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Abstract
Objective and methods To ascertain the connection between cuproptosis-related genes (CRGs) and the prognosis 
of hepatocellular carcinoma (HCC) via single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data, 
relevant data were downloaded from the GEO and TCGA databases. The differentially expressed CRGs (DE-CRGs) were 
filtered by the overlaps in differentially expressed genes (DEGs) between HCC patients and normal controls (NCs) in 
the scRNA-seq database, DE-CRGs between high- and low-CRG-activity cells, and DEGs between HCC patients and 
NCs in the TCGA database.

Results Thirty-three DE-CRGs in HCC were identified. A prognostic model (PM) was created employing six survival-
related genes (SRGs) (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) via univariate Cox regression analysis and LASSO. 
The predictive ability of the model was validated via a nomogram and receiver operating characteristic curves. 
Research has employed tumor immune dysfunction and exclusion as a means to examine the influence of PM on 
immunological heterogeneity. Macrophage M0 levels were significantly different between the high-risk group (HRG) 
and the low-risk group (LRG), and a greater macrophage level was linked to a more unfavorable prognosis. The drug 
sensitivity data indicated a substantial difference in the half-maximal drug-suppressive concentrations of idarubicin 
and rapamycin between the HRG and the LRG. The model was verified by employing public datasets and our cohort 
at both the protein and mRNA levels.

Conclusion A PM using 6 SRGs (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) was developed via bioinformatics 
research. This model might provide a fresh perspective for assessing and managing HCC.
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Background
Hepatocellular carcinoma (HCC) is a common malig-
nancy that is the third most common cause of death 
caused by cancer worldwide [1, 2]. With a broad range 
of treatments for patients with HCC, the therapeu-
tic options for advanced HCC have become more var-
ied. However, the relative 5-year survival rate is still low 
(approximately 18%), highlighting the dismal prognosis 
of this disease [3]. Therefore, more effective clinical diag-
nostic and treatment strategies are needed.

Tsvetkov et al. identified a new type of cell death called 
cuproptosis, which is induced by the presence of copper 
and affects mitochondria [4]. The process by which the 
aggregation of proteins promotes cuproptosis is unclear, 
distinguishing it from apoptosis, ferroptosis, and necrop-
tosis. Over the past century, copper and cancer have been 
linked in numerous studies, with higher copper levels 
being observed in tumors than in healthy tissues. Typi-
cally, the RNA expression levels of 54 Cu-binding pro-
teins were ascertained from both cancerous and normal 
tissue samples from 18 distinct types of cancer in the 
TCGA database [5]. The progression of cancer is linked 
to elevated levels of Cu inside cells, which promote con-
tinuous cell growth, angiogenesis, and metastasis. An 
increase in oxidative stress resulting from a deficiency in 
metalation has been associated with HCC. Hep3B human 
hepatoma cells were subjected to Cu2+ exposure, result-
ing in hypoacetylation of histones H3 and H4 due to the 
suppression of histone acetyltransferases [6]. Patients 
with Wilson’s disease exhibit a loss-of-function mutation 
in the primary Cu exporter ATP7B, which is the most 
common type expressed in the liver [7], and patients with 
neurological Wilson’s disease are subsequently diagnosed 
with HCC. These findings indicate that abnormal cop-
per buildup can promote the transformation of hepato-
cytes into malignant cells via a mechanism that is not yet 
understood [8].

We identified cuproptosis-related genes (CRGs) in 
this work, examined their associations with the progno-
sis of patients with HCC via single-cell RNA sequencing 
(scRNA-seq) and bulk RNA sequencing (RNA-seq) data, 
and developed a risk diagnostic model. This informa-
tion is beneficial for understanding the development and 
molecular process of HCC and offers an appealing alter-
native for clinical diagnosis and treatment.

Materials and methods
Patients and data collection
The study cohort of HCC patients was obtained from 
Tianjin Medical University Cancer Institute & Hospi-
tal (2012.9–2013.9). A total of 95 paraffin-embedded 
samples and 10 paired fresh surgical tissue samples from 
the liver were analyzed and are discussed in this study. 
Ethical approval was acquired from the Medical Ethics 

Committee of Tianjin Medical University Cancer Insti-
tute & Hospital (ID: bc2023070).

Data source
The transcriptome data and clinical data of HCC 
patients were downloaded from UCSC Xena (https://
xenabrowser.net/hub/), which included 49 normal con-
trol (NC) samples and 363 HCC samples. The RNA 
sequencing datasets (GSE14520) and scRNA-seq data-
sets (GSE149614) were obtained from the Gene Expres-
sion Omnibus (GEO) database at https://www.ncbi.
nlm.nih.gHCC/geo/). The GSE14520 research used the 
GPL3921 [HT_HG-U133A] Affymetrix HT Human 
Genome U133A Array to encompass 225 HCC samples, 
considering their survival duration and status. The detec-
tion platform of GSE149614 was the GPL24676 Illumina 
NovaSeq 6000 (Homo sapiens) platform, and the sample 
set included 10 HCC samples and 8 NC samples.

scRNA-seq analysis
The scRNA-seq data were filtered with the CreateSeura-
tObject function of the Seurat package (version 4.0.5) 
(min. cells = 500, min. features = 500) [9]. The cells were 
screened according to percentage.mt < 5% and percent. 
HB = 0. Then, NormalizeData was used to standard-
ize the data, and the FindVariableFeatures function was 
employed to determine genes with highly variable expres-
sion between cells. After normalization of the data via 
ScaleData, principal component analysis (PCA) was per-
formed. JackStraw and ScoreJackStraw were subsequently 
used for linear dimensionality reduction to identify the 
availability of the data. After PCA was implemented, we 
used the FindNeighbors and FindClusters functions from 
the Seurat package to conduct unsupervised clustering 
analysis on the cells. The results of clustering were visu-
alized via UMAP and tSNE. The FindAllMarkers func-
tion was employed to ascertain the positive marker genes 
for each cluster. The parameters used were min. pct = 0.2 
only.pos = TRUE, and logfc.threshold = 0.1. The marker 
genes of each subgroup were compared with each cell 
type marker gene in the CellMarker database to deter-
mine the type of cell subgroup. In addition, the SingleR 
algorithm was used to verify the types of cells.

