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referred to as a CpG site [3]. From 1970 onwards, DNA 
methylation research gained momentum through both 
advances in technical methods and demonstrations of the 
functional importance of methylation within biological 
systems. Specifically, DNA methylation can regulate gene 
expression [4], and that sodium bisulphite rapidly deami-
nates cytosine residues to uracil while methylated cyto-
sine remains nonreactive [5].

The characterisation of methylation was further revo-
lutionised by Frommer et al., who employed sodium 
bisulphite DNA conversion with strand-specific PCR 
amplification and subsequent DNA sequencing via the 
dideoxynucleotide chain-termination method [6]. This 
made available, for the first time, a reliable method to 
generate accurate methylation maps at the resolution of 
single DNA strands. The bisulphite-conversion method 

Introduction
Attempts to characterise DNA methylation date back to 
the 1940s, where nucleic acids derived from calf thymus 
was separated using paper chromatography [1]. In that 
study, a small band “epi-cytosine” was identified as likely 
to be methylated cytosine, characterised by a methyl 
modification on carbon-5 of cytosine [2]. In the mamma-
lian genome, this is typically followed by guanine and is 
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Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression, and for mammals typically occurs 
on cytosines within CpG dinucleotides. A significant challenge for methylation detection methods is accurately 
measuring methylation levels within GC-rich regions such as gene promoters, as inaccuracies compromise 
downstream biological interpretation of the data. To address this challenge, we compared methylation levels 
assayed using four different Methods Enzymatic Methyl-seq (EM-seq), whole genome bisulphite sequencing 
(WGBS), Infinium arrays (Illumina MethylationEPIC, “EPIC”), and Oxford Nanopore Technologies nanopore sequencing 
(ONT) applied to human DNA. Overall, all methods produced comparable and consistent methylation readouts 
across the human genome. The flexibility offered by current gold standard WGBS in interrogating genome-wide 
cytosines is surpassed technically by both EM-seq and ONT, as their coverages and methylation readouts are less 
prone to GC bias. These advantages are tempered by increased laboratory time (EM-seq) and higher complexity 
(ONT). We further assess the strengths and weaknesses of each method, and provide recommendations in 
choosing the most appropriate methylation method for specific scientific questions or translational needs.
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continued to underpin the later emergence of epig-
enomic technologies based on DNA microarray and next 
generation sequencing (NGS) technology [7]. Microar-
rays contain oligonucleotide probes on a solid support 
which produces a fluorescent signal upon hybridisation 
of suitably labelled DNA or RNA molecules [8]. Since 
2008, Illumina have released the Infinium microarray 
design for profiling DNA methylation, with the latest of 
this technology being the Infinium MethylationEPIC 
(EPIC) BeadChip. The first version of EPIC assayed over 
850,000 human CpG sites, while the improved second 
version covers over 935,000 sites. This array format has 
probes designed to hybridise with bisulphite-treated 
DNA derived from biological samples.

The next technological milestone for understand-
ing genome-wide DNA methylation was the adaption 
of bisulphite-conversion to next-generation sequencing 
(NGS) workflows, allowing the sequencing of millions of 
DNA fragments in parallel [7]. In its early stages, NGS 
methylome studies commonly employed both complex-
ity-reduction methods such as reduced representation 
bisulphite sequencing (RRBS) [9] and whole genome 
bisulphite sequencing (WGBS) methods [10, 11]. As the 
NGS technology matured and prices fell, WGBS became 
the predominant method adopted by methylome stud-
ies. RRBS covers approximately 4  million [12, 13] while 
WGBS covers 28.2 million human CpG sites [14].

In general, there is good concordance between mea-
surement of methylation levels derived from EPIC and 
WGBS data [15]. While WGBS offers more compre-
hensive methylome coverage, exceeding by an order of 
magnitude than EPIC microarrays [15], EPIC is popular 
for epigenome-wide association studies (EWAS). EWAS 
often considers phenotypes where the significant differ-
ences in DNA methylation between study groups may 
be subtle. In these instances, larger sample sizes, and 
hence library costs per sample, is paramount. To achieve 
roughly equivalent precision as EPIC measurements, 
very high coverages (mean > 30×) from WGBS is needed, 
adding to the cost pressures. In contrast, EPIC requires 
more input DNA [16] but offers easier bioinformatic 
analysis and interpretation [17].

