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Abstract
Pectobacterium carotovorum and Pectobacterium aroidearum represent the primary pathogens causing variable 
soft rot disease. However, the fundamental defense responses of Pinellia ternata to pathogens remain unclear. Our 
investigation demonstrated that the disease produced by P. carotovorum is more serious than P. aroidearum. RNA-
seq analysis indicated that many cell wall-related genes, receptor-like kinase genes, and resistance-related genes 
were induced by P. aroidearum and P. carotovorum similarly. But many different regulatory pathways exert a crucial 
function in plant immunity against P. aroidearum and P. carotovorum, including hormone signaling, whereas more 
auxin-responsive genes were responsive to P. carotovorum, while more ethylene and gibberellin-responsive genes 
were responsive to P. aroidearum. 12 GDSL esterase/lipase genes and 3 fasciclin-like arabinogalactan protein genes 
were specifically upregulated by P. carotovorum, whereas 11 receptor-like kinase genes and 8 disease resistance 
genes were up-regulated only by P. aroidearum. Among them, a lectin gene (part1transcript/39001) was induced 
by P. carotovorum and P. aroidearum simultaneously. Transient expression in N. benthamiana demonstrated that the 
lectin gene improves plant resistance to P. carotovorum. This study offers a comprehensive perspective on P. ternata 
immunity produced by different soft rot pathogens and reveals the importance of lectin in anti-soft rot of P. ternata 
for the first time.
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Background
Pinellia ternata (Thunb.) Breit (P. ternata), whose dry 
tuber is a traditional Chinese medicine (TCM) in Chi-
nese Pharmacopoeia, has an important function in the 
treatment of cough, vomiting, infection, inflammation, 
early pregnancy, and tumors [1–3]. It has been employed 
as a TCM for millennia, traced back to the Han Dynasty 
in many notable prescriptions. With increased demand, 
P. ternata has been produced via artificial planting, caus-
ing continuous cropping barriers and frequent disease 
[4].

Among the frequent diseases identified, soft rot is 
one of the most destructive in P. ternata. Symptomatic 
plants have small water-soaked spots on leaves that prog-
ress into widespread translucent spots, spreading to the 
stems and tubers [5, 6]. Soft rot is responsible for sig-
nificant agricultural losses in P. ternata. The pathogens 
responsible for soft rot in P. ternata were found to be 
Dickeya fangzhongdai (D. fangzhongdai), Pectobacterium 
carotovorum (P. carotovorum), Pectobacterium atrosepti-
cum (P. atrosepticum), and Pectobacterium aroidearum 
(P. aroidearum) [6–9]. To limit the invasion of soft rot, 
increasing chemical fungicides were employed to pro-
tect P. ternata, leading to pesticide residues and environ-
mental pollution. Therefore, it is essential to understand 
the defense responses of P. ternata to soft rot invasion 
to develop green, effective, and economical strategies to 
control soft rot and breed for disease resistance.

Plant immunity produced by microorganisms can be 
described by a “zigzag model” [10]. In the early stage 
of infection, pathogen-associated molecular patterns 
(PAMPs), recognized by pattern recognition recep-
tor (PRRs) complexes at the plasma membrane, activate 
downstream immune regulation of the host plant, called 
PAMPs triggered immunity (PTI) [11]. Recognition of 
PAMPs leads to a series of signaling events, commonly 
referred to as the basal defense response, which acti-
vates the plant’s systemically acquired resistance [12]. In 
this process, mitogen-activated protein kinase (MAPK), 
receptor kinase, and phosphorylase are also activated, 
reactive oxygen species (ROS) are generated, accom-
panied by hormone biosynthesis and callose deposi-
tion [13]. However, when pathogens exhibit a tendency 
to adapt to the host plant, a series of virulence factors 
that interfere with the PTI of the plant, called effectors, 
contribute to pathogen infection. Meanwhile, a series of 
resistance proteins (R proteins) shows a predominant 
role in plant immunity. R proteins activate downstream 
immune regulation by recognizing pathogen effectors, 
limiting the infection and diffusion of pathogens [14]. 
The recognition of effectors is specific in effector-trig-
gered immunity (ETI), which supports the hypothesis of 
“gene to gene” to defend different pathogens specifically.

