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Abstract 

Background  Host associated gut microbiota are important in understanding the coevolution of host-microbe, and 
how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota com‑
position and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, 
habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined 
how ecological and environmental factors influence gut microbiota composition in animals’ natural environments. In 
this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota 
of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations 
in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene 
amplicon sequencing.

Results  The results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroi-
detes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie 
dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, 
anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates 
than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans 
and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively 
affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal 
microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correla‑
tion with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal 
microbial diversity.

Conclusions  Our findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta 
diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine 
future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were 
enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.
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Background
The host-associated microbiome influences potential 
host health and fitness and has spawned a growing inter-
est in the scientific community. The microbiome study is 
important in understanding the coevolution of the host-
microbe, its causes, and consequences in nature [1, 2]. 
Microbial communities of the mammalian gut are criti-
cal to digestive efficiency [3], behavior [4], homeostasis 
[5], nutrition [6], immune response [7], and pathogen 
invasion [8]. Shifts in microbial community composition 
have been associated with disruption and imbalanced 
gut microbiota that can lead to functional changes in 
the metagenome resulting in host morbidity and mor-
tality [9]. Studies on the microbiome have typically been 
focused on humans and animals in laboratory settings, 
but there is still much to be learnt about gut microbial 
diversity and composition of hosts in a natural environ-
ment [4]. Fecal samples have been used as a proxy for 
reflecting microbial communities in the lower gastro-
intestinal tract of the host [10], however, the different 
regions of the gastrointestinal tract harbor different fer-
menters making it difficult to differentiate fecal bacte-
ria from intestinal flora that may influence microbiome 
composition [11].

The gut microbiome offers a new perspective on the 
response of the host organism to geographic variation 
[12, 13] even with relatively small distances ca. 100  km 
between sampling sites or between countries [12, 14, 15]. 
For example, trapping location was found to account for 
15% variation of the total gut microbiota in wild mice in 
Scotland [12]. The effect of geographic distance on micro-
biome composition was also documented in red squirrels 
among samples within a few kilometers of each other in 
Canada [4]. Biogeographic variation in gut microbiota is 
shaped largely by dispersal ability, and potentially other 
ecological factors affecting the local environment, food 
resources, and livestock farming intensity throughout 
sampling sites [15]. Geographic variation may also be 
related to differences in individual host factors that influ-
ence gut microbiome diversity, suggesting that bacteria 
colonizing the gastrointestinal tract are either promiscu-
ous or acquired through environmental exposure [16].

Habitat is one of the key factors shaping gut microbi-
ota in wild mammals and understanding the interaction 
between host habitat and microbial community struc-
ture could be useful for effective management plans [17, 
18]. Animals living near urban areas show dramatically 
altered host physiology [19], movement patterns [20], 
foraging habits [21], pollution exposure [22], and vulner-
ability to predation [23]. Access to anthropogenic food 
resources in urban settings changes the gut microbiota 
composition in some rodents and carnivores, which leads 
to diet-induced obesity and hyperglycemia [24–26]. The 

effect of urbanization on bird populations has been dem-
onstrated by substantial differences in microbial commu-
nity structure and diversity as well as the taxonomic and 
functional composition of gut microbes [27, 28]. The rela-
tionship between gut microbiota characteristics and hab-
itat type can be explained by various mechanisms. First, 
the gastrointestinal tract may be a repository for sam-
ples of the microbial communities present in the exter-
nal environment such as soil and water resulting in local 
microbiome differences [29–31]. Second, the microbial 
community composition varies dramatically among hosts 
based on their genetic and phenotypic traits, suggesting 
that host filtering may favor specific bacterial commu-
nities [32]. Third, a diet-mediated shift that depends on 
both host-specific traits and host environments [27] has 
been documented in mammals and birds resulting from 
the provision of supplementary foods [33, 34].

Seasonal shifts may also play a critical role in shap-
ing the structure of the microbial community. The gut 
microbiome of wild mammals changes rapidly with the 
seasons [35–37]. To illustrate, bacterial taxa involved 
in the production of amino acids and lipid metabolism 
were higher during dry seasons which may suggest that 
energy production and cellular activity may allow wild 
geladas (Theropithecus gelada) to switch their diet to 
starch in order to maintain energetic demands in periods 
of nutrient restriction [35]. In addition to seasonal and 
temporal variation, numerous studies have shown the 
association between spatial variation in environmental 
conditions such as temperature, precipitation, elevation, 
and gut microbiota composition. For example, temper-
ature-driven microbiome variation in both fruit flies 
and humans has been reported across latitude [38, 39]. 
Another study found considerable changes in gut micro-
biota across an elevational gradient in a toad-headed liz-
ard population [40]. As a result of seasonal and spatial 
variations in microbiome composition, certain bacteria 
may become more abundant which improves the metab-
olism of the host, while reducing the abundance of other 
microbes that affect host immunity [41, 42].

Black-tailed prairie dogs (Cynomys ludovicianus) are 
medium-sized rodents widely distributed in the North 
American Great Plains, from southern Canada to north-
ern Mexico [43]. This species plays a key role in the 
short-grass prairie ecosystems of North America, pro-
viding prey and shelter for other species as well as con-
tributing to soil texture and composition [43]. Because 
of their keystone function, this species is ideal to exam-
ine the association between gut microbiota diversity and 
composition in relation to spatial variation in host habitat 
and environment. Previous work in the fecal microbial 
diversity and abundance of the species only analyzed a 
small sample (n = 10) in the Janos Biosphere Reserve in 
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Mexico [44]. Recent study examined the fecal and cecal 
microbiota of black-tailed prairie dogs in Kansas focused 
on 58 samples and compared sex and geographic varia-
tion between groups [45]. However, the response of fecal 
microbiota to habitat and environmental parameters has 
yet to be analyzed in detail.