Differential expression analysis
First, the first set of differentially expressed genes 
(DEGs1) between the HCC and NC samples in each 
cell subpopulation was identified via FindAllMarkers 
(p < 0.05). The potential differentiation trajectories of 
these DEGs were analyzed via monocle2. The CRG was 
visualized by violin charts on the basis of the literature 
[10]. The CRG activity of each cell from the scRNA-seq 
data was subsequently quantified to obtain the AUC 
value via the AUCell (version 1.12.0) package [11]. The 
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cells were split into categories with high and low CRG 
activity depending on the optimal threshold identified 
by the AUCell explore Thresholds function. Through a 
comparison of gene activity levels in cells with high and 
low CRG activity, the DE-CRGs were identified. The sec-
ond set of DEGs of the HCC and NC samples (DEGs2) 
was ascertained via the limma package (version 3.46.0) in 
the TCGA-HCC gene expression data [12]. We specified 
adj. p < 0.05 and |log2FC| > 0.5 as the threshold values to 
identify DEGs2. The DE-CRGs in HCC were filtered by 
overlapping DEGs1, CRGs, and DEGs2.

Univariate cox regression (UCR) analysis and LASSO 
analysis
A prognostic model (PM) was developed to determine 
whether the DE-CRGs in HCC are associated with HCC 
patient prognosis. We used HCC samples from TCGA 
for training and GSE14520 for external validation. The 
expression data of DE-CRGs in HCC were gathered from 
the training dataset and integrated with clinical informa-
tion, encompassing overall survival (OS), to generate the 
clinical expression data for HCC. Survival-related genes 
(SRGs) were identified via UCR analysis via the survival 
program (version 3.2-3) (p < 0.1) [13]. The subsequent 
step involved the development of the PM via LASSO 
regression analysis of SRGs employing the glmnet pack-
age (version 4.1-1) in R [14].

Evaluation and validation of the PM
The prognostic value of the risk model was assessed by 
calculating the risk score (RS) by employing the SRC 
expression levels, and the risk coefficients were ascer-
tained via least absolute shrinkage and selection operator 
(LASSO) regression. The risk score was computed via the 
following algorithm:

 
Risk score =

n∑

i=1

coef (genei) ∗ expr (genei)

Patients diagnosed with HCC were later categorized as 
high risk or low risk depending on whether their RS was 
above or below the median. To assess the survival rates of 
the high-risk group (HRG) and low-risk group (LRG), we 
deployed the survminer package (version 0.4.8) to con-
struct Kaplan‒Meier (KM) curves [15]. To determine PM 
efficacy, we deployed the survival ROC package (version 
1.0.3) to generate receiver operating characteristic (ROC) 
curves, utilizing 1, 3, and 5 years as the survival time 
nodes [16]. In addition, the GSE14520 dataset was used 
for the external verification of the risk model.

Subgroup analysis
The subgroup of HCC patients was categorized on the 
basis of age, sex (female or male), vital status (who died 

or lived), pathologic stage (stage I, II, III, IV), histologic 
grade (G1, G2, G3, G4), pathologic M stage (M0, M1, 
MX), pathologic N stage (N0, N1, NX), and pathologic T 
stage (T1, T2, T3, T4). The chi-square test was used to 
examine the patient distribution in various clinical sub-
groups between the HRG and LRG in the TCGA-HCC 
database. The Wilcoxon test was used to ascertain varia-
tions in risk scores on the basis of distinct clinical data. 
UCR and multivariate Cox regression (MCR) analyses 
were conducted to determine the associations between 
clinical characteristics and the PM in the training dataset. 
To predict HCC patient survival via the use of SRGs, a 
nomogram was created. To verify the predictive capacity 
of the model, a calibration curve was constructed.

Gene set enrichment analysis (GSEA)
To compare the pathway enrichment in the HRG and 
LRG, GSEA was conducted by deploying the clusterPro-
filer package (version 3.18.1) [17] and the org.Hs.eg.db 
package (version 3.12.0) [18]. Initially, the DEGs between 
the HRG and LRG were ascertained by employing the 
limma package [12]. GSEA of the GO/KEGG gene set 
was subsequently performed on the basis of the log2FC 
values of the DEGs.

Immune infiltration analysis
The percentages of 22 immune cells in the HRG and 
LRG were computed and compared via the CIBERSORT 
algorithm [19] with a rank-sum test. Spearman correla-
tion analysis was subsequently performed to ascertain 
the connection between RS and 22 immune cells; differ-
entially expressed (DE)-immune cells were subsequently 
identified. Patients were subsequently split into low-level 
and high-level groups on the basis of the median val-
ues of DE-immune cells. An assessment of the connec-
tion between DE-immune cells and patient survival was 
performed via survival analysis. To obtain the immune 
response results, the tumor immune dysfunction and 
exclusion (TIDE) score was calculated for each TCGA-
HCC sample via TIDE (http://tide.dfci.harvard.edu/). 
Finally, the variation in programmed death-ligand 1 (PD-
L1) expression and its connection with RS were analyzed 
in the HRG and LRG.

