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Abstract 

Background  Plant-based diets offer more beneficial microbes and can modulate gut microbiomes to improve 
human health. We evaluated the effects of the plant-based OsomeFood Clean Label meal range (‘AWE’ diet), on the 
human gut microbiome.

Methods  Over 21 days, ten healthy participants consumed OsomeFood meals for five consecutive weekday lunches 
and dinners and resumed their regular diets for other days/meals. On follow-up days, participants completed ques-
tionnaires to record satiety, energy and health, and provided stool samples. To document microbiome variations and 
identify associations, species and functional pathway annotations were analyzed by shotgun sequencing. Shannon 
diversity and regular diet calorie intake subsets were also assessed.

Results  Overweight participants gained more species and functional pathway diversity than normal BMI partici-
pants. Nineteen disease-associated species were suppressed in moderate-responders without gaining diversity, and 
in strong-responders with diversity gains along with health-associated species. All participants reported improved 
short-chain fatty acids production, insulin and γ-aminobutyric acid signaling. Moreover, fullness correlated positively 
with Bacteroides eggerthii; energetic status with B. uniformis, B. longum, Phascolarctobacterium succinatutens, and 
Eubacterium eligens; healthy status with Faecalibacterium prausnitzii, Prevotella CAG 5226, Roseburia hominis, and Rose-
buria sp. CAG 182; and overall response with E. eligens and Corprococcus eutactus. Fiber consumption was negatively 
associated with pathogenic species.

Conclusion  Although the AWE diet was consumed for only five days a week, all participants, especially overweight 
ones, experienced improved fullness, health status, energy and overall responses. The AWE diet benefits all individuals, 
especially those of higher BMI or low-fiber consumption.
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Introduction
The human gut microbiota comprises a vast and com-
plex community of almost 100 trillion microorganisms 
(predominantly bacteria) and an estimated 5000 spe-
cies [1] that inhabit the gastrointestinal tract. A normal 
gut flora, or core microbiota, consists primarily of Bac-
teroidetes (Bacteroides and Prevotella) and Firmicutes 
(Clostridium, Enterococcus, Lactobacillus, Ruminococcus, 
Eubacterium and Faecalibacterium). In normal, healthy 
adult guts, Firmicutes are the most abundant phyla, 
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followed by Bacteroidetes [2]. However, the microbiome 
is dynamic, and various factors, including diet, age, life-
style (e.g., stress), weight and the presence of disease, 
can affect its short-term and long-term diversity, com-
position and function. Changes to human health and 
wellbeing [3] have occurred when altering the diet with 
prebiotics and probiotics [4, 5] to modulate the micro-
biome, although evidence of this effect are mixed, and a 
complex relationship exists with the gut resistome [6]. 
While probiotics and prebiotics were not beneficial [7] 
in pre-diabetic adults and less beneficial than synbiotics 
in ulcerative colitis [8], probiotics were only marginally 
beneficial in diabetic patients [9], positively beneficial in 
cognitive impairment and mood or depressive disorders 
[10, 11], but negatively beneficial [12, 13] following anti-
biotic use. Thus, the potential for microbiome modula-
tion through direct intervention is still actively pursued, 
as shown by the increase in randomized controlled trials 
being conducted.

Human gastrointestinal microbiota ferment intestinal 
mucus and indigestible dietary fiber, resulting in metabo-
lites like bacteriocins, short-chain fatty acids (SCFAs), 
amino acids and vitamins [14]. These metabolites have 
key roles in activating intestinal immune responses to 
invading pathogens, while SCFAs also function as sign-
aling molecules that regulate physiological processes like 
metabolism and inflammation [15, 16].