While both WGBS and EPIC methods are highly effec-
tive, their reliance on bisulphite conversion introduces 
some limitations. Specifically, sodium bisulphite degrades 
DNA due to depyrimidination of unmethylated cyto-
sines. These abasic sites are fragile and results in DNA 
strand breakage [18]. Consequently, WGBS typically 
yields low sequencing coverage across GC-rich regions. 
[19–21]. This is particularly problematic for characteris-
ing methylation state of key GC-rich functional regions 
of the genome, such as CpG islands. CpG islands are 
important for regulating gene expression and typically 
have abnormal methylation patterns in cancer [22–24]. 

Incorrectly interpreting the methylation state of GC-rich 
CpG islands has consequences for biological interpreta-
tion and identification of methylation biomarkers.

Two new laboratory techniques offer ways to charac-
terise methylation levels without reliance on bisulphite 
conversion, and therefore without the bias it introduces: 
Enzymatic Methyl-seq (EM-seq) [20], and direct deter-
mination of methylation levels with third-generation 
DNA sequencing technologies [25, 26]. Instead of a 
chemical approach using sodium bisulphite, EM-seq uses 
TET2, an oxidation enhancer, and APOBEC for DNA 
conversion prior to sequencing with NGS. TET2 (with 
the oxidation enhancer) protects methylated cytosines 
through an oxidation cascade reaction; APOBEC con-
verts unmethylated cytosines to uracil while protected 
methylated cytosines remain unchanged [20]. The less-
destructive enzymatic conversion yields several advan-
tages for EM-seq compared to WGBS, including more 
evenly spread dinucleotide distributions, higher cover-
age that is unbiased to GC content, and lower DNA input 
requirements [19, 20, 27].

The rapid development of third-generation sequenc-
ing techniques has opened new methods in detecting 
methylation status across longer loci. One example is 
the direct determination of cytosine methylation status 
sequenced using Oxford Nanopore Technologies (ONT) 
without prior conversion [25, 26]. The subtle difference 
in the electrical resistance generated when methylated 
and unmethylated cytosines passes through the pore is 
sufficient for machine learning techniques to produce 
a probabilistic score for the methylation status of each 
sequenced cytosine [28]. Like shorter reads, biases in 
methylation calls could result from sequence context, 
or due to imbalances in coverage. For the former, a sys-
tematic comparison of ONT methylation callers revealed 
that readout biases are largely attributable to the choice 
of methylation caller [29]. Furthermore, raw ONT base 
accuracy is slightly lower from GC-rich genomes [30] and 
from inverted duplicates [31], but this lower base quality 
has yet to be systematically linked to biases in methyla-
tion levels. For the latter, coverage from ONT reads are 
largely unaffected by local GC biases [32]; while meth-
ylation calls are mostly independent of coverage until it 
drops below 10× [29]. This motivated our efforts to inves-
tigate whether direct detection of methylated cytosines 
from ONT reads could offer a less-biased view of meth-
ylation, especially from GC-rich loci.

Although each of the technologies discussed above has 
its own strengths and weaknesses for detecting meth-
ylation, studies that conduct head-to-head comparisons 
on the same biological samples are lacking. Here, using 
matched human blood samples, we contrast genome-
wide methylation readouts from EM-seq (enzymati-
cally converted) against WGBS and EPIC microarrays 
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(both bisulphite-converted). Given that the methylation 
states of CpG islands hold significant biological impor-
tance [22–24], our primary objective was to investigate 
whether enzymatic conversion or direct readouts yield 
more accurate methylation results in GC-rich DNA—a 
known challenge for bisulphite conversion. To address 
this, we utilise a long loci (45S ribosomal DNA; ~14 kb) 
which is extremely GC-rich, to compare the relative 
performances of EM-seq, WGBS, and a further conver-
sion-free method for comparison, ONT. In addition to 
methodological advantages, we also considered practi-
cal factors such as cost and ease of use, ensuring that our 
findings provide contemporary and practical insights for 
researchers exploring these newer methods.

Results
Clinical specimens
Specimens were obtained from a previous diet study on 
the effect of fasting during a high protein, partial meal 
replacement program over a period of 16 weeks [33]. 
For this technical comparison work, DNA was extracted 
from whole bloods from two participants (WR025 and 
WR069) from two timepoints: visit 1 (t = 0, “V1”) and 
visit 9 (t = 16 weeks, “V9”) of the diet intervention, i.e., 
“WR025V1”, “WR025V9”, “WR069V1” and “WR069V9”. 
The same four samples were subsequently used in pre-
paring libraries for EM-seq, WGBS, EPIC and ONT. 
Observed methylation patterns are likely similar to those 
from typical individuals in the population with no evi-
dence of disease.