Plant resistance to soft rot does not necessarily depend 
on a single resistance gene but activates defense systems 
mediated by SA, JA, and ethylene following recogni-
tion of damage-associated molecular patterns (DAMPs), 
including oligogalacturonide (OG) fragments [15]. PRRs 
identify the invasion of pathogens, and activate the hor-
mone signal to promote the expression of downstream 
defense genes (CPK, CML, RBOH, MPK3, and MPK4) 
alongside the biosynthesis of indole-thioglucoside and 
other secondary metabolites, promoting plant resistance 
[16, 17]. Phenylalanine ammonia lyase-dependent and 
salicylic acid-mediated host resistance is the core of plant 
immunity [18]. Throughout this process, ferredoxin-like 
protein (pflp) is essential in conferring resistance against 
soft rot disease by accelerating the rapid production of 
H2O2, callose deposition, and hypersensitivity reaction 
[19–21]. Transcription factors also play important roles 
in plant resistance. Overexpression of WRKY12 increases 
the resistance to soft rot pathogen by transcriptional acti-
vation of defense-related genes [22, 23], but could also 
be a negative regulator of plant immunity against patho-
gens [24]. Transcription factors, plant hormones, MAPK 
signal transduction, and resistance-related genes form a 
comprehensive defense system in plants against soft rot 
disease.

Plant lectins are proteins with functions in immune 
regulation, bactericidal responses, and anti-inflammatory 
reactions, and can be separated into ten classes accord-
ing to motif conformation, namely the Agaricus bisporus 
agglutinin (ABA), the Amaranthin domain, the chitinase-
related agglutinin (CRA), the Cyanovirin domain, the 
Galanthus nivalis agglutinin (GNA), the Hevein domain, 
the Jacalin-related domain, the Legume lectin domain, 
the Lys M domain, and the Ricin-B domain [25]. Lec-
tins bind to carbohydrates on their surface to damage 
the cell walls of pathogens, especially bacteria, fungi, and 
protozoa, preventing the microorganism from attach-
ing to the host cell [26]. A unique mannose-binding 
plant lectin from Narcissus tazetta bulbs, NTL-125, is 
a potential antiviral compound of natural origin against 
SARS-CoV-2 [27]. A lectin extracted from the fish spe-
cies Misgurnus anguillicaudatus possessed significant 
agglutinating activity against gram-negative bacteria, 
resulting from its relationship with lipopolysaccharides 
(LPS) [28]. Additionally, lectin could also interact with 
chitin to exert antifungal effects [29]. These mechanisms 
are common to most lectins and explain how these mol-
ecules inhibit the formation of biofilms and bacterial 
aggregates [30]. Jacalin-like lectins (JRLs) are involved in 
mediating broad-spectrum disease resistance to mono-
cotyledonous plants by binding to oligosaccharide sig-
natures characteristic of the infection process to relocate 
the protein towards the location of pathogen attack [31]. 
Lectin is an important feature of Araceae plants [32], 



Page 3 of 12Luo et al. BMC Genomics          (2024) 25:831 

belonging to mannose-binding modules in monocotyle-
donous plants, which can bind specifically to mannooli-
gosaccharides [33]. However, there is limited research on 
lectins in P. ternata and their role in plant immunity and 
resistance to pathogens.

In this study, RNA-seq was employed to characterize 
candidate genes of P. ternata “Ying Shan” induced by vir-
ulent bacteria P. carotovorum QJ-1 and mild virulent bac-
teria P. aroidearum QS-1. Differentially expressed genes 
(DEGs) analysis and Gene Ontology (GO) analysis were 
conducted to identify key genes and core signal pathways 
in plant immunity. Quantitative real-time PCR (qRT-
PCR) and transient expression were conducted to explore 
the induced expression patterns and potential biological 
function of key genes. This study provides integrated and 
basic data regarding the immunity of P. ternata induced 
by Pectobacterium, laying the foundation for further 
exploration of the P. ternata-Pectobacterium molecular 
interaction.

Results
Disease produced by P. carotovorum is more severe than 
by P. aroidearum
P. carotovorum and P. aroidearum are soft rot pathogens 
in P. ternata. In our prior work, P. carotovorum QJ-1 and 
P. aroidearum QS-1 were extracted from symptomatic 

plants and then configured as a bacterial suspension 
with a concentration of OD600 = 1.0. Infection of whole 
P. ternata “Yingshan” plants were conducted to examine 
their virulence. Water-soaked spots and beating down 
were observed at 48 hpi following treatment with P. aroi-
dearum and P. carotovorum, respectively, compared to 
water treatment (Fig.  1A). Additionally, inoculation on 
detached leaves of P. ternata “Yingshan” was performed, 
and the disease spot was observed and calculated every 
24 h. The results indicated that larger disease lesions were 
observed with exposure to P. carotovorum compared 
to P. aroidearum (Fig.  1B and C). It demonstrated that 
although both P. carotovorum QJ-1 and P. aroidearum 
QS-1 are pathogens producing soft rot, the pathogenic-
ity of P. carotovorum QJ-1 is significantly higher than P. 
aroidearum QS-1.