Plant-based diets are often linked to lower mortal-
ity rates [17], and their increased fibre and polyphenol 
levels are associated with a greater diversity in benefi-
cial or healthy-gut microbes [18]. Plant-based diets also 
increase SCFA levels as they increase the amounts of 
microbes which metabolize complex carbohydrates and 
polysaccharides [19]. Omnivorous, ovo-lacto vegetar-
ian, and vegan diets provide more nutrients that support 
a diverse gut microbiome, with the microbiome profile 
of vegans and vegetarians likely to have more benefi-
cial bacteria than that of omnivores. In fact, omnivores 
have a more altered gut microbiome than vegans, as they 
have more bile-resistant microbes which can poten-
tially become harmful [20]. One cross-sectional study 
found that Firmicutes and Bacteroidetes comprised up to 
97.7% of the total vegan and omnivore gut microbiome, 
while Firmicutes comprised up to 58.6% and Bacteroi-
detes comprised 39% of the microbiome [21]. Interest-
ingly, Prevotella species dominate in populations with 
plant-based diets, like those in Africa, Asia, and South 
America, whereas Bacteroides dominate in Western pop-
ulations with diets high in animal proteins and saturated 
fats [22]. Individuals with diets rich in indigestible car-
bohydrates like whole grains and wheat bran have more 
Bifidobacterium and Lactobacillium while those with 

diets high in starches and whole grain barley may have 
more lactic acid bacteria (LAB; e.g., Lactobacillus sp.).

How the gut microbiome composition and func-
tion might be changed by short-term dietary changes 
remains to be established. Diet impacts the microbiome 
and may produce a chronic but mild inflammation, lead-
ing to chronic diseases like type II diabetes, cardiovascu-
lar disease and cancer, or chronic conditions like obesity 
[23]. Unregulated changes or imbalances in microbiome 
composition or function [24] can also manifest clinically 
as rheumatic diseases [25], psychiatric disorders [26], 
diabetes [27], hypertension [28] and cancers [29]. Gut 
microbiome manipulation offers a way to improve these 
disease risks. One dietary intervention study found that 
microbiome changes caused by switching diets [30], with 
Prevotella-enriched vegetarians or Bacteroides-enriched 
Western diet individuals all experiencing altered micro-
biome compositions within 24  h of swapping diets [30, 
31]. A study in Thai vegetarians [32] also found similar 
results with Prevotella-enriched microbiomes in vegetar-
ians. However, microbiome composition requires further 
study as others have noted conflicting results [33].

The commercially-available AWE by OsomeFood™ 
[34], is a nutrition-focused, both clean and functional 
plant-based meals that combines its OsomeFood super 
ingredients and its iteration of different clean sauces and 
ingredients to complete a meal. All meals are made with-
out artificial additives, extracts, fortifications, synthetic 
ingredients, genetically-modified organisms or preserva-
tives and yet naturally supercharged with nutritional 
goodness. All ingredients undergone strict qualifications, 
from the source of produce, cleansing technologies, acti-
vation through dehydrating or fermentation, to encapsu-
lation and curated pairing of nutrients to achieve optimal 
absorption and maximum nutrition. OsomeFood’s food 
is made primarily from fungi and algae (single cell pro-
tein) as well as nuts and plant protein.

Methods
The AWE study aimed to assess changes in wellbeing and 
the gut microbiome signature in ten study participants 
(n = 10) who consumed 900–2000  cal/week plant-based 
meals provided by OsomeFood. Participants were able to 
continue their regular diets for all meals except weekday 
lunches and dinners. For 21 days, participants had access 
to over 30 different types of meals. Some examples of 
OsomeFood meals are fish balls, fish cakes, protein noo-
dles and collagen egg made from fungi (including mush-
rooms fermented into mycoproteins), Undaria pinnatifida 
seaweed, white chia seeds, burdock root and kombu kelp 
seaweed. [35]. To prepare the meals, participants are 
only required to thaw each OsomeFood meal pack and 
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consume them heated up with the recommended heating 
methods.

Study protocol and design
This study has been approved by the AMILI Institutional 
Review Board, which adheres to the Declaration of Hel-
sinki (AMILI IRB Ref: 2022/0201). All participants were 
at least 18  years of age and have provided their writ-
ten informed consent. Participants strictly adhered to 
OSomeFoods’ plant-based meal plans for five consecu-
tive days (Monday through to Friday; ‘AWE’), and were 
allowed unrestricted meals for two consecutive days over 
the weekend (Saturday and Sunday; ‘non-AWE’) (Fig. 1). 
The study was performed in March 2022. Healthy partici-
pants were recruited from Singapore, all of whom pro-
vided written informed consents for their participation in 
this research study.