Drug sensitivity analysis
Each cancer cell RS was computed by integrating the 
expression data acquired from the CellMiner database 
(https://discover.nci.nih.gov/cellminer/loadDownload.
do) with the coefficients. Spearman analysis was con-
ducted between risk scores and medicines, and sub-
stances with a significance level of p < 0.05 were chosen. 
The cell lines were categorized into HRGs and LRGs 
according to the median value of the RS. The IC50 val-
ues of the medicines were compared between the two 
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groups. The IC50 of lenvatinib was compared between 
the HRG and LRG.

Quantitative real-time polymerase chain reaction (qRT‒
PCR)
As previously described, qRT‒PCR was performed [20] 
with the primers listed in Supplementary Table S1. The 
qRT‒PCR experiment was performed with a 7500HT 
Real-Time PCR System (Applied Biosystems, Foster City, 
CA). Fold changes were determined by relative quanti-
fication (2^(-ΔΔCt)), with the internal control GAPDH 
serving as an endogenous control.

Immunohistochemistry (IHC)
Immunohistochemical analysis was performed on four-
thickness tissue sections from representative formalin-
fixed and paraffin-embedded (FFPE) blocks that were 
subjected to immunohistochemical examination via the 
Dako EnVision method with various antibodies (Supple-
mentary Table S2).

Statistical analysis
The correlations between clinicopathological variables 
and immunohistochemistry data were analyzed via the χ2 
test or Fisher’s exact test. Paired samples were assessed 
by using the paired Students t -test. We conducted a KM 
survival analysis to clarify the prognosis. The statistical 
analyses were conducted via SPSS 27.0.1. The significance 
level was established as a P value less than 0.05.

Results
Clustering of single cells into 7-cell subsets on the basis of 
scRNA-seq data
After data filtering was completed, the features of 
scRNA-seq revealed a significant positive connection 
between nFeature_RNA and nCount_RNA (Supplemen-
tary Fig. 1). Then, data standardization was implemented, 
and 2000 highly variable genes were selected by deploying 
“vst” (Supplementary Fig. 2). The data were normalized, 
and the PCA results are shown in Supplementary Fig. 3. 
Forty principal components (PCs) were chosen for fur-
ther analysis (p < 0.05) (Supplementary Fig. 4). The scat-
ter plot revealed that, when the resolution was 0.02, the 
profile coefficient was 0.27, and the cells were partitioned 
into seven clusters. Supplementary Fig. 5 reveals that the 
clustering was better when the resolution was 0.02. The 
visualization results of clustering via uniform manifold 
approximation and projection (UMAP) and t-distrib-
uted stochastic neighbor embedding (tSNE) are shown 
in Fig. 1a–b. Figure 1c displays the nine most prominent 
marker genes for each cluster. We determined that the 
cell type depended on each cluster marker gene (Fig. 1d; 
Table  1). Because the marker genes (CD3D, CD3E, and 
CD3G) of T cells were highly expressed in Cluster 0, it 

was identified as a T-cell cluster (Fig. 2a). Cluster 1 was 
identified as a myeloid cell cluster because CD68 and 
CD163 were highly expressed (Fig.  2b). In addition, the 
marker genes ALB and SERPINA1 were highly expressed 
in Cluster 2, so it was identified as a hepatocyte cluster 
(Fig. 2c). The annotation results for the other clusters are 
shown in Supplementary Fig. 6. The pie chart depicts the 
relative abundances of T cells and myeloid cells, which 
were shown to be the most prevalent (Fig.  2d). Finally, 
the distributions of the 7 cell subsets were determined via 
UMAP analysis (Fig. 2e).

Identification of DE-CRGs in HCC
A total of 988 DEGs were obtained between the HCC and 
NC samples in each cell subset in GSE149614 (Fig.  3a). 
The potential differentiation trajectories of these DEGs 
are shown in Supplementary Fig.  7. CRG expression in 
various cell subsets between HCC and NC samples was 
visualized via a violin plot (Fig. 3b, Supplementary Fig. 8). 
The results of the quantification of CRG activity for each 
cell subset in the scRNA-seq data are shown in Fig.  3c. 
Next, the cells were split into high- and low-CRG activ-
ity groups according to the most effective threshold 
(Fig. 3d–e). The volcano map revealed that 98 DE-CRGs 
were filtered by overlapping high- and low-CRG activity 
cells (Fig. 3f ). Furthermore, a grand total of 6170 DEGs2 
were discovered when the HCC samples were compared 
with the NC samples. Among these genes, 5320 genes 
presented increased expression, whereas 850 genes pre-
sented decreased expression in the TCGA-HCC gene 
expression dataset (Fig. 3g). The top 50 DEGs were visu-
alized via a heatmap (Supplementary Fig. 9). Finally, the 
Venn diagram revealed that 33 DE-CRGs in HCC over-
lapped with DEGs1, CRGs, and DEGs2 (Fig. 3h).