Rarefaction of EM-seq and WGBS libraries to avoid 
analytical bias
Analysis of sequencing coverage revealed that EM-seq 
libraries had higher CpG coverage than sample-matched 
WGBS libraries. The modes of WGBS libraries ranged 
from 8–12×, while EM-seq had much higher modes 
of 10–40× (Fig.  1A). To reduce degree of coverage as a 
confounding factor for inter-library comparisons, raw 
reads—pre-trimmed, pre-mapped—were rarefied to 
match the coverage of the shallowest library (166 million 
reads; see Materials and Methods). This resulted in cov-
erage patterns that were roughly equal among all libraries 
(8–10×; Fig. 1A; Supplementary File S1). All downstream 
analyses were based on these rarefied libraries.

EM-seq libraries are more consistent and better covered in 
high GC regions than WGBS
All eight libraries had a similar bimodal distribution of 
methylation beta values, with heavy concentration of beta 
around 0 and 1 (0 indicates a fully unmethylated posi-
tion, and 1 a fully methylated position; Fig.  1B), in line 
with previous observations [34]. To assess inter-library 
beta value correlations, we calculated Pearson correlation 

values from 4 million randomly sampled CpG sites. This 
analysis revealed significant positive correlations of 
methylation beta values between all samples, irrespective 
of the library preparation method (r = 0.826–0.906, all p 
values < 0.001; Fig. 1B). These results closely match those 
obtained using all 28.7  million CpG sites for Pearson 
correlation analysis, suggesting that randomly sampling 
4  million CpGs sufficiently represents the data (Supple-
mentary Fig. S1). In addition, we compared the delta 
beta values of all 28.7 million CpGs between EM-seq and 
WGBS, revealing that 95.26% of CpG sites exhibited sim-
ilar methylation values (delta beta < 0.15, Supplementary 
Fig. S2). We further separated the Pearson correlations 
values by individuals and by library type. EM-seq libraries 
had significantly higher intra-method correlations than 
WGBS (mean r ± s.e.m., 0.885 ± 0.007 versus 0.844 ± 0.007, 
two-tailed t-test p < 0.01; Fig. 1C). Also, as expected, cor-
relations of samples from the same patient (blue dots) 
were significantly higher than correlations with samples 
from different patients (red dots; 0.887 ± 0.011 versus 
0.854 ± 0.007, two-tailed t-test p < 0.05; Fig. 1C).

Read GC content in EM-seq and WGBS libraries were 
analysed to identify whether libraries had differences in 
coverage in areas of high and low GC content. In line 
with previous studies [19, 20], EM-seq had elevated 
normalised coverage compared to WGBS in high GC 
regions (55–95 GC%) while WGBS had slightly higher 
normalised coverage in low GC regions (20–35 GC%; 
Supplementary Fig. S3). In general, both libraries had low 
coverage in extreme low and high GC content regions (0 
and 100 GC%; Supplementary Fig. S3).

CpGs with significantly different betas have strand-specific 
and motif biases
We sought to identify CpG dinucleotides with significant 
beta value differences between EM-seq and WGBS librar-
ies, and better understand factors associated with large 
discrepancies in estimated DNA methylation rates. From 
28,704,358 CpGs analysed, only 124 CpGs (0.00043%) 
had significant differences in methylation betas across 
the library preparation methods (Supplementary File S2), 
indicating that both WGBS and EM-seq libraries over-
all have high CpG methylation beta concordance. We 
further analysed the discordance by clustering the beta 
values from the 124 CpGs in a heatmap with four other 
computed metrics representing strand-specific methyla-
tion, overall coverage, strand-specific coverage, and the 
immediate sequence context (3  bp either side of a CpG 
site). The clustering produced two distinct groups: one 
with significantly higher betas in WGBS than in EM-seq, 
and another vice versa (Fig. 2A).