Participants/inclusion and exclusion criteria
Included participants were those aged 21 years and older, 
with a Body Mass Index (BMI) between 18 and 28, able 
to provide informed consent, and who were meat eaters. 
Excluded participants were those using oral antibiotics, 
antifungal and/or antiviral treatments within the prior 
3  months, those with existing medical issues, those on 
any other long-term medications, and vegetarians.

Data and sample collection
Participants were not required to complete and main-
tain a food frequency questionnaire (FFQ) on AWE days 
but did self-report their meal consumption on non-AWE 

days. On AWE days, subjects were followed-up on days 
(D) 1, 3, 7, 11, 17, and 21, to record their self-perception 
of three metrics: satiety, energy, and health. Insights 
from two prior in-house food trial pilot studies showed 
that changes in gut microbiome diversity and abundance 
occurred by 21 days (data not shown), hence this was 
used as our observational timepoint. Each metric was 
evaluated on a 3-point ordinal scale (1: worst rating, 3: 
best rating). For microbiome analysis, participants pro-
vided stool samples on the first day of the intervention 
(D1), and at the end of week 1 (D7) and week 3 (D21).

Data and sample analysis
To document microbiome variations occurring during 
the AWE diet period, and identify associations with the 
additional FFQ, we analyzed species and functional path-
way annotations, Shannon diversity and cheat day calo-
rie intake subsets. For species and functional pathway 
annotation, DNA was extracted from stool samples using 
the QIAamp® PowerFecal® Pro DNA Kit Handbook 
(QIAGEN GmbH, Hilden, Germany) according to the 
manufacturer’s protocols, and was processed for shotgun 
sequencing using the Illumina NovaSeq 6000 Sequenc-
ing System (RRID:SCR_016387; Illumina, San Diego, CA, 
USA) according to the manufacturer’s protocols.

Species and functional pathway annotations
DNA was extracted from the collected stool samples 
and shotgun sequencing was performed by Macrogen 
Asia Pacific Pte. Ltd. (Singapore). The resulting FASTQ 
sequences were then fed into the BioBakery 3 pipeline 

Fig. 1  Schematic of study design. Subjects underwent a 21-day non-continuous plant-based diet intervention, with stool specimen collected on 
day (D)0, D7, and D21. Meanwhile, wellness survey was administered on D1, D3, D7, D11, D17, and D21. Demographic data were obtained on D0
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for reference-based taxonomic pathway annotation using 
MetaPhlAn 3 and functional pathway annotation using 
HUMAnN.

Statistical analysis
After excluding species with < 1% relative abundance 
and prevalence in < 5% of the participants, 236 species 
remained for further analysis. We determined whether 
the change in diet affected microbiome composition 
across the study duration through permutational mul-
tivariate analysis of variance analysis (PERMANOVA). 
Briefly, Shannon diversity was calculated using the R 
package phyloseq version 1.40.0. Beta-diversity analy-
sis was conducted on the species and pathway composi-
tion data which was centered-log-ratio transformed to 
account for the compositionality of the dataset. Subse-
quently, features with < 1% abundance and < 5% preva-
lence were excluded. PERMANOVA was conducted 
to determine the significant variation across the sam-
ples using the R package vegan version 2.6–2 using the 
Euclidean distance with 999 permutations. Differen-
tially-abundant features were determined using pairwise 
Wilcoxon Rank Sum test, with multigroup comparisons 
adjusted using the Benjamini–Hochberg method. Ques-
tionnaire output and feature abundance were correlated 
using a linear mixed model method under the R package 
lme4 version 1.1–29, with age, sex, and BMI accounted as 
fixed effect and subject adjusted as random effects.

Results
Participants demographics
Ten participants (50% male, 50% female) were recruited 
and completed the study, and ranged in age from 20-49 
years, although the majority were aged 30-39 years. The 
majority (70%) were also overweight [BMI: 23-24.9kg/
m2], while the remaining participants were either under-
weight (10%), normal (10%) or obese (10%).