The aims of the study were to (1) characterize the fecal 
microbiota of black-tailed prairie dogs in the Texas Pan-
handle; (2) determine how fecal microbiome diversity and 
composition vary with geographic location and habitat; 
and (3) test whether spatial variation in temperature, pre-
cipitation, and elevation affect fecal microbial diversity. 
Animals living in different eco-regions are exposed to dif-
ferent types of vegetation and diet, we hypothesize that 
the fecal microbiota of black-tailed prairie dogs occupy-
ing different geographic locations will develop different 
fecal microbiomes. Moreover, we predict that prairie 
dogs inhabiting urban areas closer to human settlements 
will exhibit reduced microbial diversity and richness than 
their counterparts in more rural areas. This is because 
urban habitats are characterized by reductions in plant 
species diversity resulting from biotic homogenization. 
In addition, we expect differential microbial abundance 
and significant changes in microbial community struc-
ture. Overall, we expect that ecological factors will be 
strongly related to prairie dog microbiome variation. To 
explore the relationship between host geographic loca-
tion, habitat, environmental conditions, and fecal micro-
biome composition, the current study analyzed 70 fecal 
samples from 58 burrows in five geographically distinct 
colonies along a habitat gradient in the Texas Panhandle: 
urban areas (Dallam and Randall), and rural areas (Lub-
bock, Bailey, and Hockley). Analyses reveal new insights 
into the microbial structure and how they co-vary with 
predicted factors that offer new concerns for the conser-
vation and management of the prairie dog population.

Results
The raw sequences of 70 fecal samples totaled 5,407,660, 
with an average of 77,252 reads per sample (range 28,178 
– 357,624; SD = 41,072). After quality filtering (Q > 30) 
and denoising, resulting on a grand total of 3,939,947 
non-chimeric sequences, averaging 56,285 reads per sam-
ple (range 15,839 – 256,779; SD = 30,147). We detected a 
total number of 5,118 ZOTUs (zero-radius operational 
taxonomic units) by clustering all these reads based on a 
100% similarity threshold. Observed OTUs leveled off at 
a sequencing depth of 40,000 indicated by the fact that 
enough OTUs have been detected to adequately char-
acterize the microbial communities and the number of 
reads is not a limiting factor for OTU detection beyond 
40,000 reads (Fig. S1). Some samples were characterized 
by a higher percentage of bacterial species than others 

and a shallow gradient from all samples indicated the 
relative abundance and incidence of those species were 
more evenly distributed. This observation was supported 
by the species rank abundance plot and the incidence 
abundance plot, as they showed a similar pattern across 
the dataset (Fig. S2A-B).

Fecal microbiota composition
Overall, 11 phyla, 57 families, 114 genera, and 220 spe-
cies were found in all samples of Cynomys ludovicianus. 
Bacteroidetes was the most abundant phyla representing 
57.3% of the fecal samples followed by Firmicutes (39.6%), 
Proteobacteria (1.5%), Tenericutes (0.9%), and Actinobac-
teria (0.4%) (Fig. 1A). The top ten families, Rikenellaceae 
(19.2%), Bacteroidaceae (16.7%), Prevotellaceae (13.4%), 
Unclassified_Clostridiales (12.5%), Clostridiaceae 
(10.6%), Eubacteriaceae (7.3%), Porphyromonadaceae 
(6.5%), Lachnospiraceae (6.3%), Lactobacillaceae (1.3%), 
and Ruminococcaceae (1.2%), made up 95% of the fecal 
microbiota (Fig.  1B). The most abundant genera domi-
nated in all samples including Alistipes (19.2%), Bacte-
roides (16.5%), Prevotella (12.2%), Eubacterium (7.3%), 
Clostridium (6.4%), Blautia (5.8%), Parabacteroides 
(4.2%), Anaerovorax (3.8%), Roseburia (3.3%), and Alka-
liphilus (1.7%). Microbial communities were dominant 
by five species, Alistipes shahii (13.1%), Prevotella shahii 
(10.4%), Bacteroides rodentium (7.3%), Eubacterium oxi-
doreducens (3.9%), and Anaerovorax odorimutans (3.8%) 
with the remaining species accounting for less than 5% of 
the mean relative abundance.

Fecal microbiota alpha diversity
The number of observed OTUs varied from 647 to 1922 
per sample (Table S1). A strong linear relationship was 
found between the observed OTU richness and the total 
read counts of the sample in the dataset (Welch Two 
Sample t-test: t = 14.349, df = 69.077, p < 0.001). Micro-
bial alpha diversity was summarized as observed OTU 
richness (R = 1474.3 ± 25.54), Shannon diversity index 
(H’ = 6.45 ± 0.04), as well as Faith’s phylogenetic diversity 
(PD = 11.55 ± 0.14) which was followed by the analysis of 
variance among sampling sites. There were no significant 
spatial autocorrelations in Moran’s I test for alpha diver-
sity metrics (Observed: p = 0.838; Shannon: p = 0.781; 
Faith’s PD: p = 0.522). The distribution of observed OTUs 
was significantly varied across sites (ANOVA, F = 9.90, 
p < 0.01; Fig.  2A, Table  1). Significant differences were 
present between alpha diversity estimates of five differ-
ent experimental groups (Shannon: F = 5.27, p = 0.00097; 
Faith’s PD: F = 5.01, p = 0.0013; Fig.  2B and C). There 
was no statistical difference between Dallam and Ran-
dall regarding intra-individual diversity (Fig.  2A-C). For 
all three alpha diversity metrics, diversity and richness 
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Fig. 1  Relative abundance of bacterial taxa by phyla and family (A) eleven major phyla, and (B) top 20 bacterial families found in 70 fecal samples

Fig. 2  Box-and-whisker plots show alpha diversity comparisons of each group of prairie dogs’ fecal microbiome at different sampling sites and 
habitats (A, D) Observed OTU richness, (B, E) Shannon index, and (C, F) Faith’s PD. Statistical significance ****p < 0.0001, ***p < 0.001, **p < 0.01, 
*p < 0.05 given by Tukey’s HSD test
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were significantly greater in Dallam, while lower in Bai-
ley (Tukey’s HSD test, p < 0.05; Fig.  2A-C). We found 
that adding habitat as a covariate in the linear regression 
model increased the association between alpha diversity 
and sampling sites (8.0%), indicating part of the associa-
tion was explained by habitat (p < 0.001; Table 2). Multiple 
linear regression analysis revealed a significant  relation-
ship between alpha diversity and the two predictor vari-
ables (F(4,65) = 9.901, R2 = 0.38, p < 0.001). Significant 
variation was observed in alpha diversity between habi-
tats (Observed: F = 31.38, p < 0.001; Shannon: F = 14.50, 
p = 0.0003; Faith’s PD: F = 12.45, p = 0.0007; Table  2). 
Diversity was significantly higher in rural areas compared 
to their counterparts in urban areas (Tukey’s HSD test, 
p < 0.001; Fig. 2D-F).

