mul-
tiple testing in our statistical analyses.

The Shapiro-Wilk test was used to assess the normal 
distribution of our data.

Results
Patient characteristics
A total of 109 HBV-infected patients were recruited from 
Huashan Hospital, including 48 patients who were not 
taking nucleoside analogs (No-NAs group), 61 patients 
who had been continuously treated with oral TDF for 
more than 3 months (TDF group), and an additionally 
recruited 42 healthy subjects (HC group). For the TDF 
group, we divided them into two subgroups according to 
HBeAg antigen: Stage 1 were HBV e antigen (HBeAg)-
negative patients and Stage 2 were HBeAg-positive (+) 
patients. HBeAg + patients were those with positive sur-
face antigen, e-antigen, and core antibody, and HBeAg 
- patients were those with positive surface antigen, e-anti-
gen, and core antibody and negative e-antigen. We also 
investigated the difference in gut microbiota between 
HBeAg-positive and negative hepatitis B patients treated 
with TDF. In addition, we examined the effects duration 
of TDF administration had on gut microbiota. Age, sex, 
and body mass index (BMI) of healthy controls were not 
significantly different from those of HBV-positive indi-
viduals (Table S1).

Clinical characteristics
After TDF treatment, CHB patients showed a signifi-
cant reduction in HBV DNA burden (p < 0.001) (Figure 
S1). In addition, r-glutamyltransferase, alanine amino-
transferase and aspartate aminotransferase levels were 
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significantly decreased in the TDF group compared to 
the No-NAs group, while prealbumin levels were signifi-
cantly increased (Table S2).

Compositional analysis of gut microbiota
The relative abundances of each bacterial phylum in the 
patients and healthy controls are shown in Fig. 1B. In the 
three groups, the major phyla were Firmicutes, Bacteroid-
ota, Proteobacteria, Actinobacteria, Verrucomicrobiota, 
and Fusobacteriota, of which Firmicutes, Bacteroidetes, 
Proteobacteria, and Actinobacteria accounted for more 
than 98% (Fig.  1B). The relative abundance of Bacte-
roidota gradually decreased from the HC group to the 
No-NAs and TDF groups. Firmicutes and Actinobacte-
ria were more abundant in the No-NAs and TDF groups 
than in the HC group. The relative abundance of Fuso-
bacteriota was significantly higher in the No-NAs group 
than in the HC group. In addition, the relative abundance 
of Proteobacteria was significantly lower in the No-NAs 
group than in the HC and TDF groups (Fig. 1C).

Analysis of gut microbiota differences at the genus level 
among the three groups
PCoA based on the Bray-Curtis distance matrix showed 
clear differentiation of bacterial communities among 
HC, No-NAs, and TDF groups (Fig. 2A). PERMANOVA 

pairwise interactions were used to identify significant dif-
ferences between groups (p < 0.05, table in Fig. 2A). Data 
on the mean relative abundances of each bacterial genus 
in patients and healthy controls are shown in Table S3. 
We used LEfSe analysis to identify the genera that were 
responsible for the differences in fecal microbiota among 
the three groups. The differences in the intestinal micro-
biota of the three groups are shown in Fig. 2B. Some ben-
eficial bacteria such as the Ruminococcus_gnavus_group 
and Fusobacterium were enriched in the HC group, 
whereas some opportunistic pathogens such as Sphin-
gomonas and Escherichia/Shigella were increased in the 
No-NAs and TDF groups.

Identification of differential genera and key taxa
To identify the key bacteria responsible for the differ-
ences in HC, No-NAs, and TDF groups, a taxonomy-
based bacterial comparison was performed (Fig.  3). 
Abundances of Bacteroides were significantly decreased 
in the TDF groups. Abundances of Fusobacterium were 
significantly decreased in the No-NAs and TDF groups, 
but there was no significant difference between the No-
NAs and TDF groups. Among the various predominant 
genera, Dialister, Eubacterium_hallii_group, Halomonas, 
Collinsella, Sphingomonas, Xanthomonadaceae_unclassi-
fied, and Rhizobiaceae_unclassified were overrepresented 

Fig. 1  Effect of TDF on intestinal flora in patients with CHB. (A) Effect of TDF on alpha diversity of intestinal flora. (B, C) Relative abundances of each bacte-
rial phylum in the patients and healthy controls
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in the No-NAs and TDF groups, but there was no signifi-
cant difference between the No-NAs and TDF groups. In 
addition, the abundance of Pelagibacterium and Hypho-
monadaceae_uncultured gradually increased in the HC, 
No-NAs, and TDF groups. In particular, the abundance 
of Odoribacter was significantly reduced in the TDF 
group, while there was no significant difference between 
the HC and No-NAs groups (Fig. 3).