Species composition analysis
A total of 369 species were detected from the com-
piled gut microbiome profile; 236 of which remained 
after excluding those with < 1% relative abundance and 
found in < 5% subjects. The Shannon diversity metric 
is commonly used to assess the diversity of microbial 
communities in human gut microbiome studies. The 
Shannon diversity index accounts for the number of 
different types of microorganisms (species richness) 
and their relative abundances and provides a more 
comprehensive measure of diversity than metrics that 
consider only one of these factors. In human gut micro-
biome research, a high Shannon diversity (a diverse gut 
microbiome) is generally considered to be a marker of 
gut health. Conversely, low microbial diversity has been 

associated with a variety of health conditions, includ-
ing inflammatory bowel disease, obesity, and type 2 
diabetes. There was no significant variation in Shannon 
diversity across timepoint (KW test, p > 0.05; Fig.  2a), 
even when the analyses were done across demographic 
factors (Supplementary Fig. 1). Despite this, beta-diver-
sity analysis determined a significant variation in the 
species composition across timepoint (PERMANOVA 
stratified for subject variation, permutations = 999, 
R2 = 0.0222, Pseudo-F = 0.3069, p = 0.005; Fig. 2b). Dif-
ferential abundance analysis identified seven species 
with different abundances between D0 and D21, three 
of which (Bacteroides thetaiotaomicron, Bacteroides 
xylanisolvens and Leuconostoc garlicum) were elevated 
at the end of the study, while four were depleted (Wil-
coxon test, q < 0.1; Weissella confusa, Romboutsia ile-
alis, Collinsella intestinalis and a Bacteroides phage) 
(Fig.  2c). Among these, B. thetaiotaomicron was sig-
nificantly higher in D7 and D21 compared to the base-
line (Wilcoxon test, p < 0.05; Fig.  2d). Additionally, 19 
bacteria species related to cancer, inflammation, sepsis, 
weight management and non-alcoholic fatty liver dis-
ease (NAFLD), were suppressed throughout and at the 
end (D21) of the study in participants, with a constant 
increase in abundance in 30 species known to con-
fer health benefits such as cholesterol, immunity and 
weight management (Supplementary Fig. 2).

Correlations with functional pathway data
A total of 453 functional pathways were found, out of 
which 384 remained after excluding low-abundance 
(< 1%) and low-prevalence pathways (< 5%). Similar 
to the species composition profile, Shannon diver-
sity analysis identified no significant difference across 
timepoints (KW test, p > 0.05; Fig.  3b). However, PER-
MANOVA also failed to identify any significant differ-
ence across timepoints based on composition profiles 
(PERMANOVA stratified for subject variation, permu-
tations = 999, R2 = 0.037, p > 0.05) (Fig. 3a). Despite this, 
pairwise comparison across timepoints identified two 
functional pathways with significantly different abun-
dance: UDP-N-acetyl-D-glucosamine biosynthesis I  and 
chondroitin sulfate degradation I (bacterial) (Wilcoxon 
test, q < 0.05, Fig. 3c). Moreover, all participants reported 
improved SCFA production, insulin and γ-aminobutyric 
acid (GABA) signaling after the AWE diet, with related 
functional pathways continuing to increase and associ-
ated with participants’ improved health profiles (Sup-
plementary Fig. 3). Most of the functional pathways that 
improved after the AWE diet were associated with vita-
min K production, immunity, gut lining integrity and 
detoxification.
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Microbiome correlation with wellbeing Survey
Participants’ reported outcome measures of general well-
being were evaluated through a weekly (D7, 14 and 21), 
3-point survey of whether they felt they had more energy 
(‘energetic’), fullness (meal satiety), and perceived health-
iness, throughout the study duration (at 6 evaluation 

timepoints). Overall, and as the study progressed, all par-
ticipants’ scores of meal satisfaction, energy levels and 
feeling healthier, increased (linear model p < 0.05, Fig. 4a). 
Importantly, several species were significantly correlated 
with the participants’ survey metrics (Fig.  4b). Posi-
tive correlations were seen for fullness with Bacteroides 