RNAseq and differentially expressed gene analysis
The virulence of P. carotovorum is stronger than P. aroi-
dearum, motivating us to evaluate the similarities and 
differences in immunity response triggered by P. caro-
tovorum and P. aroidearum. To investigate gene expres-
sion changes under the treatment of P. aroidearum and 
P. carotovorum, leaves from inoculated plants for 48  h 
were collected for RNA isolation and RNA-seq. In total, 
269.69 million raw paired-end reads were acquired from 

Fig. 1 Infection with P. aroidearum and P. carotovorum of P. ternata. (A) Whole plant of P. ternata infected with P. aroidearum and P. carotovorum for 48 h. (B) 
Detached leaves of P. ternata inoculated with P. aroidearum and P. carotovorum. Images were photographed at 24 hpi and 48 hpi under normal light. (C) 
Statistic of mean lesion diameter. The disease lesion diameter was measured every 24 h from at least 20 leaves with three replication (one-way ANOVA, **, 
p < 0.01). Error bars indicate SD. Pa means the infection with P. aroidearum, Pc means the infection with P. carotovorum
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12 RNA samples. Following quality assessment and filter-
ing, 264.4  million clean paired-end reads were retained 
(Table S1). All clean reads were mapped to the full-length 
transcript assembled in our previous work using bowtie2, 
and 21,464 transcripts were constructed in total. The 
expression of transcripts was computed using rsem. The 
FPKM value was calculated and shown in Table S1, and 
the correlation between the 12 samples was shown with a 
heatmap (Fig. S1). Nine genes were randomly selected for 
qRT-PCR to validate the expression (Fig. S2).

To investigate the differentially expressed genes trig-
gered by P. aroidearum and P. carotovorum, DEGs were 
identified by EBSeq.  A total of 1968 transcripts were 

upregulated and 570 transcripts were downregulated 
by P. aroidearum, while 1339 upregulated transcripts 
and 662 downregulated transcripts were triggered by 
P. carotovorum (Fig.  2A and B). Many common immu-
nity responses were triggered by P. aroidearum and P. 
carotovorum, 628 transcripts were upregulated, and 262 
transcripts were downregulated commonly (Fig. 2C). To 
clarify common immunity induced in the progress, the 
classification of common DEGs was shown in Fig. 2D and 
Table S2. Many cell wall-related genes were upregulated 
by the infection of pathogen to against the damage of cell 
wall, several receptor kinase genes and resistance-related 

Fig. 2 The DEGs of P. ternata induced by P. aroidearum and P. carotovorum. (A) Volcano plot of the differentially expressed genes induced by P. aroidearum. 
(B) Volcano plot of the differentially expressed genes induced by P. carotovorum. The red spots mean up-regulated genes, blue spots mean down-
regulated genes, black spots mean no-diff genes. Pa means P. aroidearum QS-1 infection and Pc means P. carotovorum QJ-1 infection. (C) Venn graph of 
DEGs inoculated by P. aroidearum and P. carotovorum. (D) The classification of common DEGs induced by P. aroidearum and P. carotovorum. Pa means P. 
aroidearum QS-1and Pc means P. carotovorum QJ-1. Common up means common up-regulated genes induced by P. aroidearum and P. carotovorum. Com-
mon down/up means common down/up-regulated genes induced by P. aroidearum and P. carotovorum
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genes were upregulated to defend against the invasion of 
pathogens.

GO and KEGG analysis of the DEGs triggered by P. 
aroidearum and P. carotovorum
To assess the common signal pathways regulated by soft 
rot, GO analysis of 628 common DEGs was conducted 
(Table S3). Genes involved in cellulose biosynthetic 
(GO:0030244) and fatty acid biosynthetic (GO:0006633) 
processes were induced by pathogen infection, and 
genes associated with channel activity (GO:0015267), 
transferase activity, transferring acyl groups other than 
amino-acyl groups (GO:0016747), and cellulose synthase 
(UDP-forming) activity (GO:0016760) were activated 
to enhance plant immunity. Moreover, genes associated 
with membranes (GO:0031225), apoplasts (GO:0048046), 
and cell walls (GO:0005618) were also highly expressed 
to defend the pathogen invasion (Fig.  3A). In con-
trast, Rho guanyl-nucleotide exchange factor activity 
(GO:0005089), catalase activity (GO:0004096), and oxi-
doreductase activity, acting on NAD(P)H (GO:0016651) 
were suppressed under the perception of pathogens 
(Fig.  3B). These findings demonstrated that various dif-
ferent types of genes and related signaling pathways con-
stitute the basic immune defense of P. ternata to soft rot, 
genes involved in cell wall, membrane, and oxidoreduc-
tase functions are the core of plant immunity.