Construction of a PM based on SRGs
UCR analysis revealed 6 SRGs, of which four genes 
(SOX4, MYC, TM4SF1, and IFI27) were risk factors, and 
two genes (NDRG2 and CYB5A) were protective factors 
(Fig.  4a). Subsequently, LASSO regression analysis was 
deployed to create the PM (Fig. 4b); the model gene coef-
ficients are presented in Table 2. The expression patterns 
of the 6 SRGs in GSE149614 indicated that these genes 
were expressed mainly in microglia, fibroblasts, and 
hepatocytes (Supplementary Fig. 10a–b). To evaluate the 
interactions among these 6 SRGs, Spearman correlation 
analysis was conducted. The findings revealed a remark-
able inverse relationship between CYB5A and SOX4 and 
TM4SF1 and a significant direct relationship between 
CYB5A and NDRG2 and IFI27 (Supplementary Fig. 10c).
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Assessment and validation of the prognostic value of the 
model
HCC patients were split into HRGs and LRGs owing to 
their RS, and the risk curve is shown in Fig. 5a. The OS 
curve revealed a significant variation in survival rates 
between the HRG and LRG groups (p < 0.0001), with the 
HRG group displaying a lower rate of survival (Fig. 5b). 
The AUC of the prognostic model for predicting the 1-, 
3-, and 5-year survival of HCC patients was 0.665, 0.623, 
and 0.609, respectively. These values indicate that the 

Table 1 Cell types and their markers
Cluster Marker Type
0 CD3D, CD3E, CD3G T cell
1 CD68, CD163 Myeloid
2 ALB, SERPINA1 Hepatocyte
3 ACTA2, COL1A2, COL1A1 Fibroblast
4 KLRC1, KLRF1 NK
5 CD79B, CD79A, MS4A1 B cell
6 IRF4, IRF7, IRF8, AMN Microglial cell

Fig. 1 Single-cell characterization of HCC samples via single-cell RNA sequencing. (a–b) The visualization results of clustering via uniform manifold ap-
proximation and projection (UMAP) and t-distributed stochastic neighbor embedding (tSNE). (c–d) Expression heatmap and visualization results of the 
top 9 marker genes in each cluster
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Fig. 2 Identification of the cell subsets corresponding to each signature in each cluster. (a) Identification and visualization results of T cells by the expres-
sion of marker genes (CD3D, CD3E, and CD3G) and UMAP. (b) Identification and visualization results of myeloid cells by the expression of marker genes 
(CD68 and CD163) and UMAP. (c) Identification and visualization results of hepatocytes by marker genes (ALB and SERPINA1) and UMAP. (d–e) Proportion 
and distribution of 7 cell subsets determined via pie charts and UMAP. The clusters are assigned different colors on the basis of the cell type, and the 
picture displays the annotations for each cluster
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performance of the PM was good, as shown in Fig.  5c. 
The risk model was externally verified with the GSE14520 
dataset, and the outcomes were similar to the data pre-
sented in Fig. 5d–f.

Correlation analysis between the PM and clinical factors
A comparison was made between the number of patients 
with various clinical subtypes in the HRG and LRG. The 
analysis revealed significant differences in age, vital sta-
tus, pathologic stage, histologic grade, and pathologic 
T stage (Table  3). The Wilcoxon test findings revealed 
substantial variations in the RS based on several clinical 

Fig. 3 The determination of differentially expressed gene (DEG)-related CRGs. (a) Volcano map of DEG1 expression in the single-cell sequencing dataset. 
(b) Expression of CDKN2A in the single-cell sequencing dataset. (c) Scores of CRGs in 7 cell subsets. (d) Selection of the optimal threshold. (e) UMAP 
diagram showing high- and low-CRG activity cells on the basis of the optimal threshold. (f) Volcano map of the expression of CRGs in the single-cell 
sequencing dataset. (g) Volcano map of DEG2 expression in the TCGA dataset. (h) Venn diagram of the intersection of DEGs1, CRGs, and DEGs2 in tumor 
and nontumor samples. p < 0.05
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factors, such as age (≤ 60 and ≥ 60), vital status (alive and 
dead), T stage (T1/T2/T3/T4), and grade (G1/G2/G3/
G4) (Fig.  6a). PM was shown to be a valid autonomous 
predictive factor for HCC patients on the basis of UCR 
and MCR analyses (Fig. 6b and c). A nomogram was con-
structed to predict the likelihood of patient survival when 
it was integrated with clinical parameters. The C-index 
of the nomogram was 0.6370537, demonstrating its 

effectiveness (Fig. 6d). The calibration curve of the nomo-
gram established its effectiveness as a model (Fig. 6e).

Differences in enriched pathways between the HRG and 
LRG
We investigated the possible pathways in both the HRG 
and LRG. The KEGG analysis indicated that retinol 
metabolism and drug metabolism–cytochrome P450 
pathways were considerably more prevalent in the LRG, 
whereas ribosomes were more prevalent in the HRG 
(Supplementary Fig.  11a). The GO analysis revealed 
enrichment of the organic acid catabolic process and car-
boxylic acid catabolic process in the LRG, whereas ribo-
nucleoprotein complex biogenesis was enriched in the 
HRG (Supplementary Fig. 11b).