Fig. 2  a Shannon diversity index of the subjects over the intervention period; b Principal component analysis of the subjects’ gut microbiota 
profile ordinated based on subject (color) and timepoint (shape) using centered-log-ratio transformation on a Euclidean distance, with significant 
variation across timepoint (Stratified PERMANOVA R2 = 0.022, p = 0.008); c Species differentially abundant between baseline and day 21 (end of 
the intervention period), measured using Wilcoxon test and adjusted for multiple comparison using the Benjamini–Hochberg method (q < 0.1); d 
Abundance of B. thetaiotaomicron across timepoint
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eggerthii; energetic status with B. uniformis, B. longum, 
Phascolarctobacterium succinatutens, and Eubacterium 
eligens; healthy status with Faecalibacterium praus-
nitzii, Prevotella sp. CAG 5226, Roseburia hominis, 
and Roseburia sp. CAG 182; and overall response with 
E. eligens  and Corprococcus eutactus. Negative cor-
relations were seen for fullness with B. vulgatus; for 
healthy status with Bifidobacterium pseudocatenulatum; 

and overall response with Dorea longicatena and B. 
pseudocatenulatum.

Effect of BMI on microbiome changes
Participants were classified as either moderate or strong 
responders based on the net Shannon diversity change 
after the three weeks intervention period (Fig.  5a). 
Interestingly, strong responders all belonged to a higher 

Fig. 3  a Principal component analysis of the subjects’ gut functional pathway composition profile ordinated based on subject (color) and timepoint 
(shape) using centered-log-ratio transformation on a Euclidean distance, with nonsignificant variation across timepoint (Stratified PERMANOVA 
R2 = 0.037, p = 0.204); b Shannon diversity of the functional pathway profile across timepoint; c Abundance of chondroitin sulfate degradation I and 
UDP-N-acetyl-glucosamine biosynthesis I across timepoint
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weight category compared to moderate responders 
(Fig. 5b).

Microbiome correlation with nutritional intake
Data from FFQ completed during the non-AWE phase 
were divided into a lower and upper quartile for con-
venience, and analyzed to determine if changes in par-
ticipants’ microbiome diversity were nutrition-related. 
No nutrient consumption metric was significantly asso-
ciated with changes in microbiome diversity (Wilcoxon 
test, p > 0.05; Supplementary Fig. 4). Despite this, sub-
jects with low fibre consumption during the non-AWE 
phase seemed to exhibit a higher microbiome diversity 
than those with higher fibre consumption.

We evaluated whether nutrient consumption was 
correlated with species that are also known to be ben-
eficial or pathogenic and found 42 beneficial and 17 
pathogenic species in our participants (Table 1).

Nutritional values from the FFQ data was correlated 
with these 59 species, filtered to include species-nutrient 
pairing with p < 0.05 and absolution R2 > 0.4. Nineteen 
unique species (pathogenic, n = 7; and beneficial, n = 12) 
were found, and associated with five nutrient metrics 
(Supplementary Fig. 5). Beneficial species were generally 
negatively associated with calorie, carbohydrate, fat, and 
protein intake, except for P. faecium which had a mixed 

outcome for fibre intake. In contrast, pathogenic species 
demonstrated the opposite trend as nutrients positively 
correlated with bacterial abundance, except for D. lon-
gicatena. Fibre consumption was also negatively associ-
ated with all species associated with pathogenic features.

Discussion
Overview
We found 369 species and 453 functional pathways in our 
participants’ gut microbiomes across the study duration, 
with diversity remaining stable and unaffected by demo-
graphics, although overweight participants had more diver-
sity at the end of the study (day 21) than those with normal 
BMI. All overweight participants responded better than 
other weight groups to the AWE diet. Additionally, par-
ticipant-reported wellbeing scores (satiety, energetic and 
healthier) were unanimously higher at day 21, potentially 
due to diet-associated improvements in SCFA produc-
tion, insulin signaling and GABA signaling. On AWE diet 
days, exclusion of animal fat and lower protein consump-
tion likely created a dietary composition that suppressed 19 
disease-related bacteria, as others have reported [36, 37].