GO analysis was also conducted on specific DEGs 
induced by P. carotovorum and P. aroidearum (Fig. S3). 
The findings indicated that genes involved in hydrolase, 
hydrolyzing O-glycosyl compounds, xyloglucan: xylo-
glucosyl transferase activity, and cell wall were upregu-
lated, and genes involved in enzyme inhibitor activity and 
translation initiation factor activity were downregulated 

with exposure to P. carotovorum. Hydrolase and xyloglu-
can: xyloglucosyl transferase plays an essential role in the 
degradation of the cell walls. Large watery lesions appear 
on the leaves of P. ternata at 48 hpi, the cells of which are 
collapsed, releasing enzymes to degrade the cell walls of 
P. ternata. Additionally, genes involved in fatty acid beta-
oxidation, calcium-dependent phospholipid binding, and 
catalase activity were upregulated upon treatment with P. 
aroidearum, while genes involved in carbohydrate meta-
bolic process, and integral components of membranes 
were downregulated. These results suggested that many 
defense pathways of P. ternata were induced by P. aroi-
dearum to resist pathogen infection, and genes related to 
the membrane were inhibited by P. aroidearum to facili-
tate destruction.

KEGG analysis was also conducted to explore the sec-
ondary metabolites biosynthesis, the result found that 
genes involved in ko01130 (Biosynthesis of antibiot-
ics) were significantly induced by P. aroidearum. Genes 
involved in ko00940 (phenylpropanoid biosynthesis), 
ko00941 (Flavonoid biosynthesis), ko00945 (Stilbenoid, 
diarylheptanoid and gingerol biosynthesis), were signifi-
cantly induced by P. carotovorum (Table S4).

Differential signally pathways were induced by P. 
aroidearum and P. carotovorum
In addition to these common defense genes, 398 genes 
were downregulated and 707genes were upregulated by 
P. carotovorum, while 1338 upregulated genes and 304 
downregulated genes were induced by P. aroidearum 
(Fig. 2C and Table S5). Plant hormones emerged as cel-
lular signaling molecules with crucial functions in regu-
lating immune responses to microbial pathogens. In our 
study, different hormone signaling was induced by P. 

Fig. 3 GO analysis of common DEGs triggered by P. aroidearum and P. carotovorum. (A) GO analysis of the 628 common up-regulated DEGs. (B) GO analy-
sis of 262 the common down-regulated DEGs
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aroidearum and P. carotovorum. Eight auxin-responsive 
proteins were upregulated significantly by P. caroto-
vorum, indicating that auxin-mediated immunity plays 
an important role in defending against P. carotovorum. 
Additionally, five ethylene-responsive genes and four gib-
berellin-responsive genes were specifically upregulated 
by P. aroidearum (Fig.  4A and Table S5), and qRT-PCR 
was conducted to verified the expression (Fig. S4).

In addition to hormone signaling, many other specific 
immune signals were induced by P. carotovorum and P. 
aroidearum. A total of 12 GDSL esterase/lipase genes 
and three fasciclin-like arabinogalactan protein genes 
were upregulated by exposure to P. carotovorum, whereas 
11 receptor-like kinases (RLKs), and eight disease resis-
tance genes were upregulated only by P. aroidearum 
(Fig. 4B). This finding indicated that different degrees of 
disease occurred under the infection by two pathogens 
due to the expression of different genes.

34 lectin genes differentially expressed in P. 
ternata induced by P. carotovorum and P. aroidearum
Lectin is an important ingredient in P. ternata, and it 
inhibits bacteria and kills insects. In our study, 34 lectin 
genes were differentially expressed in response to the 
invasion of pathogens. The structure of the 34 lectin pro-
teins was analyzed, demonstrating that these lectin genes 
were primarily separated into three classes: class I, which 
consists of one B-lectin domain; class II, which consists 
of two similar B-lectin domains; class III, which consists 
of two different B-lectin domains (Fig. 5). We also found 
that most lectin genes were highly expressed upon P. aroi-
dearum infection, which may be due to the participation 
of lectins in plant immunity against pathogen infection, 

while half of them were suppressed under infection by P. 
carotovorum (Fig. 5), resulting from the damage of plant 
tissues, causing a decrease in lectin content.