Comparison of inflammation profiles
The transfer of lipopolysaccharide (LPS) from the intes-
tine to the blood can cause immune activation. Nor-
mally, serum inflammatory factors are elevated in CHB 
patients. Therefore, our study focused on the effect of 

TDF treatment on serum inflammatory factors. Among 
the 21 inflammatory factors (IL -18, GM-CSF, IFNγ, IL 
-1b, IL -2, IL -4, IL -5, IL -6, IL -10, IL -12p70, IL -13, 
IL -17, IL -17 F, IL -21, IL -22, IL -23, IL -28 A, MIP-3α, 
TGFβ1, TNFα, TNFβ) that were examined, there was no 
significant difference in marker levels between the TDF 
and No-NAs groups (Table S4).

Correlation between gut microbiota and inflammatory 
factors
Spearman correlations between the relative abundance 
of bacterial genera and the levels of inflammatory fac-
tors were evaluated (Figure S2). Inflammatory factors 
were positively correlated with opportunistic pathogens, 

Fig. 3  Relative abundances of differential genera and potential key taxa responsible for the differences in HC, No-NAs, and TDF groups

 

Fig. 2  Gut microbiota differences at the genus level among the three groups. (A) Principal coordinate analysis of β diversity of flora based on Bary-Curits 
distance (PCoA). (B) LEfSe analysis at genus level

 



Page 6 of 12Long et al. BMC Microbiology          (2024) 24:359 

such as Escherichia/Shigella, while negatively correlated 
with some beneficial bacteria, such as Stomatobaculum 
and Atopobium. We focused on the correlation between 
the three groups of significantly different genera (Fig. 4A) 
and inflammatory factors. We found a positive correla-
tion between Odoribacter and inflammatory factors. 
Alternatively, there was a significant correlation between 
microbial genera enriched in the No-NAs and TDF 
groups (Fig. 4B).

HBV specific trends in functional profiles
To investigate the HBV-specific functional properties 
of the current microbiome dataset, we sought to exam-
ine HBV-specific trends in the functional composition 
of the gut microbiota in the three groups. We observed 
an effect of HBV and TDF treatment on the functional 
profiles of the gut microbiota. As shown in Fig. 5, KEGG 
pathway analysis revealed that 46 pathways related to 
metabolism and disease were significantly enriched in 
the three groups. Based on LDA selection, 30 predicted 
microbial functions, including metabolism of cofactors 
and vitamins, biosynthesis of secondary bile acids, biotin 
metabolism, folate biosynthesis, vitamin B6 metabolism, 
and zeatin biosynthesis were remarkably enriched in the 
HC group; 5 functions, including drug metabolism and 
other enzymes, were remarkably enriched in the No-NAs 
group; and 11 predicted microbial functions, including 
butanoate metabolism and styrene degradation, were 
remarkably enriched in the TDF group (p < 0.05). The 
observed differences in gut microbiota between the TDF-
treated and No-NA cohorts may be influenced by the 
varying levels of hepatic inflammation, as indicated by 
significantly higher AST and ALT levels in the No-NA 
cohort. Hepatic inflammation and liver injury can affect 

gut microbiota through altered bile acid metabolism, 
increased intestinal permeability, and systemic inflam-
matory responses. Consequently, the gut microbiota 
changes observed may not be solely attributable to TDF 
treatment but could also result from reduced hepatic 
inflammation in the TDF-treated group. Future stud-
ies should stratify patients based on liver enzyme levels 
and conduct detailed analyses of bile acid profiles and 
inflammatory markers, as well as longitudinally track gut 
microbiota changes before and after TDF treatment to 
better understand these relationships.

Differential analysis between two phases of the TDF group
On the day of specimen collection, we grouped patients 
treated with TDF according to their e-antigen status, 
namely: Phase 1 being the HBV e-antigen (HBeAg)-nega-
tive patient group, and Phase 2 being the HBeAg-positive 
patient group. Phase 1 and Phase 2 clinical baseline tables 
were shown in Table S5. The prealbumin of Phase 2 was 
significantly higher than that of Phase 1. In addition, 
there was no significant difference in inflammatory fac-
tors between Phase 1 and Phase 2, except IL4 (p = 0.047), 
which was significantly lower within Phase 2 (Table S6).