Fecal microbiota beta diversity
The community membership as summarized by Bray–
Curtis dissimilarities, unweighted and weighted Uni-
Frac distances was significantly explained by sampling 
sites (F = 3.49, df = 4, p < 0.01; F = 4.33, df = 4, p < 0.01; 
F = 3.54, df = 4, p < 0.01, respectively) as well as habi-
tat (F = 3.98, df = 1, p = 0.001; F = 5.74, df = 1, p = 0.001; 
F = 3.95, df = 1, p = 0.001, respectively) in a multiple 
predictor PERMANOVA model. This test was followed 
by post hoc pairwise testing between sites using per-
mutational multivariate anlayses of variance using dis-
tance matrices (ADONIS) through which it was found 
that all comparisons were significant (p < 0.05; Table 
S2). The Mantel test showed that geographic separa-
tion of samples was correlated with community dissimi-
larity matrices (Bray–Curtis dissimilarities: r = 0.044, 
p = 0.003; unweighted UniFrac: r = 0.065, p = 0.024; 
weighted UniFrac: r = 0.013, p = 0.029). To evaluate the 
effect of sampling sites and habitat, principal coordinate 
analysis (PCoA) based on Bray–Curtis dissimilarities, 
unweighted and weighted UniFrac distances resulted in 
16.27%, 22.24%, and 26.72% of the total variation in the 
community matrix being summarized on the first two 
axes (Fig. 3A-C). Multivariate homogeneity of group dis-
persions (β-dispersion) using Bray–Curtis, unweighted 
and weighted UniFrac distances corroborated signifi-
cant variation in the dispersion of samples from group 
centroids across sampling sites (ANOVA: F = 5.62, 
p < 0.01; F = 6.12, p < 0.01; F = 6.27, p < 0.01, respectively; 
Fig. 3D-F).

Relative abundance of bacterial taxa
To determine which taxa were contributing to the 
observed differences across sampling sites, we exam-
ined differences in relative abundance at the family level. 
Differences were present in the relative abundance of 
specific bacterial families: the most abundant family in 

Dallam being Bacteroidaceae (22.87%). Prevotellaceae 
(21.91%) was significantly higher in all samples in Ran-
dall County compared to other sites (Fig.  4). Bailey and 
Hockley were largely dominated by Rikenellaceae and 
Porphyromonadaceae (26.63% and 15.84% respectively), 
while Lubbock was mostly abundant with Bacteroidaceae 
(16.28%). A hierarchical clustering method based on 
the relative abundance of genera clearly separated the 
samples from each sampling site (Fig.  5). Two distinct 
bacterial groups were differentiated by their divergent 
abundance patterns in the samples. The highly abundant 
group in the samples included the genera Alistipes, Bac-
teroides, Prevotella, Roseburia, Parabacteroides, Anaero-
vorax, Blautia, Eubacterium, and Clostridium. On the 
other hand, the group displayed the contrasting patterns 
constituting Flavobacterium, Barnesiella, Paraprevotella, 
Lactobacillus, Alkaliphilus, Acetivibrio, Catabacter, Fusi-
catenibacter, Butyrivibrio, Microbacter, and Robinson-
iella. The latter group, however, included genera (e.g., 
Alkaliphilus, Fusicatenibacter, Robinsoniella) causing 
infection in humans [46–48]. Moreover, Bailey showed 
higher contributions of Alistipes (18.37%) whereas Para-
bacteroides (9.15%) mostly prevailed in Hockley. Both 
Dallam and Lubbock had a greater abundance of Bacte-
roides (27.74%, 22.21%, respectively). Prairie dogs from 
Randall County had higher relative abundance of Prevo-
tella (9.38%).

Differential abundance testing
Species-level comparisons were accounted for by dif-
ferential abundance analyses (ANCOMBC) with 71 spe-
cies observed to differ across five experimental groups 
(Fig.  6A). To provide a robust understanding of the 
microbiome differences between prairie dogs living in 
rural areas and those living in urban areas, we also used 
ANCOMBC. This analysis identified an apparent micro-
biome divide between prairie dogs in urban and rural 
settings and found 51 species that were differentially 
abundant between rural and urban habitats. A greater 
percentage of Clostridium sp., Cohaesibacter haloalka-
litolerans, Prevotella sp., and Thermophagus xiamenensis 
were found in rural areas (Fig. 6B). In contrast, the fecal 
microbiota of urban areas were characterized by higher 
proportion of Alistipes sp., Anaerovorax odorimutans, 
Aureibacter tunicatorum, Bacteroides sp., Butyrivibrio 
fibrisolvens, Christensenella minuta, Clostridium sp., 
Desulfosporosinus sp., Eubacterium brachy, Fusibacter 
sp., Kiloniella sp., Mogibacterium pumilum, Peptostrep-
tococcus russelli, Ponticoccus litoralis, Rhizobium sp., 
Sphingobium sp., Sporobacter termitidis, and Vallitalea 
pronyensis.

Furthermore, to explore the bacterial species contrib-
uting to the important values in the habitat, we used 
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random forest classifier. We found Alistipes shahii had 
higher mean decrease accuracy (MDA = 3.53; zotu  745, 
905, 906, 1041, 1401, 3705, and 4211) compared to oth-
ers and thus had a greater impact on the accuracy of 
the classification followed by Bacteroides rodentium 
(MDA = 3.34; zotu 98, 589, 1351, 1572, 2937, 3210, 3354, 
3787, 4298, and 4897) and Prevotella shahii (MDA = 2.83; 
zotu 386, 1847, 1893, 2113, 2777, and 2852) (Fig. S3).

Relationship among environmental variables, fecal 
microbial alpha, and beta diversity
To investigate whether environmental factors were 
associated with the changes in black-tailed prairie dog 
fecal microbial diversity, we used linear and linear 
mixed effect models based on AICc. We observed a sig-
nificant positive association between Shannon diversity 
index and cumulative precipitation (Pearson correla-
tion: r = 0.42, p = 0.0003; Fig.  7A), but negative corre-
lation with average maximum (r = -0.47, p < 0.001) and 
average minimum temperature (r = -0.35, p = 0.0033) 
(Fig. 7B and C). No significant correlation was observed 
between elevation and Shannon index (r = 0.19, 
p = 0.11). First principal component of PCoA (based 
on unweighted UniFrac distance) that explained 13.69% 
variation of the beta diversity was positively correlated 
with cumulative precipitation (r = 0.69, p < 0.001) and 
elevation (r = 0.31, p = 0.01) (Fig.  7D and E). In con-
trast, significant negative correlation of beta diversity  
was observed with both average maximum and average 
minimum temperature (r = -0.77, p < 0.001; r = -0.59, 
p < 0.001, respectively, Fig. 7F and G). In both alpha and 
beta diversity models, average maximum temperature 
was the strongest predictor considered the top ranked 
model (F(1,68) = 18.97, R2 = 0.22, p < 0.001; F(1,68) = 54.71, 
R2 = 0.39, p < 0.001, respectively; Table S3).