Lectin gene inhibited the infection of P. carotovorum
A lectin gene (part1transcript/39001) was chosen for 
functional verification, which is up-regulated by P. 
aroidearum and P. carotovorum (Fig.  6A). Agrobacte-
rium-mediated transient expression of the lectin gene 
was conducted in N. benthamiana leaves, with the empty 
vector (EV) expressing GFP protein used as a control. 
After 48 h of agro-infiltration, the lectin gene and empty 
vector were expressed in N. benthamiana leaves at 48 
hpi (Fig.  6B). The leaves were detached and inoculated 
with P. carotovorum QJ-1 at a concentration of OD600 = 1. 
The disease lesion diameter was evaluated at 48 hpi. The 
findings showed that transient expression of the lectin 
gene significantly inhibited P. carotovorum colonization, 
reflected by smaller lesion diameters compared to the EV 
control (Fig. 6C and D). The above results demonstrated 
that the lectin gene positively regulates plant defense 
response against soft rot.

Discussion
Soft rot is a critical disease in P. ternata production, 
which is primarily caused by P. carotovorum and P. aroi-
dearum. However, different virulence is exerted by these 
two pathogens, which has been confirmed in our study 
(Fig. 1). Comparative genomics determined that P. caro-
tovorum encodes more plant cell wall degrading enzymes 
and effectors than P. atrosepticum, including hrpK-like 
type III secretion system-dependent effector protein, 
resulting in the stronger pathogenicity of P. carotovorum 

Fig. 4 Heatmap of genes involved in different pathway induced by P. aroidearum and P. carotovorum. (A) Heatmap of genes involved in different hormone 
signaling pathway. (B) Heatmap of key genes involved in other specific resistance signaling pathway. FPKM value was used for the heatmaps, and Z-score 
normalization method was applied
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[34]. The same phenomenon appears in potatoes, with 
more damage caused by P. carotovorum than by P. atro-
septicum [35]. One of the most important pathogenic 
factors are exoenzymes, including pectate lyase (pel), 
polygalacturonase (PG), protease (Prt), and cellulase (cel), 
that adhere to and destroy plant cell walls by degrading 
pectin, resulting in the water stain presentation [36].

To investigate the basic and variable immunity of P. 
ternata induced by P. carotovorum and P. aroidearum, 
RNA-seq was performed in this study. It found that genes 
involved in the regulation of cell walls, receptor-like 
kinase genes, and resistance-related genes were induced 
by both pathogens, forming the basic defense system of 
plants. Receptor-like kinase genes are elements of a criti-
cal signaling pathway for plant immunity (Table S1). For 
instance, BAK1, belonging to the LRR receptor-like pro-
tein kinase family, interacts with BRI1 to modulate brassi-
nosteroid signaling [37]. FLS2 is an LRR receptor-like 
protein kinase that senses bacterial flagellin to activate 

plant immunity [38]. EDS1-PAD4-ADR1, a kind of LRR 
receptor kinase, mediates pattern-triggered immunity 
in Arabidopsis [39]. OsLRP, a leucine-rich repeat (eLRR) 
domain protein, has been introduced into Chinese cab-
bage, exhibiting enhanced disease resistance to bacterial 
soft rot [40]. Different classes of genes, such as WRKY 
transcription factors, receptor-like protein kinase, LRR 
domain proteins, and genes involved in the MAPK path-
way, form the basis of plant immunity against soft rot. In 
this study, 219 R genes expressed in our study, and most 
of them have the same expression pattern (Table S1). 8 
R genes were upregulated only by P. aroidearum (Table 
S5). And 64 WRKY genes were identified in RNAseq 
data (Table S1). WRKY40 and WRKY76 were induced by 
P. carotovorum. WRKY50, WRKY75, WRKY24-like were 
induced by P. aroidearum (Table S5).

Plant hormones have critical roles in the regulation of 
plant growth and development. They also have key func-
tions in the regulation of immune responses to microbial 

Fig. 5 Heatmap and structure of 34 lectin genes differentially expressed in P. ternata induced by P. carotovorum and P. aroidearum. FPKM value was used 
and Z-score method was applied
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pathogens [41]. Li et al. have demonstrated that MeJA 
could display improved performance in enhancing the 
resistance to disease in kiwifruit by regulating the phen-
ylpropanoid and jasmonate pathways [42]. Jasmonate 
regulates plant resistance to P. brasiliense and D. dadantii 
by regulating indole glucosinolate biosynthesis [17, 43]. 
Abscisic acid deficiency causes rapid activation of tomato 
defense responses upon infection with Erwinia chry-
santhemi [44]. N-3-Oxo-Octanoyl Homoserine Lactone 
primes plant resistance against the necrotrophic patho-
gen P. carotovorum by coordinating jasmonic acid and 
auxin-signaling pathways [45]. In our study, many genes 
responsive to plant hormones were substantially induced. 
Notably, some differences appeared in the hormone sig-
naling induced by P. aroidearum and P. carotovorum. 
Elevated amounts of auxin-responsive protein genes 
were induced by P. carotovorum, and more ethylene and 
gibberellin-responsive protein genes were induced by P. 