AWE diet induced species changes in the gut microbiome
In the human distal gut, B. thetaiotaomicron ferments 
simple carbohydrates and complex plant polysaccharides 

Fig. 4  a Three-point self-rate survey on energy (energetic), satiety (fullness), and health (healthy), and total (Total) level of the subjects throughout 
the intervention period; b Species significantly associated with each of the survey variables, analysed using linear mixed model, adjusted for age, 
sex, and BMI, with statistical significance measured using the likelihood ratio test (p < 0.05)
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[38]. In mice, B. thetaiotaomicron BPI-5482 significantly 
increased total body fat and promoted fat storage [39]. B. 
thetaiotaomicron increases the hepcidin hormone [40] 
which can worsen metabolic disorders, increase weight 
gain and fasting glucose levels, impair glucose tolerance 
and increase liver accumulation of fatty acids. How-
ever, colon fermentation by B. thetaiotaomicron, B. egg-
erthii and B. xylanisolvens, produces beneficial prebiotic 
metabolites in obese individuals and obesity-related con-
ditions [41]. B. xylanisolvens also ferments alginates [42] 

Fig. 5  a Distribution of responders across subject’s bodyweight class; b Shannon diversity of subjects across responder categories

Table 1  Number of known beneficial and pathogenic species 
observed in our cohort

Status Presence N

Beneficial Absent 8

Beneficial Present 42

Pathogenic Absent 1

Pathogenic Present 17
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into SCFAs that fuel intestinal epithelial and immune 
cells [43], maintain gut health [44] and inhibit large intes-
tine production of toxic metabolites [42].

Leuconostoc garlicum exists naturally in fruits, veg-
etables and plant roots [45], dairy products, wine and 
sugar [46], but are not typically part of human gut flora 
[47]. L. garlicum ferments sucrose into dextran [48] and 
is often used as a probiotic or starter [45] in plant-based 
fermented foods like kimchi. The increased abundance of 
L. garlicum is therefore expected, considering the plant-
based nature of the AWE diet. However, more work is 
needed to understand the probiotic roles of the Leucon-
ostoc genus.

The W. confusa F213 [49]strain ferments glucose into 
lactic acid, ethanol and/or acetate in fermented foods 
[50]. However, it leads to continuous ethanol [51] pro-
duction in the large bowel, thus affecting peripheral 
blood alcohol levels. In rats, [51] hyperlipidemia and 
NAFLD resulted from high-fructose intake elevating 
ethanol levels in faeces and peripheral blood. The sup-
pression of W. confuse following AWE diet intervention 
therefore shows the potential to confer protective effect 
against these conditions.

Romboutsia ilealis [52] is linked to protective human 
leukocyte antigen (HLA) haplotypes, although some 
HLA allele combinations and gut microbiome changes 
are associated with autoimmune diseases like type 1 
diabetes [53]. Probiotic consumption increases R. ile-
alis levels [54] and decreases pro-inflammatory plasma 
cytokines. In primary sclerosing cholangitis with inflam-
matory bowel disease, gluten-free diets reduced R. ilealis 
[55]. Similarly, in mice studies [56] of colitis, selenium-
enriched Lactobacillus acidophilus improved Rombout-
sia-promoted intestinal inflammation and significantly 
reduced their levels.

Collinsella intestinalis ferment carbohydrates but not 
fiber, and flourish with low-fiber diets [57] where they 
may alter gut microbiome fermentation and cause harm-
ful metabolic or inflammatory effects. High Collinsella 
levels are also associated with westernized [58], low-fibre 
and high red meat diets [59], with chronic diseases [60] 
and negative effects on cholesterol metabolism [61]. Col-
linsella levels are decreased by high-fibre diets [64]. After 
six weeks in one low-calorie weight-loss program, Collin-
sella significantly decreased by 8.4-fold [62] yet weight-
loss persisted along with fecal microbiome changes. 
Collinsella facilitate intestinal absorption of cholesterol 
(thus increasing circulating cholesterols) [63], reduce 
liver glycogenesis and increase triglyceride production. 
In high-fibre macrobiotic diets, Collinsella improve met-
abolic responses in type II diabetes [64], although Collin-
sella can also be present at high levels [1].

Bacteriophages eliminate bacteria selectively [65], and 
can impact their host’s metabolism and immunity [66]. 
Dietary changes may increase stress in bacterial hosts, 
increase active phage numbers, and cause lysogenic 
phages to enter lytic stages [67].