There was no significant difference in the richness of 
gut microbiota in the two subgroups, and it was found 
that the diversity of intestinal microbiota in Phase 2 was 
significantly reduced (reflected in the Shannon index, but 
there was no significant difference in the Simpson index) 
(Fig.  6A). In addition, at phylum level Firmicutes and 
Bacteroidota were not significantly different. Proteobac-
teria were significantly increased in Phase 2 compared 
with Phase 1, while Actinobacteriota was significantly 
decreased (Fig. 6B).

Fig. 4  Correlation between clinical parameters and gut microbiota (A) Correlation between inflammatory factors and gut microbiota. (B) Correlation be-
tween microbial genera enriched in the No-NAs and TDF groups. *p-value smaller than 0.05, **p-value smaller than 0.01 and ***p-value smaller than 0.001
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The differences between Phase 1 and Phase 2 were also 
manifested at the genus level. PCoA results showed that 
there was a significant difference between the two sub-
groups (adonis p value = 0.003) (Fig.  7A). Some benefi-
cial bacteria such as Roseburia and Bifidobacterium were 
found to be enriched in the Phase 1 group, while some 
opportunistic pathogens such as Escherichia/Shigella 
were enriched in the Phase 2 group (Fig.  7B). Further 
analysis revealed that Escherichia/Shigella was signifi-
cantly increased in Phase 2, while the relative abundance 
of Roseburia, Oscillospiraceae_UCG.005 and Lachnospi-
raceae_CAG.56 was significantly decreased in Phase 2 
(Fig. 7C). No significant change in the relative abundance 
of Bifidobacterium was observed in these two subgroups.

Effect of duration of TDF administration on gut microbiota
To explore the effect of medication time on gut micro-
biota, we divided the TDF group into two groups accord-
ing to medication time less than 24 months (Short-term 
group) and more than 24 months (Long-term group). 
Beta diversity analysis revealed that there was a signifi-
cant difference between the two groups (Figure S3). At 
the genus level, we found that the relative abundance of 
Faecalibacterium increased with increasing medication 
time, while Dialister was conversely decreased (Table S7).

Discussion
Recently, researchers have begun to investigate the rela-
tionship between HBV infection and the gut micro-
biota. Infection with HBV resulted in changes in the 
relative abundance of beneficial and opportunistic 

Fig. 5  KEGG pathway analysis of HC, No-NAs, and TDF groups
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bacteria compared to healthy individuals [1, 33–35]. 
Currently, antiviral drugs (such as tenofovir, entecavir, 
and tenofovir alafenamide) are the most effective oral 
drugs for combating HBV [36–38]. The main mecha-
nism of these nucleoside analogs is to block HBV rep-
lication, but whether these drugs can directly affect the 
gut microbiota is still unknown. Our results suggest that 
TDF treatment can significantly reduce the viral load in 
CHB patients, as well as induce significant changes in 

gut microbiota. We observed differences in the abun-
dance of Firmicutes and Bacteroidota between the No-
NAs and TDF groups. Chen et al. have also found that 
a change in Bacteroidota is characteristic of CHB or 
alcohol-induced cirrhosis [9]. However, our results sug-
gest that TDF treatment was unable to fully restore the 
gut microbiota equilibrium to healthy control levels, nor 
were the levels of inflammatory factors able to improve 
significantly. This is particularly important because, 

Fig. 7  Characteristics of gut microbiota in patients with hepatitis B and differences in intestinal flora. (A) Principal coordinate analysis of β diversity of flora 
based on Bary-Curits distance (PCoA). (B) LEfSe analysis at genus level. (C) Relative abundances at the genus level. Phase 1 are HBeAg-negative patients 
and phase 2 are HBeAg-positive patients

 

Fig. 6  Effect of TDF on intestinal flora in patients with CHB. (A) Effect of TDF on alpha diversity of intestinal flora. (B) Phylum level differences of microbiota. 
Phase 1 are HBeAg-negative patients and phase 2 are HBeAg-positive patients
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within the predictive, preventive, and personalized medi-
cine framework, the role of systemic inflammation as a 
health-related communication tool between the human 
host and the gut microbiota cannot be overlooked [39]. 
The interplay between the host and the microbiota may 
influence the severity of hepatitis infection and the thera-
peutic outcomes, underscoring the need to account for 
the host’s inflammatory status and gut microbiota modu-
lation in treatment strategies. Nucleoside analogs (such 
as TDF) are effective in reducing HBV load [38], and in 
most cases able to prevent liver disease progression [40]; 
however, a better understanding of the complex interac-
tions between HBV and gut bacteria is essential to deter-
mine whether HBV treatment strategies should target the 
virus, host gut bacteria, or a combination of both in order 
to achieve functional therapy.