We sought to understand whether these discordant 
CpGs had strand-specific methylation readouts that 
departed from the assumed norm of being symmetrical 
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Fig. 1 Methylation readouts from EM-seq libraries have better cross-sample correlations than WGBS libraries. (A) Original and rarefied coverages of EM-
seq libraries (solid line) compared to WGBS libraries (dashed line), coloured by sample. (B) Pearson correlation was performed on rarefied data, comparing 
individual EM-seq (ending “-ER”) and WGBS (ending “-WR”) samples for 4 million randomly sampled CpG methylation beta values. The bottom left triangle 
contains pairwise sample comparisons represented as a 2D density plot. Red lines are lines of best fit, while the background shading indicates relative 
CpG density (blue: low; yellow: high). These sample comparisons are represented as Pearson correlations in the top right triangle, with *** indicating p-
values < 0.001. The diagonal represents the distribution of CpG methylation beta values for individual samples. (C) Pearson correlation comparisons were 
separated by sample (x-axis) and grouped into EM-seq (left panel) and WGBS (right panel) library types. Comparison of samples from the same patient are 
coloured blue, while comparisons against different patients are coloured red
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(i.e., betas of Watson and Crick strands should be iden-
tical). We calculated two metrics for each CpG, one for 
beta and one for coverage, which we termed “absolute 
delta beta” and “evenness”, respectively. The former was 
calculated using the absolute differences in the strand-
specific beta values from the Watson and Crick strands. 
We observed that absolute delta betas correlated with the 

methylation state at the CpG site, irrespective of library 
type (Fig. 2A). This previous finding is likely linked to the 
latter metric “evenness”, which was calculated using the 
ratio of the maximal single-strand coverage divided by 
combined coverage. If coverage was perfectly evenly split 
across Watson and Crick, then “evenness” is 0.5; if cov-
erage was completely dominated by one strand (perfectly 

Fig. 2 Strand-specific and motif biases associated with discordant methylation readouts. (A) Beta values from CpGs that were significantly different be-
tween EM-seq and WGBS libraries clustered into two groups in a heatmap. Top annotation bars represent library type, EM-seq (green) and WGBS (purple). 
Each column represents a different library; each row represents an individual CpG site. Dinucleotides with higher betas in WGBS are above, while those 
higher in EM-seq are below. Overall and strand-specific methylation levels are represented by “Beta” and “Absolute delta beta” respectively; overall and 
strand-specific coverages are represented by “Log2 coverage” and “Evenness” respectively. Sequence logos of 8 bp CpG motifs for both groups are placed 
beside the left dendrogram, while GC% of the motifs are on the rightmost column (“Motif GC%”). White boxes in the heatmap represent missing values. 
(B) Discordant CpGs were initially split by GC% of 8 bp motifs and subsequently by library type, EM-seq (green) and WGBS (purple). Individual bins were 
plotted against coverage (top panel) and beta (bottom panel). Sequence logos for each GC% bin is shown below the x-axis
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uneven), “evenness” is 1. The majority of differentially 
methylated CpG sites had coverage confined to a single 
strand, again irrespective of library type (Fig. 2A). Finally, 
coverages appeared to be lower for CpGs with signifi-
cantly higher betas in WGBS (Fig. 2A). This suggests that 
the differential methylation readouts across both meth-
ods is an artefact resulting from coverage differences, 
where reads map asymmetrically to a single strand.

Next, we investigated whether the discordance in 
methylation readouts is linked to immediate sequence 
context. For each of the 124 CpGs, we derived an 8  bp 
motif comprising the CpG site with flanking 3  bp 
sequences (5’-NNNCGNNN-3’). Typically, CpGs with 
significantly higher betas in WGBS have motifs with high 
GC (Fig. 2A). In addition, these CpGs have a slight pro-
pensity to be flanked with “C” and “G” in the third and 
sixth positions of the motif. Conversely, CpGs with sig-
nificantly higher betas in EM-seq have motifs with lower 
GC (Fig. 2A).

To further explore whether local GC content affects 
methylation betas and coverages, the 124 significant 
CpGs were split by the GC% value of their correspond-
ing 8  bp CpG motifs (into seven bins) and by library 
preparation method (EM-seq or WGBS). EM-seq librar-
ies had overall higher median coverage and lower meth-
ylation betas than WGBS, apart from coverage for motifs 
with GC% of 25% (Fig.  2B). Furthermore, these cover-
age differences were largest in motifs with high GC 
(62.5–100%), and very low GC (25%). This relationship is 
reflected in the methylation betas, where lower coverage 
(for GC% of 62.5–100%) resulted in more binary meth-
ylation betas of 0 and 1 for WGBS, compared to EM-
seq which had a more even spread of methylation betas 
(Fig. 2B). If binary methylation betas were excluded, the 
remaining non-binary beta values were evenly distrib-
uted for EM-seq, compared to WGBS where values were 
mainly confined to betas of < 0.5. Interestingly, motifs 
with low GC (25–50%) preferred to be flanked by either 
“A” or “T” 3 bp homopolymers. Finally, motifs with 50% 
GC percentage have the most even beta and coverage 
between library preparation methods, and strong prefer-
ence for adenine in the − 1 position (5’-NNACGNNN-3’). 
Overall, there appears to be a relationship between cov-
erage and motif GC% which contributes to differences in 
methylation readouts between EM-seq and WGBS.