Changes in functional pathways due to the AWE diet
Changes in species abundance may not correlate with 
changes in function, as we detected few significant dif-
ferences from the detected 384 functional pathways 
across timepoints. Nevertheless, our pairwise compari-
son identified UDP-N-acetyl-D-glucosamine biosynthe-
sis I and chondroitin sulfate degradation I (bacterial) to 
be reduced and elevated at the end of the intervention 
period, respectively. UDP-N-acetyl-D-glucosamine is 
found in barley plant extracts and mung-bean seedlings 
[68], where it is part of a glucose metabolism pathway 
that is increased in insulin-resistant obese Chinese chil-
dren and adolescents [69]. It may also play roles in the 
emergence of insulin resistance and diabetic vascular 
complications [70]. Chondroitin sulfate degradation was 
thought to be depleted in in vitro studies examining the 
effect of consuming a Korean traditional fermented soy-
bean soup [71].

Wellbeing surveys correlated with various gut microbiome 
species
Several species was positively linked with the wellbeing 
survey administered to the subjects across the interven-
tion. Fullness was significantly positively correlated with 
B. eggerthii and negatively with B. vulgatus; energetic 
status was significantly positively correlated with B. uni-
formis, B. longum, P. succinatutens, and E. eligens; healthy 
status was significantly positively correlated with F. 
prausnitzii, Prevotella sp. CAG 5226, Roseburia hominis, 
and Roseburia sp. CAG 182, but negatively with B. pseu-
docatenulatum. The overall response was significantly 
positively correlated with E. eligens  and C. eutactus and 
negatively with D. longicatena and B. pseudocatenulatum.

Bifidobacterium may protect against obesity, reduce 
serum cholesterol, triglyceride, and glucose levels, and 
improve insulin resistance and glucose tolerance [72]. 
B. pseudocatenulatum degrades xylan-derived carbo-
hydrates into SCFA [73] and may improve colitis by 
modifying the gut microbiome, blocking inflammatory 
cytokines and signaling, and maintaining the intestinal 
barrier [74]. Our study negatively correlated B. pseudo-
catenulatum with health status, but more work is needed 
to determine if this was a strain-specific observation.

C. eutactus is an obligate anaerobe that and is a con-
stituent of healthy guts [75] but is present at the lowest 
abundance in the irritable bowel syndrome D subtype 
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[76]. C. eutactus leads to the production of butyrate [77], 
while Coprococcus species are generally associated with 
a better quality of life and are depleted in depression 
[78]. Another obligate anaerobe, D. longicatena, is nega-
tively correlated with markers of dyslipidaemia or insulin 
resistance, indicating its beneficial probiotic effect [79]. 
However, its role is unclear as it is increased in Crohn’s 
remissions [80] but decreased in heart failure [81].

Supplementation with polyphenol-rich citrus fruit 
extracts has been found to significantly increase levels of 
B. eggerthii and Roseburia sp. [82], while red wine poly-
phenol and sorghum bran consumption supported Rose-
buria sp. growth in overweight participants. Roseburia sp. 
is abundant in the intestine where it produces butyrates, 
and may combat inflammation and obesity. Fecal sequenc-
ing detected more Prevotella and Roseburia but fewer 
Bacteroides in omnivores than in vegans and vegetarians 
[83], while abundant Roseburia sp. CAG182 was detected 
[84] in severe steatosis versus no-steatosis patients. Rose-
buria CAG182, F. prausnitzii and E. eligens, are part of a 
microbial signature for cardiometabolic health, and cluster 
with other species in healthy plant- or animal-based foods 
[85]. This agrees with our positive correlation of these 
species with energy, health and overall responses, even in 
our small cohort of overweight or obese individuals. Bac-
teroidetes associate positively with fat but negatively with 
Firmicutes. B. eggerthii and B. uniformis were enriched in 
individuals with low visceral fat [86], while B. uniformis 
protected against metabolic disorders and obesity [86]. 
Thus, some Bacteroides species could be considered as 
probiotics in the management of obesity.

We correlated several Firmicutes species with a healthy 
condition. R. hominis is known to upregulate genes for 
chemotaxis, mobilization and motility [87], and plays 
roles in gut barrier function and immune modulation. 
Additionally, P. succinatutens degrades dietary fibre into 
succinate and subsequently into propionate, thus confer-
ring anti-inflammatory and antitumor properties [88]. 
It is worth noting that P. succinatutens has also been 
reported to be enriched in patients suffering from ulcera-
tive colitis [89], warranting further study on its role in 
human health.