Effects of risk models on immune heterogeneity
The percentages of immune cells were determined via 
the rank-sum test. The results revealed that there were 

Table 2 The coefficients of model genes
Coef Exp(coef) Se(coef) z p

SOX4 0.0248828 1.025195 0.0116961 2.127 0.0334
NDRG2 -0.0135648 0.9865268 0.009288 -1.46 0.1442
MYC 0.0144905 1.014596 0.0066797 2.169 0.0301
TM4SF1 0.0004187 1.0004188 0.0024744 0.169 0.8656
CYB5A -0.0039734 0.9960344 0.0055118 -0.721 0.471
IFI27 0.0014856 1.0014867 0.0006491 2.289 0.0221
SOX4, SRY-box transcription Factor 4; NDRG2, N-myc downstream-regulated 
gene 2; TM4SF1, transmembrane-4 L-six family member-1; CYB5A, cytochrome 
B5 type A; IFI27, interferon alpha inducible protein 27

Fig. 4 Construction of a 6-CRG survival model in HCC patients. (a) The forest plot displays the level of risk associated with each overlapping gene via UCR 
analysis. (b) According to the minimum criteria, 6 SRGs were selected via the LASSO regression model. The cvfit and lambda curves were generated via 
the LASSO regression model
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variations (p < 0.05) between the HRG and LRG in terms 
of the quantity of naive B cells, activated T cells with 
memory CD4 T cells, follicular helper T cells, regulatory 
T cells (Tregs), resting NK cells, monocytes, M0 mac-
rophages, and mast cells (Fig. 7a). A significant positive 
correlation was observed between Tregs and M0 mac-
rophages and the RS (Cor > 0.2, p < 0.05), as determined 
by Spearman correlation analysis between the RS and 
immune cells. Conversely, a significant negative connec-
tion was observed between resting mast cells, mono-
cytes, and the RS (Cor < -0.2, p < 0.05) (Fig. 7b). The HCC 
patients were subsequently categorized into high- and 
low-level groups according to the median number of 
Tregs, M0 macrophages, resting mast cells and mono-
cyte proportion, respectively. Patient survival differed 
significantly only between teams with high and low M0 
macrophage counts. Additionally, higher levels of macro-
phages were associated with poorer patient prognosis, as 
shown by OS curve analysis (Fig. 7c). These findings sug-
gest that macrophages could have a significant effect on 
HCC. Furthermore, the elevated TIDE scores observed 

in the HRG indicate that this group may be more vulner-
able to immunological resistance (Fig.  7d). The results 
of the correlation analysis revealed a significant posi-
tive correlation (Cor = 0.3, p < 0.05) between TIDE scores 
and the RS (Fig. 7e). The results of the distinction analy-
sis revealed that PD-L1 expression did not significantly 
differ between the HRG and LRG (p > 0.05). The scatter 
diagram (Fig. 7f ) demonstrated a significant inverse con-
nection (Cor = -0.12, p < 0.05) between PD-L1 and the RS. 
In conclusion, the HRG exhibited a significantly greater 
number of immunological nonresponders than the LRG 
did, and patients who did not respond had greater RS 
(p < 0.05) (Fig. 7g and h).

The IC50 values of idarubicin and rapamycin were different 
between the two groups
We used the CellMiner database to investigate antitu-
mor drugs that are sensitive to SRG expression. Spear-
man correlation analysis of the RS and drug IC50 values 
revealed that the IC50 values of cobimetinib and tra-
metinib were negatively correlated with the RS (Cor < 

Fig. 5 Prognostic value evaluation of the CRG model. (a) Distributions of the risk score (RS), survival status distributions, and expression heatmap in the 
TCGA training cohort. (b) OS value stratified by the RS in the TCGA training cohort. (c) Time-dependent ROC curve of the prognostic performance of the 
RS in the TCGA training cohort. (d) Survival status distributions, RS, and expression heatmap in the external testing cohort. (e) OS value stratified by the RS 
in the external testing cohort. (f) Time-dependent ROC curve of the prognostic performance of the RS in the external testing cohort
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-0.2), and the other 10 drugs were positively correlated 
with the RS (Cor > 0.2) (Supplementary Fig.  12). Analy-
sis of the four drugs (Cor > 0.3) revealed that the IC50 
values of idarubicin and rapamycin significantly differed 
between the high- and low-RS groups (Supplementary 
Fig. 13).

Validation of CRGs
First, we quantified the mRNA expression of FDX1, 
DLAT, LIAS, and CDKN2A between fresh HCC surgical 
tissues and adjacent tissues (Fig.  8a). The FDX1, DLAT, 
LIAS, and CDKN2A expression levels in 10 HCC sam-
ples were markedly greater than those in paired neigh-
boring tissues. Moreover, we detected the expression of 
CDKN2A via IHC. Compared with NC samples, HCC 
samples presented elevated levels of CDKN2A pro-
tein expression (Fig.  8b). To further confirm these out-
comes, IHC and qRT‒PCR were carried out to compare 

the expression levels of six SRGs between HCC tissues 
and normal liver tissues. At the protein level, the SOX4, 
MYC, TM4SF1, and IFI27 expression levels were greater 
in HCC samples than in NC samples, and the NDRG2 
and CYB5A expression levels were lower in HCC samples 
than in NC samples (Fig. 9). In our cohort, the expression 
of each gene associated with cuproptosis significantly 
affected patient survival. High-risk individuals had worse 
outcomes than low-risk patients did (Fig.  10a). High 
expression of CD68 and CD163 was observed in high-
RS patients, but low expression was observed in patients 
with low-RS in the TCGA database (Fig. 10b) and in our 
own cohort (Fig. 10c and d). In summary, the data analy-
sis and important discoveries in this investigation were 
highly dependent.