Discussion
In summary, this study identified general patterns of the 
spatial variation in fecal microbiome diversity and com-
position in black-tailed prairie dog population in the 

Texas Panhandle. Our results demonstrate that diversity 
and composition of the microbiome vary strongly as a 
function of landscape and environment. Following were 
the key findings from this study: (i) the dominant phy-
lum was Bacteroidetes, followed by Rikenellaceae as the 
dominant family, Alistipes as the dominant genus, and 
A. shahii as the dominant species; (ii) significant differ-
ences were observed in alpha diversity estimates across 
sampling sites and habitats; (iii) host geographic loca-
tion and habitat were the strong predictors affecting 
fecal microbiome diversity and community composition; 
(iv)  microbiome composition was affected significantly 
by differentially abundant bacterial taxa ; and (v) average 
maximum temperature explained fecal microbial alpha 
and beta diversity. Combined, these findings point to 
the ecological factors driving spatial patterns of the fecal 
microbiota of prairie dogs in their natural environment. 
Furthermore, our data suggest that shifts in microbiota 
composition and reduction in gut microbiota diversity 
in urban populations may negatively impact prairie dog 
health and fitness.

Fecal microbiota composition
Overall, Bacteroidetes was the most dominant phylum 
in this study, with Rikenellaceae representing the most 
dominant group within it. These results are similar to 
studies on other rodents [49, 50] but not consistent with 
studies on the fecal and caecal microbiota of black-tailed 
prairie dogs in Kansas, USA [45] and fecal microbiota 
of Cynomys ludovicianus in Chihuahua, Mexico [44]. In 
particular, the proportion of Bacteroidetes accounted 
for less than 10% of the microbiota in previous stud-
ies of black-tailed prairie dogs (Table S4), versus 57.3% 
in this study. At the same time, Firmicutes abundance 
was lower in our study (39.6%) resulting in an overall 
increase in Bacteroidetes (Table S4). An increased rela-
tive abundance of Bacteroidetes with concomitant reduc-
tion of Firmicutes stimulates the host immune response 
resulting in either diet-induced obesity or weight loss 
due to a high-fat or high-fiber diet [51–55]. The phylum 

Table 1  Alpha diversity estimates in fecal microbiome of Cynomys ludovicianus across sampling sites and habitat

Sampling sites Samples Total reads Reads after filtering Observed OTU’s Shannon Faith’s PD

Lubbock n = 12 69,949 ± 5780 51,434 ± 4548 1481.1 ± 116.8 6.49 ± 0.15 11.79 ± 0.462

Hockley n = 14 72,097 ± 6392 51,945 ± 4690 1321.7 ± 54.2 6.33 ± 0.06 10.95 ± 0.295

Bailey n = 16 92,082 ± 19,018 68,099 ± 13,872 1244.6 ± 47.5 6.21 ± 0.04 10.86 ± 0.197

Randall n = 15 80,300 ± 6162 57,487 ± 4504 1678.1 ± 49.4 6.59 ± 0.09 11.91 ± 0.241

Dallam n = 13 67,783 ± 5025 49,508 ± 3698 1670.0 ± 54.0 6.71 ± 0.08 12.37 ± 0.271

Habitat
Rural n = 28 74,488 ± 4147 53,783 ± 3007 1678.9 ± 35.7 6.64 ± 0.06 12.12 ± 0.182

Urban n = 42 79,094 ± 7735 57,953 ± 5681 1337.8 ± 43.5 6.33 ± 0.05 11.16 ± 0.186
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Firmicutes plays a dominant role in producing a health-
promoting molecule in mammals called butyrate, and 
its abundance has been found to decrease significantly 
in comparison to other phyla in case of metabolic disor-
ders in animals [9]. Several other studies suggest that a 
change in relative abundance with higher Bacteroidetes 
is associated with leanness, resulting in a decrease in 
Firmicutes/Bacteroidetes ratio [56–58]. Changes in abun-
dance of Bacteroidetes and Firmicutes may be affected 
by geographical location, environment, and dietary pat-
tern of the host. The variation in bacterial phyla  may also 
be obtained in our study due to methodological differ-
ences in sampling techniques, DNA extraction protocols, 
primer design, and the variable regions being amplified. 
Within the phylum Bacteroidetes, the most abundant 
family was Rikenellaceae (19.2%) which may be associ-
ated with primary and secondary degradation of carbo-
hydrates as suggested by previous studies [59]. The most 
abundant genus Alistipes (19.2%), and species A. sha-
hii (13.1%) accompanied by a decrease in Lactobacillus 
(1.3%) in the present study was in agreement with Mau-
rice et  al. 2016, indicating an influence of seasonal dif-
ferences in dietary intake on the microbial communities 
in the gut of wild wood mice. In the current study, sam-
ples were collected in the summer from early June to late 
August, thus future studies involving collecting samples 
year-round may reveal the seasonal dietary shifts in the 
black-tailed prairie dog fecal microbiota. Other studies 
have shown that high levels of Alistipes were observed in 
frail and aged populations of mice and humans [60, 61]. 
Since microbial communities have distinct functional 
patterns, examining functional metagenomic profiling, as 
well as their role in metabolic pathways, needs to be fur-
ther explored.

Reduced fecal microbial alpha diversity in urban 
populations
We found a significant relationship between the alpha 
diversity of prairie dog fecal microbiota and the geo-
graphic location of the prairie dog colonies sampled. 

Prairie dogs from five experimental groups showed 
nearly all significant differences in proportions in the 
analysis of variance which was later corroborated by the 
Tukey test. Dallam showed more diverse communities 
in three alpha diversity metrics. In contrast, Bailey—the 
more urbanized County—showed decreased richness 
and diversity. Different ecoregions were distinguished 
by the geographic locations in our study, such as ripar-
ian, rangelands, and high plains, which supported differ-
ent topography and vegetation. Researchers have found 
that different fiber sources and proportions of fiber in 
the diet may contribute to regional gut microbiome dif-
ferences [9, 62]; however, it is beyond the scope of this 
study to assess prairie dog diets at distinct geographi-
cal locations and how differences in feeding patterns 
correlate with fecal microbiome diversity. The alpha 
diversity of the fecal microbiome was  influenced by the 
habitat. Prairie dogs living in rural habitats were found 
to maintain a diverse fecal microbe, whereas those liv-
ing in urban habitats had reduced diversity due to a more 
homogenous environment, reduced foraging availability, 
lower coverage of vegetation, and anthropogenic distur-
bance (contact with domestic animals and humans, and 
their pathogens). In this scenario, rural ecosystems may 
be advantageous for this species. The findings are in line 
with those from other studies on birds, which revealed 
that altering diets in urban habitats can reduce alpha 
diversity owing to low-quality diets and access to novel 
anthropogenic food items [27, 63], thus leading to dysbi-
osis [64]. Impacts of urbanization on microbial diversity 
and functional composition of the fecal microbiota are 
appropriate next steps towards determining whether low 
diversity is related to lower hosts’ health.