Our analysis has extended to examine the influ-
ence of the duration of TDF therapy on the gut micro-
biota among CHB patients. Notably, an extended period 
of TDF administration is correlated with substantial 
enhancements in the gut microbiota composition, sug-
gesting a time-dependent beneficial effect. The observed 
improvements potentially stem from a sustained suppres-
sion of HBV replication, which in turn lessens systemic 
inflammation and viral burden. Additionally, enhanced 
liver function, possibly a consequence of TDF treatment, 
could exert a positive influence on the gut microbiota 
through the gut-liver axis. Furthermore, the stabiliza-
tion of immune responses may contribute to a reduction 
in chronic inflammation, fostering a more balanced gut 
ecosystem. The exact nature of TDF’s impact on the gut 
microbiota, whether direct or indirect, merits further 
investigation.

The results of this study indicate that Proteobacteria 
were more abundant in HBV-infected individuals, which 
is consistent with other studies [33, 41]. During HBV 
infection, a decrease in Bacteroidota and an increase in 
Proteobacteria were observed [12]. Fusobacterium is a 
major member of the phylum Fusobacteria, which have 
been reported to be associated with intestinal inflam-
mation [42, 43]. However, the present study found a 
decreased abundance of Fusobacterium in the No-NAs 
and TDF groups, which is inconsistent with the reported 
results [26, 44]. Additionally, no significant correlation 
was found between inflammatory factors and Fusobac-
terium in the present study (Fig.  4A). The phylum Bac-
teroidota (especially the genus Bacteroides), which have 
anti-inflammatory characteristics [45, 46], was depleted 
in the No-NAs and TDF groups. This is consistent with 
the results reported in the literature [26, 47–50]. Actino-
bacteria was increased in the No-NAs and TDF groups, 
and a similar trend has been found [48]. Furthermore, 
Bifidobacterium (the phylum of Actinobacteria) was not 

significantly different between the No-NAs and TDF 
groups, nor in the subgroups of the TDF group (Fig. 7C).

Moreover, we found a significant difference in gut 
microbiota between Phases 1 and 2 in the TDF group, 
suggesting that the elimination of HBV DNA could 
potentially cause changes in gut microbiota. It was also 
reported that the use of fecal microbiota transplantation 
in the reconstruction of the gut microbiota promoted 
the clearance of HBeAg in CHB patients [51]. Further 
investigation revealed that the duration of TDF medi-
cation also had a potential effect on intestinal bacteria 
(Figure S3). As medication time increased, Faecalibac-
terium populations tended to increase, while Dialister 
populations tended to decrease (Table S7). However, 
the detailed mechanisms by which the gut microbiota 
regulate intrahepatic anti-HBV immunity remain largely 
unknown.

Crucially, there are a large number of functional genes 
derived from gut microbiota that are found in healthy 
controls [52, 53]. Gut bacteria can digest and absorb 
ingested complex carbohydrates from the diet that can-
not be digested by human enzymes and in doing so are 
able to synthesize some essential substances for the 
host [54–56]. It has also been reported that the abun-
dance of functional genes that are important for nutri-
ent metabolism, including amino acid, nucleotide, and 
lipid metabolism; and isoprenoid biosynthesis are sig-
nificantly reduced in HBV-related cirrhosis compared 
with healthy controls [57]. Our results were consistent 
with the reported literature, with vitamin synthesis being 
significantly decreased in the No-NAs and TDF groups 
compared to the HC group, while some were increased 
with drug metabolism (Fig.  5). Usually, CHB patients 
have altered intestinal permeability, increased bacterial 
translocation and portal vein endotoxin load, which leads 
to Toll-like receptor activation in the liver and promotes 
immune-mediated liver injury [12, 20]. At the phylum 
level, we observed a trend towards increased levels of 
Proteobacteria in the TDF group (Fig. 1C). At the genus 
level, some genera belonging to Proteobacteria such as 
Halomonas, Sphingomonas, Xanthomonadaceae_unclassi
fied and Rhizobiaceae_unclassified were overrepresented 
in the No-NAs and TDF groups (Fig. 3). LPS is a major 
component of the outer membrane of Gram-negative 
bacteria and a potent ligand for the host receptor toll-like 
receptor 4 (TLR4), which plays an important role in sens-
ing bacteria [58]. Chou et al. reported that the LPS-TLR4 
signaling pathway plays an important role in immune sys-
tem tolerance to HBV infection [27]. Our study showed 
that although TDF therapy was able to reduce HBV load 
(Figure S1), it did not effectively improve inflammatory 
factor levels. Generally, alterations in the gut microbiota 
and colonization by opportunistic pathogens increase the 
risk of comorbidity in CHB patients. At present, a new 
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therapeutic target has been established through the study 
of the gut microbiota [17]. HBV infection can increase 
intestinal permeability, damage the intestinal barrier, 
facilitate bacterial overgrowth and bacterial transloca-
tion, and promote immune-mediated liver injury [59–
61]. Therefore, gut microbiota play an important role in 
host health, and intervention of patients’ gut microbi-
omes may provide good support in the curing of chronic 
HBV infections.