Discussion
Globally, HCC is the primary cause of cancer-related 
fatalities. The improved prognosis for the major-
ity of patients with HCC persists as a result of its high 
metastatic rate. Cu homeostasis dysfunction is impli-
cated in several pathologies, including Menkes dis-
ease and hepatic Wilson’s disease [21], and in cancer 
progression-related processes, including proliferative 
immortality, angiogenesis, and metastasis [22–26]. The 
development of efficient therapeutic and prognostic 
biomarkers is crucial for enhancing the prognosis and 
increasing the survival rate of HCC patients. Cuproptosis 
is a type of mitochondrial cell death caused by Cu that 
is not related to apoptosis, ferroptosis, or necroptosis [4, 
27]. In contrast, the hallmark signal for cuproptosis and 
the relationship between cuproptosis and HCC remain 
unknown. Therefore, studying the prognostic signature of 
CRGs in HCC is highly important. Using the TCGA and 
GEO databases, we developed and verified a prognostic 
CRG model and examined its potential correlation with 
clinicopathological characteristics.

Cuproptosis is associated with ten key genes accord-
ing to the published literature. The detection of these 
key genes in our cohort confirmed the occurrence of 
copper-induced cell death. On the basis of compre-
hensive bioinformatics analysis, we screened six SRGs: 
NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27. 
N-myc downstream-regulated gene family 2 (NDRG2) 
functions as a tumor suppressor gene, hampers HCC 
cell proliferation [28], and decreases CD24 expres-
sion in HCC [29]. Recent reports indicate that elevated 
levels of NDRG2 expression suppress epithelial‒mes-
enchymal transition (EMT) in HBV-linked HCC [30]. 
Cytochrome B5 type A (CYB5A) suppresses the metas-
tasis of HCC by controlling the process of autophagy 
and enhancing the responsiveness to ruxolitinib [31]. 
Regrettably, the anticancer impact of CYB5A in HCC has 
only been briefly addressed. The expression of SRY-box 

Table 3 The detailed clinicopathologic factors information 
between the high-risk group and low-risk group in TCGA data
Clinicopathologic 
factors

Total Risk P-value
High Low

Age(year)
Mean (SD) 59.6 (± 13.3) 57.7 (± 14.2) 61.5 (± 12.0) 0.016*
Gender
Female 117 (32.5%) 55 (30.6%) 62 (34.4%) 0.5
Male 243 (67.5%) 125 (69.4%) 118 (65.6%)
Vital
Deceased 129 (35.8%) 81 (45.0%) 48 (26.7%) < 0.001*
Living 231 (64.2%) 99 (55.0%) 132 (73.3%)
Pathologic_stage
Stage I 167 (49.7%) 74 (43.3%) 93 (56.4%) 0.014*
Stage II 81 (24.1%) 40 (23.4%) 41 (24.8%)
Stage III 84 (25.0%) 54 (31.6%) 30 (18.2%)
Stage IV 4 (1.2%) 3 (1.8%) 1 (0.6%)
Histologic_grade
G1 53 (14.9%) 20 (11.3%) 33 (18.5%) 0.002*
G2 171 (48.2%) 75 (42.4%) 96 (53.9%)
G3 120 (33.8%) 74 (41.8%) 46 (25.8%)
G4 11 (3.1%) 8 (4.5%) 3 (1.7%)
Pathologic_M
M0 259 (71.9%) 132 (73.3%) 127 (70.6%) 0.45
M1 4 (1.1%) 3 (1.7%) 1 (0.6%)
MX 97 (26.9%) 45 (25.0%) 52 (28.9%)
Pathologic_N
N0 245 (68.2%) 126 (70.4%) 119 (66.1%) 0.52
N1 3 (0.8%) 2 (1.1%) 1 (0.6%)
NX 111 (30.9%) 51 (28.5%) 60 (33.3%)
Pathologic_T
T1 176 (49.3%) 76 (42.2%) 100 (56.5%) 0.013*
T2 89 (24.9%) 45 (25.0%) 44 (24.9%)
T3 79 (22.1%) 50 (27.8%) 29 (16.4%)
T4 13 (3.6%) 9 (5.0%) 4 (2.3%)
*P < 0.05
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Fig. 6 Prognostic model and clinical correlation analyses of the TCGA data. (a) Connection between the risk score (RS) and clinicopathological features. 
*p < 0.05, **p < 0.01, and ***p < 0.001; ns.: not significant. (High RS was highly common in patients under 60 years of age, with G3–4, stage III, and T2–3 
disease, and a poor prognosis). (b–c) UCR and MCR analyses of clinicopathologic features and RS. (d) Nomogram composed of cuproptosis-related SRG 
levels for predicting the 1-, 3-, and 5-year overall survival (OS) of HCC patients. (e) Nomogram and calibration curves of the prognostic model
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transcription factor 4 (SOX4) is significantly elevated in 
various types of malignancies [32, 33], and SOX4 over-
expression promotes metastasis in HCC [34, 35]. The 
oncogenic potential of c-MYC in HCC has been proven 
in vivo and in vitro during hepatocarcinogenesis [36]. 
Higher extracellular copper concentrations enhance 
HCC cell growth and invasion by regulating the MYC/
CTR1 axis [37]. When the expression of Axin2 and cyclin 

D1 is upregulated, the overexpression of transmem-
brane-4 L-six family member-1 (TM4SF1) enhances the 
proliferation and motility of HCC cells [38]. Interferon 
alpha-inducible protein 27 (IFI27) is elevated in lesional 
and nonlesional psoriatic skin and some cancers, and 
AC10364 was found to inhibit cell viability and prolifera-
tion partially by downregulating the expression of IFI27 
in HCC [39–41]. The model showed better performance 