Microbial beta diversity is affected by both geographic 
location and habitat
We found that fecal microbial beta-diversity is shaped by 
geographic location and habitat in the study group. Prai-
rie dogs from rural habitats tended to cluster together 
in an ordination plot more often than individuals from 

Table 2  Coefficients from the linear regression model of predictor variables affecting fecal microbial alpha diversity (observed 
richness) of black-tailed prairie dogs

Coefficient Estimate (β) SE t-value p-value

Intercept 1244.62 60.81 20.469 < 0.001

Dallam 435.30 90.82 4.793 < 0.001

Hockley 77.09 89.01 0.966 0.3896

Lubbock 236.46 92.88 2.546 0.0133

Randall 433.44 87.41 4.958 < 0.001

Intercept 1337.88 38.50 34.746 < 0.001

Rural 347.05 60.88 5.602 < 0.001
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urban habitats. These taxonomic and phylogenetic pat-
terns indicate the microbiomes are subjected to selec-
tive pressures on a fine spatial scale. Similar results have 
been observed for wild mice, in which the gut microbiota 
compositional differences were significantly affected by 
sampling distances as few as 1.5 km to 100 km [12, 14]. 
Based on the comparison of beta diversity across sites, 
unweighted UniFrac distances had greater explanatory 
power than weighted UniFrac distances, indicating that 
differences in beta diversity were more influenced by the 
presence or absence of microbial communities than by 
the relative abundances of taxa. ADONIS results showed 
that inter-individual variation in community composi-
tion across host populations and the significance of dif-
ferences were supported in a pairwise fashion comparing 
between groups. Beta dispersion confirmed the variation 
in community structure and suggests shifting micro-
bial community composition at a population level rather 
than an individual response to habitat and geographic 
location. A shift and increased dispersion or greater het-
erogeneity of variance in the community composition 
in urban areas indicating more changes in community 
structure due to selective pressure from human distur-
bance. More detailed data on the genetic diversity of the 

host population, food availability, and disease susceptibil-
ity will help us to detect variations in microbiota compo-
sition in urban prairie dog populations.

Effect of urbanization on microbial community 
composition
Relative abundance analysis indicated that microbial 
community structure was influenced by geographic loca-
tion. The higher relative abundance of Bacteroidaceae 
and Prevotellaceae in Dallam and Randall Counties in 
the feces of C. ludovicianus was mainly caused by the 
increased proportion of the genus Bacteroides and Prevo-
tellla. Fermenters belonging to the Bacteroidaceae and 
Prevotellaceae families have been found to degrade car-
bohydrates and breakdown of non-cellulosic polysaccha-
rides related to an increase in fiber-rich diets [65–70]. 
These results imply that prairie dogs living in the rural 
areas might have abundant food supplies allowing them 
to obtain nutrients from grasses and other plant polysac-
charides. In contrast, the prevalence of Alistipes from the 
Rikenellaceae family in Bailey may reflect an increase in 
bile acids triggered by dietary fat consumption, as dem-
onstrated by human diet intervention study [71]. Hockley 
was dominated by members of the Porphyromonadaceae 

Fig. 3  Beta diversity of microbial communities at five sampling sites estimated as: (A) Principal coordinate analysis (PCoA) based on Bray–Curtis 
dissimilarity index; (B) unweighted UniFrac distance, and (C) weighted UniFrac distance; colored by sampling sites and shaped by habitat and 
are for ADONIS test to study the effect of sampling sites on community matrix. Group dispersion based on (D) Bray–Curtis dissimilarity index, (E) 
unweighted UniFrac distance, and (F) weighted UniFrac distance; and are for ANOVA test for differences in dispersion from group centroid
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family, including Parabacteroides, a succinate-produc-
ing bacterium that may be linked to the consumption of 
flavonoid-rich foods. Recent studies have proposed the 
association between the intake of flavonoid-rich food 
items and the increased abundance of Parabacteroides in 
the gastrointestinal tract of humans [72, 73]. The popu-
lation from these counties were closer to human settle-
ments and subjected to consumption of human-mediated 
food resources including nuts, bread, berries, apples, 
meat products, and so on. While it is not clear whether 
dietary change alters the microbiome community struc-
ture, investigating the changes in gut microbiota associ-
ated with the degree of urbanization could shed light on 
the mechanisms behind these changes which potentially 
help wildlife managers to maintain and protect prairie 
dog populations.

Response of host species to urbanization
Results of ANCOMBC tests showed that Randall and 
Dallam counties had higher levels of butyrate-produc-
ing bacteria (Acetivibrio, Lactobacillus, Butyricimonas, 

Prevotella, Clostridia, and Eubacterium). The produc-
tion of butyrate is thought to promote health by supply-
ing energy to intestinal epithelial cells in mice and rats 
[74–76]. In addition to butyrate-producing bacteria, Lub-
bock, Hockley, and Bailey also contained differentially 
abundant bacteria which were identified as pathogenic to 
humans and animals (Intestinibacter bartlettii, Rombout-
sia sp., and Robinsoniella peoriensis) [48, 77, 78]. Recent 
studies found Odoribacter sp. in the fragmented land-
scape with anthropogenic disturbance [79]. These areas 
also presented some newly designated bacterial species 
(Sporobacterium olearium, Niveispirillum fermenti); at 
this point it is unknown if host phylogeny and/or host 
physiological responses to diet are associated with the 
presence of these taxa [80]. Furthermore, the prevalence 
of Bacteroides and Alistipes in urban settlements sug-
gested prairie dogs in these areas consumed high fat and 
protein diets which could contribute to metabolic disease 
risk [81, 82]. Alternatively, Prevotella is found in diets 
rich in fiber and is regarded as a marker of a healthy gut 
microbiome with low disease risk profiles [81, 82] has 

Fig. 4  Relative abundance of bacterial communities where taxa represent the most abundant families for 70 fecal samples
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been found dominant in rural areas. Moreover, more dif-
ferentially abundant bacteria in urban areas suggested the 
potential for adaptation of gut microbes leading to the 
conclusion of increased metagenome plasticity in prairie 
dogs due to selective pressures from anthropogenic dis-
turbances as well as the loss of some species and the gain 
of others [79].