aroidearum (Table S1). The conclusion that the auxin-
signaling pathway figures prominently in plant resistance 
to P. carotovorum mirrors previous works [16, 46]. In 
addition, several studies suggest that ethylene and gib-
berellin pathways play a necessary role in plant immunity 
against other Pectobacterium species. Narváez-Barragán 
et al. have demonstrated that Expansin-like Exl1 from P. 
resilience and P. atrosepticum is a virulence factor, pro-
ducing a plant immunity response in ROS, and jasmo-
nate, ethylene, and salicylic acid signaling pathways in 
Arabidopsis thaliana [47]. ERF96 is a key player in the 
ERF network that positively regulates Arabidopsis resis-
tance responses to necrotrophic pathogens [48]. GLIP1 
functions independently of salicylic acid but requires eth-
ylene signaling [49]. Potato gibberellin stimulated-like 2 
(GSL2) gene in transgenic potatoes enhances resistance 
to blackleg disease produced by P. atrosepticum [50]. 
Meanwhile, many genes in JA and SA signalling pathways 
were identified, part1transcript/44,968 (23  kDa jasmo-
nate-induced protein) was expressed higher under the 
infection of P. atrosepticum. But part2transcript/15,083, 
part2transcript/15,903 (jasmonic acid-amido synthetase 
JAR1-like), part2transcript/34,625 (jasmonate O-methyl-
transferase), part1transcript/44,416 (salicylic acid-bind-
ing protein 2-like) were identified without significantly 
difference.

GDSL esterase/lipase and asciclin-like arabinogalac-
tan (FLA) genes, contributing to plant growth, were 
induced by P. carotovorum specifically to repair the 
severe damage to plants. Receptor-like kinases and dis-
ease-resistance genes, promoting plant immunity against 
pathogens, were induced by P. aroidearum specifically 
to avoid the further invasion of P. aroidearum, resulting 
in smaller spots on leaves (Fig.  1B). Many studies have 
confirmed that GDSL esterase/lipase (GELP) modulates 
plant immunity through lipid homeostasis by fatty acid 
degradation [51, 52]. Meanwhile, FLA genes, specifi-
cally situated in sclerenchyma cells [53], were required 
for stem development [54]. These genes were induced by 
P. carotovorum to defend against the pathogen infection 
by lipid homeostasis and stem development. RLKs play 
a central role in signaling during pathogen recognition, 
subsequent activation of plant defense mechanisms, and 
developmental control [55]. Disease-resistance protein 
genes are necessary for plants to avoid further infection 
by pathogens, playing a crucial role in plant immunity.

Lectins are fundamental to plant life and have neces-
sary roles in cell-to-cell communication, constituting 
versatile recognition systems at the cell surface and con-
tributing to the detection of symbionts and pathogens 
[56]. In this study, a lectin gene was chosen from common 
DEGs to validate its defensive function with P. caroto-
vorum treatment. RNA-seq and qRT-PCR demonstrated 
that the lectin gene is highly expressed upon treatment 

Fig. 6 Transient expressing the lectin gene to verify their function in 
regulation of soft rot resistance. (A) qRT-PCR verified that the lectin gene 
was higher expressed with P. aroidearum and P. carotovorum induction. 
Gene expression levels were analyzed by the 2−△△CT method with 18S 
as the reference gene. One-way ANOVA, **, p < 0.01. Error bars represent 
mean ± SD of 3 biological replicates. (B) Lectin protein and GFP protein 
expressed in N. benthamiana leaves at 48 hpi, the leaf photos were taken 
under UV-light. (C) The infection with P. carotovorum QJ-1 on leaves tran-
siently expressed the lectin gene and EV for 48 h, the leaf photos were 
taken at 48 hpi. (D) Disease lesion on N. benthamiana leaves was measured 
2 d after P. carotovorum QJ-1 inoculation, one-way ANOVA, *, p < 0.05, 3 
biological replicates with 20 leaves from 6–7 plants at least for each repli-
cate. Error bars represent mean ± SD. Pa means P. aroidearum QS-1 and Pc 
means P. carotovorum QJ-1
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with P. aroidearum and P. carotovorum (Fig.  6A). Func-
tional verification indicated that the transient expres-
sion of the lectin gene in N. benthamiana decreases the 
lesion damage by P. carotovorum, demonstrating that 
the lectin gene elevates the immune response against P. 
carotovorum (Fig. 6C and D). Furthermore, a down regu-
lated lectin gene (part1transcript25085) was also selected 
to verify the function, and the same result was obtained 
(Fig. S5). Expression of the Pinellia pedatisecta lectin 
gene in transgenic wheat enhances resistance to wheat 
aphids [57]. Rice, wheat, and barley plants overexpressing 
OsJAC1, a member of Jacalin-like lectins, are resistant to 
several fungal pathogens [58]. These results demonstrate 
that the lectin genes benefit plant immunity against P. 
aroidearum and P. carotovorum, providing guidance and 
promising practices to unravel the molecular foundation 
of plant immunity.