In light of our previous study on the effects of tenofovir 
alafenamide (TAF) on gut microbiota in CHB patients, 
it is important to compare those findings with our cur-
rent results on tenofovir disoproxil fumarate (TDF). Both 
treatments are associated with overall improvements 
in gut microbiota profiles, including increased micro-
bial diversity and reduced pathobionts. However, spe-
cific bacterial taxa affected differed between TDF and 
TAF, indicating distinct impacts despite similar antiviral 
mechanisms. Additionally, the time-dependent effects 
on gut microbiota were more pronounced with TDF. 
These differences could influence personalized treat-
ment approaches, suggesting that certain patients might 
benefit more from one treatment over the other based 
on their gut microbiota profiles and health status. Future 
research should focus on direct comparisons of TDF and 
TAF in a single cohort, the effects of switching between 
treatments, and the functional aspects of gut microbiota 
changes.

Taken together, these results suggest that inflamma-
tory factors are involved in the observed dysbiosis of 
the gut microbiota in HBV-infected patients. However, 
the No-NAs and TDF groups were not comprised of the 
same individuals before and after treatment, meaning 
between-person confounders cannot be ruled out. There-
fore, future self-controlled studies are needed to investi-
gate the changes in gut microbiota in hepatitis B patients 
before and after taking TDF to explore the effect of TDF 
on gut microbiota. This study cannot directly answer 
the question of whether the changes in microbiota are 
pathogenic or the result of systemic HBV-related inflam-
matory factors. In this study, it was acknowledged that 
the different nutritional status and lifestyle habits of the 
subjects may have contributed to a bias in the analysis. 
On the other hand, although correlational analysis helps 
in linking inflammatory factors to the effects of dysbio-
sis, there is no direct manipulation of the microbiome 
to examine its relationship to disease in vitro or in vivo. 
Because of these limitations, well-designed prospective 
studies should be conducted in the future to confirm our 
findings. In addition, the exact mechanism of how HBV 
infection leads to gut dysbiosis requires further inves-
tigation. Additionally, while we observed associations 
between TDF treatment and alterations in gut microbiota 
composition in CHB patients, these findings should be 

interpreted with caution. The cross-sectional design of 
our study limits our ability to determine if these differ-
ences are directly caused by TDF treatment or influenced 
by other factors, such as improved liver function, dura-
tion of CHB, or lifestyle factors. To better understand the 
causal relationship, future research should include lon-
gitudinal studies to track microbiota changes over time, 
randomized controlled trials to compare TDF with pla-
cebo or alternative treatments, and mechanistic studies 
to explore TDF’s direct effects on gut microbiota. Our 
study provides valuable insights and lays the groundwork 
for further research to clarify the mechanisms and clini-
cal implications of these associations.

Conclusions
This study investigated the resulting changes of intesti-
nal microbiota in HBV-infected patients and concluded 
that HBV causes dysregulation of intestinal microbiota. 
In addition, treatment with TDF was found to not com-
pletely restore the dysregulated intestinal microbiota. 
These findings suggest a potential influence on gut 
microbiota composition. On the other hand, TDF treat-
ment also did not significantly improve serum inflamma-
tory factor levels. Since disruption of the gut microbiota 
is associated with an increase in inflammatory factors, 
the therapeutic effect of TDF could be supplemented by 
also regulating gut microbiota. However, the available 
data in this field is still limited. In the future, a random-
ized controlled trial is needed to further investigate the 
changes in gut microbiota in HBV-infected patients not 
taking antiviral drugs (immune tolerance phase) and dur-
ing medication. Such a randomized and self-controlled 
study would be helpful in investigating the changes in 
gut microbiota during the development of HBV and the 
role of gut microbiota play in the process of antiviral 
treatments.
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