Our RF model identified the top 7 bacterial spe-
cies (Alistipes shahii, Bacteroides rodentium, Prevotella 
shahii, B. acidifaciens, B. stercorirosoris, B. dorei, and 
Roseburia Faecis) among the model’s top 30 predictor 
variables. We detected the three most important species 
were A. shahii, B. rodentium and P. shahii which drove 
the changes in fecal microbiome composition. These 
groups of bacterial taxa have been considered core gut 
microbiota in healthy mice and humans [83].

Environmental variables explain fecal microbial alpha 
and beta diversity
In addition to spatial structure contributing to micro-
biome variation, environmental variation may also 
influence microbiome differences in wildlife popula-
tion mediated by host population genetics through the 
modulation of host factors including behavior, immu-
nity, and physiology [84]. We found a strong influence 
of precipitation on prairie dog gut microbiome diversity 
and composition. The number of cellulolytic and fibro-
lytic bacterial taxa (Bacteroidaceae and Prevotellaceae) 

was higher during summer seasons when grass rich in 
cellulose was widely available. This pattern was also wit-
nessed in other mammals [35, 37]. The gut microbial 
alpha diversity did not change along with a small varia-
tion in altitudinal gradient, but it partially influenced 
microbial beta diversity. Our results agreed with previ-
ous studies on other wild species, such as house mice 
(Mus musculus domesticus) [85], lizard (Phrynocephalus 
vlangalii) [40], macaque (Macaca thibetana) [86], and 
wild sable (Martes zibellina) [87], which indicatde that 
elevational gradient had an impact on gut microbial com-
munity composition. Several climatic conditions would 
explain this relationship, including oxygen concentration, 
ambient temperature, air pressure, and the composition 
of vegetation [85]. Both average maximum and average 
minimum temperatures were negatively associated with 
microbial alpha and beta diversity. Moreover, the aver-
age maximum temperature was the strongest predictor, 
explaining 39% of the overall microbiome community 
composition. In particular, during periods of high tem-
perature, changes in the relative abundance of certain 
bacteria (increase in Bacteroidetes and decrease in Firmi-
cutes) was observed in this study. It has been shown that 
each host displays its unique microbial response to heat 
stress, but there are some gut bacterial taxa, including 
lineages of Firmicutes and Proteobacteria, that seem to 
show consistent response to temperature variation across 
host species [88]. For example, the relative abundance 

Fig. 5  Heatmap showing hierarchical clustering of microbiome composition based on 16S rRNA amplicons for fecal samples. The microbiota 
shown represents the top 20 bacterial genera across all samples with the greatest mean relative abundance. The color of the heatmap of each 
taxon’s relative abundances (from blue to red) is based on row-scaled data. Top dendrogram shows the samples with similar microbiomes clustered 
together whereas the side dendrogram portrays the bacteria tend to co-occur are clustered
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Fig. 6  Differential abundance analysis of the bacterial taxa in the fecal microbiome among (A) sampling sites and (B) habitats based on log fold 
change data derived from ANCOMBC. Differential abundance testing was performed for 220 bacterial species in the dataset using DA methods. 
Each box represents one bacterial species found to be differentially abundant across the expermental groups and colored boxplots appear inside 
each box to show the groups being compared. Species were considered differentially abundant if their adjusted p-values < 0.05
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of Firmicutes within the fecal microbiota of laying hens 
subjected to heat stress had been shown to decrease sig-
nificantly [89]. The higher temperature was also associ-
ated with a decrease in overall alpha diversity in lizards 
[90]. Changing the composition of gut microbes may 
affect gene function, resulting in altered host phenotypes 
and fitness. Future studies should explore the association 
between temperature-induced changes and the composi-
tion of gut microbiota in prairie dogs and how they con-
tribute to host phenotypic plasticity and fitness.

Conclusion
Overall, our findings revealed that spatial variation in 
host geographic location, habitat and environmental fac-
tors affected the fecal microbiota of black-tailed prairie 
dogs. Reduction in alpha diversity in conjunction with 
greater dispersion in beta diversity could be indicative of 
declining host health in urban areas [91, 92]. Moreover, 
several bacterial species pathogenic to humans and other 
animals were detected with high abundance in urban 
areas indicating that host fitness might be negatively 
affected. A shift in gut microbial community composition 
has been related to numerous diseases and infections and 
could potentially promote co-infections [93–95]. Future 
research that incorporates a multi-omics approach 

including transcriptomics, genomics, proteomics, and 
metabolomics will uncover the metagenome plasticity 
and host fitness.

Methods and materials
Fecal sampling
Fecal sampling was conducted at five different Coun-
ties in the Texas Panhandle to take into consideration 
of habitat variation and urbanization (Fig.  8). Lubbock, 
Hockley, and Bailey were classified as urban habitats 
for Cynomys ludovicianus as these sites are fragmented 
and surrounded by parks and residential areas which are 
managed and largely utilized by the public and near to 
the built-up area of the city (Table 3). In contrast, Ran-
dall and Dallam were categorized as rural areas that 
preserve short-grass prairie habitat; sampling sites were 
selected from tens to several hundred miles away from 
urban areas, preventing direct human exposure. Sam-
ples were collected during the summer from June to 
August 2021. Geographic coordinates of sampled sites 
were determined by handheld GPS (Garmin E10). Biocli-
matic data of each sampled site was collected from the 
national climatic data center (The West Texas Mesonet, 
https://​www.​depts.​ttu.​edu/​nwi/​resea​rch/​facil​ities/​wtm/​
index.​php). We used monthly precipitation by summing 