Fig. 7 Differential analysis of immune characteristics between HRGs and LRGs in the TCGA cohort. (a) Analysis of the differences in immunocyte pro-
portions between the two risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. (b) Spearman correlation analysis of the risk score (RS) and immune cells. (c) KM 
curves of patients with different proportions of macrophages. (d) Differential analysis of TIDE scores between the HRG and LRG. (e) Correlations between 
the RS and TIDE scores. (f) Correlation between RS and the expression of PD-L1. (g) Analysis of the immunotherapy response between the two risk groups. 
(h) Differential analysis of RS between immunological nonresponders and responders

 



Page 13 of 17Wang et al. BMC Immunology           (2024) 25:59 

Fig. 10 (a) Outcomes of the KM survival analysis revealed that HRGs had a lower survival rate than did the LRGs in our cohort. The red line represents the 
HRG, and the blue line represents the LRG. (b) The expression of CD68 and CD163 in the HRG and the LRG in the TCGA cohort. (c) Immunohistochemical 
staining of CD68 and CD163 in our cohort. (d) The expression of CD68 and CD163 in the HRG and LRG in our cohort. The data represent the mean ± SD. 
(*p < 0.05, **p < 0.01, ***p < 0.001). Original magnification, ×400

 

Fig. 9 Immunohistochemical staining and qRT‒PCR results for NDRG2 (a), CYB5A (b), SOX4 (c), MYC (d), TM4SF1 (e) and IFI27 (f) in normal and tumor 
tissues. The black box in the upper left corner represents normal tissues

 

Fig. 8 Validation of cuproptosis-related SRGs in HCC. (a) mRNA expression of FDX1, DLAT, LIAS, and CDKN2A between fresh HCC surgical tissues and 
adjacent tissues. (b) Results of CDKN2A immunohistochemical staining and relative expression of paraffin-embedded normal and tumor samples
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in predicting the clinical outcomes of patients with HCC 
after surgical resection. In Spearman correlation analy-
sis of 6 SRGs, there was a significant direct relation-
ship between CYB5A, NDRG2 and IFI27. Our rationale 
primarily encompasses the following points: Firstly, 
co-expressed genes are likely to participate in the same 
biological pathways or functional modules, indicating 
intricate molecular mechanisms. Preserving these genes 
is essential for a comprehensive understanding of their 
biological functions and interactions in HCC. Secondly, 
in HCC, CYB5A, NDRG2, and IFI27 are potentially co-
involved in critical biological processes, including cell 
proliferation, apoptosis, and metabolic regulation [28, 
31, 42]. This makes them crucial for predictive models. 
Model stability should be prioritized during construc-
tion. Lastly, co-expressed genes can offer complemen-
tary information, enhancing both stability and predictive 
performance. During data analysis, the removal of co-
expressed genes can result in significant information loss, 
particularly when the sample size is constrained. Retain-
ing these genes is crucial for maintaining the integrity of 
the data and ensuring the comprehensiveness of the anal-
ysis. Our IHC validation results revealed that high-risk 
patients had a worse prognosis than low-risk patients did. 
In summary, the six SRGs play important roles in tumor 
carcinogenesis. Among these six genes, only MYC has 
been reported to be associated with copper metabolism. 
Nevertheless, the precise involvement of MYC in cupro-
ptosis in HCC has yet to be clarified. Owing to the lack of 
relevant hallmarks of cuproptosis, the six SRGs may also 
be potential targets that can be exploited to elucidate the 
mechanism of cuproptosis.

Research has shown that cancer cells often display 
distinct changes in metabolism to sustain their prolif-
eration and growth [43–45]. Different members of the 
cytochrome P450 (CYP450) family have emerged as sig-
nificant factors in the response to cancer treatments and 
resensitization to anticancer drugs [46]. The involvement 
of ribosome-related activities in the genesis and pro-
gression of different malignancies is well documented. 
The process of O-GlcNAcylation of RACK1 leads to 
increased stability of RACK1, attachment to ribosomes, 
binding to PKCβII, and ultimately stimulating the devel-
opment of hepatocellular carcinogenesis [47]. C1QBP 
enhances the survival, migration, and invasion of HCC 
cells and is linked to genes that encode ribosomal RPL-
linked proteins and mitochondrial MRPL-linked proteins 
in HCC patients [48]. TCOF1, a factor involved in ribo-
some biogenesis, has oncogenic functions through the 
regulation of KRAS-activated and EMT genes in HCC. It 
is essential for the elevated production of ribosomal RNA 
(rRNA), a characteristic of cancer [49]. Momordica anti-
HIV protein of 30 kDa (MAP30) induces the apoptosis of 
HCC cells [50]. In this study, the potential pathways in 

the HRG and LRG according to the RS of the six SRGs 
were analyzed via KEGG and GO analyses. Significant 
variation was detected in the involved pathways between 
the HRG and LRG. The results revealed that ribosome 
and ribonucleoprotein complex biogenesis was enriched 
in the HRG, whereas retinol metabolism, drug metabo-
lism-CYP450, organic acid catabolic process and carbox-
ylic acid catabolic process were significantly enriched in 
the LRG. These findings indicate that the six SRGs are 
involved primarily in regulating ribosomes during tumor 
progression, which further indicates that cuproptosis 
may be involved in this process. These findings provide 
insight into the molecular mechanism of cuproptosis in 
HCC.