Association between nutritional intake 
and the microbiome
Our participants’ nutrient consumption also corre-
lated with seven and twelve species which have been 
associated with pathogenicity and beneficial health 
effect, respectively. Beneficial species were negatively 
associated with calorie, carbohydrate, fat and protein 
consumption, although the impact on P. faecium fol-
lowing fibre consumption was mixed. Pathogenic spe-
cies positively correlated with bacterial abundance, 

and importantly, negatively correlated with fibre con-
sumption. Commensal gut bacteria produce SCFAs 
by fermenting dietary fibre, which lowers postpran-
dial insulin responses and blood glucose levels. Low-
fiber diets support mucus-degrading bacteria and the 
growth of pathogens that compromise the colonic 
mucus barrier [90]. Dietary fibre also influences the 
immune system to produce more T cells which sup-
presses inflammation [3] and regulates the inflammas-
omes [91]. A short-term increase in dietary fiber can 
significantly increase F. prausnitzii [92], whereas con-
sumption of apple pectin-derived and inulin-derived 
indigestible carbohydrates increase B. uniformis, B. 
eggerthii, B. thetaiotaomicron and B. vulgatus [93]. 
However, over the long-term, gut microbiome stabil-
ity was similar between individuals fed high-fat/low-
fiber or low-fat/high-fiber diets and those on identical, 
short-term diets, although Bacteroides and Prevotella 
were more associated with long-term consumption of 
proteins, carbohydrates and animal fats. Furthermore, 
short-term consumption of animal-based diets led to 
fewer Firmicutes, while plant-based diets increased 
bile-tolerant microbes, like Bacteroides [31]. Though 
limited, the existing human studies on specific foods 
show that microbes like Bacteroidetes are increased by 
fat intake, while microbes like Firmicutes decrease.

Vegan and omnivorous gut microbiomes are 
dominated by both Firmicutes and Bacteroides, 
while omnivores have more Proteobacteria and 
Roseburia/Eubacterium rectal [94], vegans have more 
Verrucomicrobiota, lacto-vegetarians have more F. 
prausnitzii, and vegetarians and vegans both have fewer 
Bacteroides or Bifidobacterium  [95]. F. prausnitzii may 
protect against obesity as it produces butyrate and anti-
inflammatory metabolites [96]. As F. prausnitzii was 
depleted in metabolically healthy but obese individuals, 
its absence may promote obesity. Additionally, Prevo-
tella are positively correlated with high-fibre diets [97], 
and Prevotella-rich diets are linked to weight-loss [98], 
less cholesterol [99] and improved glucose and suc-
cinate metabolism [100]. A Mediterranean diet inter-
ventional study found that Prevotella degrades complex 
polysaccharides in high-fibre diets, reducing insu-
lin resistance in overweight participants [101]. These 
observations supported the beneficial effect of AWE 
diet which observed the positive correlation between 
health status and Prevotella CAG:5226.

Benefit of AWE diet on subjects in the high BMI ranges
The majority of our cohort were overweight or obese. 
Interestingly, obese and overweight patients were more 
likely to respond to the AWE intervention based on their 
Shannon diversity. Nevertheless, we acknowledge the 
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skewed distribution of our data which had employed 
participants from a higher BMI group. Despite this, our 
observation suggests the potential effect of AWE diet in 
assisting weight management.

Limitation
Our study was limited by a limited sample size and eth-
nic diversity, and inability to record macronutrient and 
micronutrient consumption which prevented correla-
tions between nutrient consumption and diet interven-
tion or microbiome effects. Further study is also needed 
to ascertain the long-term effects of the diet on the 
microbiome and confirm the persistence of the diet’s 
benefits.

Conclusion
Our analysis of microbiome changes occurring dur-
ing the consumption of the plant-based, AWE diet, 
highlighted the benefits of the increase in fibre 
intake, even though participants adhered to this meal 
plan for just 5 days a week and resumed their normal 
diets in for a subsequent 2  days. Participants, espe-
cially overweight and obese individuals, experienced 
positive changes associated with fullness, health sta-
tus, energy and overall response. While more data is 
needed on the exact physiological impact exacted by 
the alteration of each microbe, our data suggest that 
the AWE diet benefits all individuals, especially those 
of higher BMI ranges.
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