Fig. 7  Environmental variables structure prairie dog fecal microbiome. The upper panel shows scatter plots of alpha diversity (Shannon diversity 
index) where the black line shows smoothed confidence intervals derived from linear regression (A) cumulative precipitation, (B) average maximum 
temperature, and (C) average minimum temperature. The lower panel demonstrates scatter plots of beta diversity on the first principal component 
(based on unweighted UniFrac distance) according to (D) cumulative precipitation, (E) elevation, (F) average maximum temperature, and (G) 
average minimum temperature

https://www.depts.ttu.edu/nwi/research/facilities/wtm/index.php
https://www.depts.ttu.edu/nwi/research/facilities/wtm/index.php
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Fig. 8  Locations of five sampling sites of Cynomys ludovicianus in the Texas Panhandle where ‘n’ is the number of samples drawn from each site. 
Inset demonstrates the map of Texas.The map was created with ArcGIS Pro (v 2.9.0)
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the daily precipitation at each location to estimate the 
cumulative precipitation during summer. The average 
minimum and average maximum temperatures for sum-
mer were also determined by using the daily minimum 
and maximum temperatures. Non-invasive sampling was 
used to detect bacterial communities in the black-tailed 
prairie dog population. Fresh fecal samples were col-
lected immediately upon defecation from black-tailed 
prairie dog  colonies. We aimed at collecting fresh fecal 
pellets (light green in color) early in the morning around 
active burrows. Sampled burrows were distributed 
throughout the area of each colony. To increase the rate 
of the finding of fecal pellets, we applied cluster sampling 
[96]. When we found a fecal sample, the other member 
of the group searched the colony area within a radius of 
approximately 7–8  m to see if further prairie dog feces 
could be found in that radius [97]. Fresh fecal droppings 
were drawn using sterile tweezers and transferred in 5 ml 
sterile transport tubes in Ziploc plastic bags. Each fecal 
sample was cleaned to remove soil bacteria and stored 
frozen instantly on dry ice to prevent cross-contamina-
tion. Genomic DNA was extracted within 24–48  h of 
sample collection. The sampling protocol was approved 
by the Texas Tech University and Institutional Animal 
Care and Use Committee (IACUC permit #: X21040).

DNA isolation, library preparation, and 16S rRNA amplicon 
sequencing
DNA was isolated from fresh feces (≤ 150  mg) using 
Quick-DNA Fecal/Soil Microbe Miniprep Kit (Zymo 
Research, Irvine, CA, USA) based on the manufacturer’s 
protocol. The extracted DNA was assessed through elec-
trophoresis in 2% agarose gels and quality and quantity 
were estimated via spectrophotometry (Nanodrop). The 
16S rRNA gene in fecal samples of black-tailed prairie 
dogs’ DNA extracts was PCR amplified with universal 
primers targeting the V1-V3 regions to amplify ~ 500 bp. 
The forward primer was designed using Illumina i5 over-
hang adapter (5´-AAT​GAT​ACG​GCG​ACC​ACC​GAG​
ATC​TACAC-3´), and 28F (5´-GAG​TTT​GATCNTGG​
CTC​AG-3´) while for the reverse primer, Illumina i7 
overhang adapter (5´-CAA​GCA​GAA​GAC​GGC​ATA​

CGA​GAT​-3´) and 519R (5′ GTNTTACNGCGGCK-
GCTG-3′) [98] were used. The PCR reaction was per-
formed using 3.0 μl of DNA, 1 μl of each 5 μM forward 
and reverse primers, 12.5  μl repliQa HiFi ToughMix 
(Quantabio, Beverly, MA, USA), and 7.5  μl PCR Grade 
Water. For negative control in PCR, we used DNase 
free water. The PCR amplification was carried out in an 
Eppendorf Mastercycler (Eppendorf North America, Inc. 
One Cantiague Road, Westbury, NY) using the following 
program: 95 °C for 3 min, followed by 35 cycles of 98 °C 
for 10  s; 54  °C for 40  s; 72  °C for 30  s; 72  °C for 5  min 
and a final hold at 4 °C. After initial amplification, reac-
tions were purified using 10 nM Tris pH 8.5, AMPure XP 
beads (NEBNext® sample purification beads, USA), and 
80% ethanol on a magnetic stand. In a subsequent PCR, 
dual index tags were annexed using the Nextera XT Index 
Kit (S502-S503, S505-S508, S510-S511, and N701-N707, 
N710-N712) in order to differentiate multiple samples in 
a single run based on the manufacturer’s protocol (Illu-
mina, San Diego, CA, USA). The settings for index PCR 
were at 95  °C for 3  min followed by 8 cycles of 95  °C 
for 30  s, 55  °C for 30  s, 72  °C for 30  s, 72  °C for 5  min 
with a final step of 4  °C. Following PCR, reactions were 
cleaned using the AMPure XP beads (NEBNext® sample 
purification beads, USA). Library quality was measured 
via Qubit 2.0 Fluorometer (Thermo Scientific, USA) and 
library quantity was estimated with Bioanalyzer 2100 
system (Agilent Technologies, Santa Clara, CA). Librar-
ies were pooled equimolar and appropriately normal-
ized using 10 nM Tris pH 8.5 before sequencing. Pooled 
libraries were quantified again with Qubit 2.0 Fluorom-
eter (Thermo Scientific, USA) and sequenced for paired 
300 bp reads at 10 pM using Illumina MiSeq reagent kit 
V3 (Illumina, Inc. San Diego, CA, USA) at Texas Tech 
Genomic Core Facility.

Sequence processing and taxonomic assignment
Forward and reverse raw reads from Illumina MiSeq 
were merged using the read stitching algorithm PEAR 
[99], which requires a minimum overlap of the amplicon 
to create a consensus sequence. The resulting stitched 
sequences were then denoised by quality filtering and 

Table 3  Sample information including bioclimatic data

Sampling sites Habitat Elevation (m) Cumulative 
precipitation (cm)

Average minimum 
temperature (°F)

Average maximum 
temperature (°F)

Lubbock (n = 12) Urban 970 19.1 63.6 91.5

Hockley (n = 14) Urban 1010 19.8 62.8 91.2

Bailey (n = 16) Urban 1163 18.4 61.4 90.3

Randall (n = 15) Rural 1107 20.1 62.7 89.9

Dallam (n = 13) Rural 1320 22.2 59.9 88.5
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removed low-quality sequences (Q < 30) and sequences 
with erroneous base calls. Reads were discarded with 
more than one error and resulting filtered and stitched 
sequences were combined into a single fasta file. 
Sequences were clustered into ZOTUs (zero-radius 
operational taxonomic units) based on a 100% similar-
ity threshold using USERCH [100] with UNOISE algo-
rithm that compares the similarity and abundances of 
the sequence to detect whether the sequences are unique 
bacterial lineages or likely the result of sequence errors. 
Chimeric sequences were discarded, and the remain-
ing OTU sequences were aligned against version 123 of 
the SILVA database [101] for a species-level taxonomic 
assignment using SSU-ALIGN [102]. The chimera-check-
ing algorithm did not allow us to assign sequences of the 
16S rRNA gene to phyla level. Phyla were assigned based 
on BLAST searches against the SILVA database [103]. 
We generated phylogenetic estimation from the aligned 
sequences to summarize the evolutionary relationship 
among ZOTUs using FastTree and rooted the tree at the 
midpoint [104]. The resulting community matrix (OTU 
table) was used in which rows were represented by sam-
ples, OTUs as columns as well as the number of reads per 
OTU in each sample as cells for downstream analyses.