Conclusion
Soft rot is a devastating disease in P. ternata and other 
plants, with a great impact on their yield and quality. The 
soft rot pathogens in P. ternata included P. aroidearum 
and P. carotovorum, causing varying degrees of disease. 
RNA-seq analysis of P. ternata following exposure to 
each pathogen showed that they could cause the dif-
ferential expression of a large number of cell wall mem-
brane-related genes, transport-related genes, MAPK 
pathway-related genes, and hormone response genes, and 
these regulatory networks formed the broad-spectrum 
immune mechanism of P. ternata in response to bacte-
rial diseases. However, many functional genes are spe-
cifically regulated by P. aroidearum and P. carotovorum. 
For instance, more auxin-responsive genes and growth-
related genes are induced by P. carotovorum, while more 
ethylene-responsive genes, gibberellin-responsive genes, 
and disease-resistance-related genes are regulated by P. 
aroidearum, which may be responsible for the variable 
degrees of soft rot in P. ternata. Lectins are a class of 
important proteins in P. ternata. The transient expression 
of the lectin gene indicated that the lectin protein could 
enhance plant resistance to soft rot. In this study, the 
role of lectins in plant resistance to bacterial diseases was 
investigated for the first time. Future studies will focus on 
the molecular mechanisms involved in how lectin gene 
regulate host immunity to promote the green prevention 
and control of P. ternata production.

Materials and methods
Plant and pathogen material
P. ternata “Yingshan” specimens were collected on April 
25, 2022, at Hubei University of Chinese Medicine and 
authenticated by Prof. Liu Dahui (voucher No. Ying-
shan202204), and stored in the medical plants garden 
of Hubei University of Chinese Medicine. Tissue culture 

seedlings were acclimated for 15 days in floating dishes, 
then transferred to pots and grown under controlled con-
ditions (24 °C; 12 h of light/12 hours of dark; 60% humid-
ity) for 30 days.

P. carotovorum QJ-1 and P. aroidearum QS-1 were pre-
viously isolated and identified [9], and stored at -80 ℃.

The N. benthamiana seeds used in this work were pre-
served in our laboratory in Hubei University of Chinese 
Medicine. The seeds of Nicotiana benthamiana were 
grown under standard conditions (24 °C; 12 h light/12 h 
dark photoperiod; and 60% relative humidity) in a cham-
ber for approximately 4 weeks for transient expression 
and pathogen inoculation.

The extraction of RNA and inverse transcription
Total RNA was extracted using TRIzol reagent and qual-
ity-assessed using an RNA Nano 6000 Assay Kit (Bio-
analyzer 2100, Agilent Technologies, CA, USA). Reverse 
transcription was performed using Moloney Murine Leu-
kemia Virus Reverse Transcriptase (MMLV RT; Promega, 
USA).

Library preparation and transcriptome sequencing
mRNA was purified from total RNA using poly-T oligo-
attached magnetic beads and fragmented using diva-
lent cations under elevated temperatures in First Strand 
Synthesis Reaction Buffer (5×). cDNA fragments 370 to 
420  bp in length were selected using the AMPure XP 
approach (Beckman Coulter, Beverly, USA). Libraries 
were PCR-amplified, purified using AMPure XP beads, 
pooled according to their concentration, and sequenced 
on an Illumina NovaSeq 6000 (150-bp paired-end reads).

Raw reads in fastq format were quality-checked using 
FastQC and trimmed using Trimmomatic [59]. Clean 
reads were obtained by discarding reads containing 
adapters, N bases, and low-quality reads. Simultane-
ously, Q20, Q30, and GC content of the clean data were 
calculated. All downstream analyses were based on clean, 
high-quality data.

Differentially expressed gene (DEG) analysis and 
enrichment analysis
Paired-end clean reads were mapped to the full-length 
transcript (PRJNA893095) from our previous work using 
bowtie2 with a 1% mismatch [60]. Calculations and dif-
ferentialy expression analysis (FDR < 0.05 and the |log2 
(fold change)| > 1) were performed with rsem [61]. 
The GO and KEGG analysis were conducted using the 
OmicShare tools, a free online platform for data analysis 
(http://www.omicshare.com/ tools).