The cellular components of the tumor immune micro-
environment (TIME) are highly complex and are involved 
in cancer immune evasion, inflammation, and response 
to immunotherapy treatment [51]. The TIME of HCC is 
poorly characterized, and the key components include 
cancer-associated fibroblasts (CAFs), tumor-associated 
macrophages (TAMs), Tregs, tumor-associated neu-
trophils (TANs), and myeloid-derived suppressor cells 
(MDSCs) [52]. CAFs secrete high levels of CXCL11 and 
CCL5 into the tumor microenvironment to enhance 
HCC metastasis through multiple pathways [53, 54]. 
HCC-CAFs protect chemotactic neutrophils from spon-
taneous apoptosis through an IL6-STAT3-PDL1 sig-
naling cascade [55]. Tumor cells release Wnt ligands to 
increase the M2-like polarization of TAMs by activat-
ing the canonical Wnt/β-catenin signaling pathway. This 
polarization leads to immunosuppression inside HCC 
tumors [56]. GDF15 triggers immunosuppression in 
HCC by interacting with CD48 on Tregs [57]. A recent 
bioinformatics study using four CRGs (CDKN2A, GLS, 
LIPT1, and DLAT) demonstrated that HRGs presented 
a greater percentage of macrophages and Tregs than did 
LRGs [58]. TANs recruit macrophages and Tregs, which 
enhance HCC growth, metastasis and sorafenib resis-
tance [59]. These results are consistent with our data. 
However, the screened CRGs and the constructed PM 
are different. This finding also proves the importance of 
introducing macrophages and Tregs in cuproptosis. We 
used CD68 in combination with CD163 to identify TAMs 
in our cohort. The proportion of TAMs in the HRG was 
greater than that in the LRG. In addition, the other key 
components of the tumor microenvironment may be 
involved in the screened CRGs in our model. Compared 
with the LRG, the HRG had a greater percentage of Tregs. 
An increase in TAMs was linked to a worse prognosis in 
HCC patients, confirming the predictive ability of the 
model. This notion requires validation via further study. 
This phenomenon might be one of the specific mecha-
nisms of cuproptosis in HCC. Additionally, the HRG 
had a high TIDE score, which was linked to improved 
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immune evasion, confirming the model’s prediction 
accuracy. Patients with elevated levels of immune check-
points in malignancies may have increased response to 
therapy with immune checkpoint inhibitors (ICIs). How-
ever, the precise mechanism remains unknown. GOLM1 
in HCC promotes CD8 + T-cell suppression by stabilizing 
PD-L1 and delivering it into TAMs via exosomes [60]. 
Our findings revealed that patients in the high-RS group 
had lower PD-L1 expression, indicating that treatment 
with ICIs may have poor efficacy for patients in the HRG. 
In our model, the negative correlation between the RS 
and immune checkpoint expression implied that the poor 
prognosis in the HRG might be due in part to the lower 
immune checkpoint expression of PD-L1 in this group 
than in the LRG group. The constructed PM might be 
employed to identify patients at risk for poor ICI treat-
ment and poor outcomes, allowing for the better tailor-
ing of individualized treatment. The above findings also 
indicate that the mechanism of HCC cuproptosis and the 
mechanism of cuproptosis involved in immune regula-
tion are complex. Prospective studies are needed to con-
firm these findings.

HCC cuproptosis has been studied subsequently. The 
SRGs were also subjected to drug sensitivity analysis, 
and several candidates were identified. Similar find-
ings to those of the current study were reported in prior 
studies, irrespective of whether the scoring models uti-
lized cuproptosis-related miRNAs, cuproptosis-linked 
lncRNAs, or cuproptosis-linked CRGs. Patients with 
greater cuproptosis-related scores had a lower OS rate 
[58, 61, 62]. Moreover, drug sensitivity analyses were 
conducted by Lei Ding et al. [10]. and Qiongyue Zhang 
et al. [63]. reported lower IC50 values for samples with 
high cuproptosis-linked scores. Patients with high cupro-
ptosis-linked scores may benefit more from certain forms 
of chemotherapy. In this study, the IC50 values for idaru-
bicin and rapamycin were lower for specimens with high 
cuproptosis-related scores than for those with low cupro-
ptosis-related scores. This finding is partially consistent 
with previous research results. However, the IC50 pre-
dictions indicated a positive correlation between sensitiv-
ity to most targeted drugs and RS. These findings indicate 
that high-risk patients might not benefit from most tar-
geted drugs. We analyzed the RS that could help identify 
patients most likely to benefit from antitumor drugs. This 
research is anticipated to offer evidence-based informa-
tion that is crucial for clinical treatment.

However, the current investigation is subject to several 
limitations. The investigation was predicated on a pub-
licly accessible database. While every effort was made to 
incorporate a multitude of datasets to enhance the rigor 
of this result verification, further functional and mecha-
nistic analyses of these genes, both individually and in 
combination, are necessary to substantiate the clinical 

applicability of our model. Second, further investigations 
are needed to clarify the molecular mechanisms underly-
ing cuproptosis and CRG, given the limited understand-
ing of cuproptosis. Finally, experimental investigations 
into the correlation between RS and immune activity 
are lacking, necessitating further research. One notable 
strength of this research is the development of a six-gene 
model via algorithmic means; this model has the capacity 
to significantly inform clinical decision-making. Further-
more, in addition to utilizing publicly available datasets 
to develop the model, this research also employed clinical 
tissues and public datasets to validate the findings, signif-
icantly bolstering the study’s credibility.

In brief, we created and verified a model for the diag-
nosis of HCC risk using six CRGs that have independent 
prognostic significance. The risk evaluation model offers 
a noteworthy immunological perspective on the cupro-
ptosis mechanisms that govern the clinical prognosis of 
HCC.
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