Statistical analyses
The OTU and taxonomy table were imported in R 4.1.2 
[105] and analyzed using phyloseq [106], vegan [107], 
phytools [108], pheatmap [109], reshape2 [110], scales 
[111], picante [112], ANCOMBC [113], lme4 [114], 
nlme [115], and AICcmodavg [116]. Data were visual-
ized in ggplot2 [117]. To evaluate the variation in library 
size across the dataset and to assess if sequencing depth 
is enough to detect and characterize microbial commu-
nities, the rarefaction curve was used to normalize the 
number of reads by randomly sub-sampled 40,000 reads 
with a step size of 250. As a result of a low number of 
sequences, seven of our 77 prior samples were discarded, 
thus our final dataset consisted of 70 samples. The rare-
fied dataset was used for further diversity analyses. Rank 
abundance and incidence abundance plots were used to 
test the sample divergence in their distribution across the 
dataset.

Alpha diversity analyses
Sequencing effort was measured using rarefaction curves 
of the number of OTU in the samples. Microbiome data 
were analyzed at the family, genera, and species levels. 
Linear regression was used using ‘lm’ function to evaluate 
the relationship between observed OTU richness and the 
number of reads in the samples which was followed by 
the Welch Two Sample t-test. We estimated three differ-
ent alpha diversity metrics to assess the diversity within 

sampled localities: observed richness (total number of 
OTUs in a sample), Shannon diversity index (richness 
and evenness of OTUs in a sample) [118], and Faith’s 
phylogenetic diversity (phylogenetic distance as a meas-
ure of branch length between the observed bacterial spe-
cies) [119] using ‘estimate_richness’ function. We tested 
whether alpha diversity indices differed across sampling 
sites and habitats using ANOVA (analysis of variance). 
Tukey’s HSD test was used to determine the pairwise 
comparisons between groups. To evaluate the relation-
ship between alpha diversity (observed richness), sam-
pling sites, and habitats, we used a linear regression 
model. We also performed multiple linear regression to 
determine whether fecal microbial alpha diversity was 
confounded by habitat or any significant association 
between diversity and predictor variables.

Beta diversity analyses
Compositional differences across host populations were 
assessed through taxonomic (Bray–Curtis dissimilar-
ity) [120], and phylogenetic metrics (weighted and 
unweighted UniFrac distance) [121]. To test the pre-
dictors associated with community dissimilarity and 
between-sample variation in multivariate space, we used 
principal coordinate analysis (PCoA) with ‘capscale’ 
function based on three beta diversity metrics. The ordi-
nation techniques for the microbiome dataset have been 
recommended by Gloor et al. 2017 [122]. Analyzing the 
effect of sampling sites and habitat on microbiome com-
munity structure was done using permutational analysis 
of variance (ADONIS) with an ‘adonis’ function on the 
resulting distance matrices [123]. A significant test result 
for sampling sites led to pairwise comparisons between 
sampling sites using post hoc adonis. To further test for 
differences across sampling sites, we performed multi-
variate homogeneity of group dispersions based on the 
distance of each individual relative to the group centroid 
with ‘betadisper’ function resulting from principal coor-
dinate analysis, and differences in group dispersion were 
later corroborated by ANOVA. To test which taxa influ-
enced changes in microbiome composition across host 
populations, we used a stacked bar plot and heatmap for 
hierarchical clustering based on the mean relative abun-
dance of the family and genera.

Differential abundance analyses
Following binning OTUs into species level, we con-
ducted differential abundance tests [124]. For species-
level differential abundance explained by the variable 
of interest, we used analysis of compositions of micro-
biomes with bias correction (ANCOMBC), a statistical 
approach that accounts for sampling fraction, normal-
izes the read counts by a process analogous to log-ratio 



Page 16 of 20Neha and Salazar‑Bravo ﻿BMC Microbiology           (2023) 23:51 

transformations as well as controls the false discovery 
rates and increasing power. Raw species counts were 
used as input to ‘ANCOMBC’ function and adjusted 
p-values set to Benjamini-Hochberg (BH) with the rest of 
the parameters left as defaults. ANCOMBC was imple-
mented to search for the taxa with significantly different 
relative abundance across sampling sites and habitats and 
the results were visualized with box plots.

Random forest classifier
To determine how important differentially expressed bac-
terial taxa were to the microbial community, a random 
forest classifier was implemented using the R package 
‘randomForest’, an ensemble learning method for clas-
sification and regression [125]. A random forest model 
(RF) based on the habitats with the relative abundance 
of 220 bacterial species was used as input. RF uses 500 
trees and approximately two-thirds of the samples from 
the original dataset were used to train by random sam-
pling with replacement, whereas one-third of the sam-
ples were used to evaluate the accuracy of the tree using 
‘out of bag’ (OOB) estimate of the error rate to make it 
robust against overfitting [126]. Based on the increase 
in error rate and the number of times splitters are used, 
an importance score, mean decrease accuracy (MDA), is 
assigned to each input. It has been demonstrated that RF 
outperforms support vector machines when analyzing 
the microbiome data [127, 128].

Spatial autocorrelation analyses
Haversine distances were used to calculate the distance 
matrix between the sampling sites. Moran’s I [129] test 
was implemented as part of the ape package [130] for 
determining the relationship of spatial variables in the 
form of geographic distance and microbial alpha diver-
sity. To determine whether beta diversity is spatially auto-
correlated, we tested the association between community 
dissimilarity matrices as summarized in Bray–Curtis, 
weighted and unweighted UniFrac distance matrices and 
geographic distance matrices using the mantel test [131] 
as implemented in the vegan package.

Relationships between environmental factors 
and microbial diversity
We evaluated the relationship between environmental 
variables and alpha and beta diversity using Pearson’s 
correlation coefficient. The linear mixed effect models 
with corrected Akaike’s Information Criterion (AICc) 
were used to test the predictability of environmental fac-
tors (1) cumulative precipitation (2) elevation (3) average 
maximum temperature and (4) average minimum tem-
perature on fecal microbial alpha and beta diversity with 
habitat as a random effect in the models.
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