PCR and qRT‑PCR
Standard PCR was performed using 2 x Es Taq Mas-
terMix (CWBIO, China). For qRT-PCR, cDNA was 

http://www.omicshare.com/
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synthesized using reverse transcriptase M-MLV (RNase 
H-) (Code No.: 2641 A) from TaKaRa with 2 µg of total 
RNA in the 20 µL reaction for reverse transcription. 
qRT-PCR was conducted using Gloria Nova HS 2X Mas-
ter Mix (RK20717; ABclonal) on a QuantStudio 12  K 
Flex Real-Time PCR system. A total of 10 µL of the mix-
ture was used for qRT-PCR, encompassing 5 µL of 2 × 
ChamQ SYBR qPCR Master Mix, 1 µL of cDNA, 0.5 µL 
of forward primer, 0.5 µL of reverse primer, and 3 µL of 
H2O. The annealing temperature was 60 °C with a total of 
35 amplification cycles in triplicate for each sample. The 
expression level of each gene was computed using the 
2−ΔΔCt approach using 18S as an internal reference gene 
[62], Primers for this analysis (Table S6) were designed 
using NCBI primer designing tools.

Plasmid constructs for transient expression
The full-length CDS of the lectin gene from P. ternata 
“Yingshan” cDNA was cloned using specific primers with 
recombinant adaptors (Table S6) according to sequences 
deposited in NCBI. An overexpression plasmid, pH7Lic-
GFP, driven by the 35S promoter (Fig. S6), underwent 
digestion with StuI, and the full-length CDS with adap-
tors was inserted into the vector with SE recombinase. 
The constructs were verified by sequencing. The empty 
vector with GFP was used as a negative control.

Agrobacterium‑mediated transient gene expression assays
Constructs were transformed into the Agrobacterium 
strain GV3101. A sample of 1  µg of plasmid mixture 
was added to 50 µL GV3101, mixed and placed on ice 
for 10  min, before being flash-frozen in liquid nitrogen 
for 5  min. The mixtures were placed in a water bath at 
37 ℃ for 5 min and placed on ice again for 5 min. This 
mixture was then added to 500 µL of liquid LB medium 
and cultured at 28 ℃ for 2 to 3 h. The liquid was evenly 
applied to a solid LB agar medium. The plates were cul-
tured on inverted plates at 28 ℃ for 2 to 3 days. Colonies 
were selected from plates and inoculated in liquid YEB 
overnight at 28  °C while being shaken. Agrobacterium 
cultures were centrifuged at 4000  rpm for 10  min, and 
the pellet was resuspended in 10 mM MES and 10 mM 
MgCl2 buffer. The OD600 was adjusted to 0.2 for agroinfil-
tration, with acetosyringone being added at a concentra-
tion of 200 mM. N. benthamiana leaves were infiltrated 
using a 1 mL syringe following wounding with a needle. 
The agroinfiltration approach followed the procedure 
outlined by Luo et al. [63].

Pathogen inoculation
P. carotovorum QJ-1 and P. aroidearum QS-1 were uti-
lized for inoculation to infect Pinellia ternata “Yingshan” 
plants, detached leaves, and N. benthamiana leaves. 
Pathogens were cultured on LB solid medium, then 

grown in LB liquid medium, centrifuged at 4000  rpm 
for 10 min, and resuspended with ddH2O to OD600 = 1.0. 
“Yingshan” plants were sprayed with the P. carotovo-
rum and P. aroidearum solutions for 0  h and 48  h. The 
detached leaves of P. ternata were inoculated with the 
P. carotovorum and P. aroidearum solutions using 10 µL 
droplets pipetted onto the surfaces of detached leaves, 
which were maintained in sealed boxes with moist tis-
sue paper. Boxes were kept in the dark for the first 24 h 
before being transferred to normal light conditions. 
Lesion diameters were assessed every 24  h. When used 
for infection after transient expression, P. carotovorum 
was inoculated 48 h after infiltration with Agrobacterium 
suspension to transiently express selected genes. Each 
group underwent triplicate experimentation, with leaves 
flash-frozen in liquid nitrogen for total RNA extraction.

Statistical analysis
One-way ANOVA was employed to analyze statistical 
significance using GraphPad Prism 8.0 software (Graph-
Pad Prism Software Inc.). The lesion-size calculation was 
represented by the mean ± SD from three independent 
experiments, while the qRT-PCR results are shown as the 
mean ± SD from three biological replicates.
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