We also conducted a differential analysis prefiltered to 
only consider CpG sites with delta beta > 0.1 (EM-seq - 
WGBS), reducing the total from 28,031,345 to 3,576,895 
sites. The goal here was to only examine sites with some 
difference and to reduce the penalty for multiplicity cor-
rection. This filtering increased the number of significant 
sites from 124 to 292. Despite this increase, replotting the 
filtered data (see Supplementary Fig. S4) confirmed that 
the overall patterns and conclusions remain consistent: 

coverage asymmetries and motif GC% primarily drive the 
observed beta differences between EM-seq and WGBS.

EM-seq readouts do not support previously reported TET2 
biases
Echoing our motif-related observations, two recent stud-
ies have experimentally characterised the preference bias 
of TET enzymes for specific motifs surrounding meth-
ylated CpG dinucleotides [35, 36]. Specifically, TET2 (a 
component of EM-seq) has a binding preference for the 
4-mer motif 5’-MCGW-3’, where M = A/C and W = A/T. 
Biases in TET2 activity are a concern, as its failure in 
catalysing 5-methylcytosine to 5-hydroxymethylcytosine 
will lead to APOBEC converting 5-methylcytosine to 
uracil (i.e., base will be misclassified as unmethylated).

We analysed the dataset hoping to observe MCGW-
driven differences in methylation properties that is exclu-
sive to EM-seq and absent in WGBS. We were not able 
to find any meaningful differences in beta values, abso-
lute delta beta, and evenness (Supplementary Fig. S5). 
Overall, our dataset indicates that the beta readouts from 
EM-seq do not support the previously reported TET2 
preferences for MCGW.

Methylation readouts from EPIC arrays equally comparable 
to EM-seq and WGBS
Using a principal components analysis, we observed that 
the variance in betas were predominantly due to library 
preparation method, not by sample ID (Supplementary 
Fig. S6). To simplify downstream analyses, we computed 
mean betas across all four samples from each method 
(EM-seq, WGBS and EPIC; circles in Supplementary Fig. 
S6). Readouts were largely similar: strong correlations 
were observed from all three between-method pairwise 
comparisons (r > 0.96, Fig.  3A, C and E). Whilst differ-
ences are slight, the short-read methods do agree with 
each other best (r = 0.97), followed by EPIC and EM-seq, 
and lastly EPIC and WGBS (both r = 0.96). The compari-
sons involving EPIC data had the greatest departures 
from the identity line (y = x), likely due to EPIC not being 
able to report perfectly unmethylated or methylated 
betas as 0 and 1 respectively due to autofluorescence dur-
ing the scanning procedure (observed betas ranged from 
0.0059 to 0.9933), and the addition of a default “stabilis-
ing constant” of 100 to the denominator in beta calcu-
lations (which prevents division by zero, but beta will 
always be < 1).

Overall, GC% context had little-to-no influence on the 
eventual readouts of most positions common to these 
three methods. We defined local GC context as ± 50 bp 
around the methylated cytosine. Between-method meth-
ylation readouts were mostly independent of typical GC 
contexts (20–80%; Fig. 3B, D and F). At high GC (> 75%), 
EPIC overestimates methylation levels relative to both 
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EM-seq and WGBS (Fig. 3C, D, E and F); or both short-
read methods were underestimating actual methyla-
tion levels relative to EPIC. However, as there were few 
positions (n = 235) with GC% contexts of > 75%, broader 

conclusions could only be drawn from loci-specific 
experiments on a GC-rich loci.

EPIC probes were designed to target a subset of methyl-
ated CpGs in the human genome with cost-effectiveness 

Fig. 3 Per-position methylation levels assayed using EM-seq, WGBS and EPIC are well correlated and mostly independent of GC% context. (A) and (B) are 
for EM-seq vs. WGBS; (B) and (D) are for EPIC vs. EM-seq; while (E) and (F) are for EPIC vs. WGBS. Each point in the plots on the left (A, C and E) represent 
a single cytosine, and its position on the plot corresponds to the mean methylation level assayed using the method labelled on the axes. It is further 
coloured by the GC% of its local sequence context (± 50 bp) to demonstrate context-dependent biases in methylation level measurements. For each 
point, the residual (differences in assayed methylation levels) was computed and plotted against the same GC% value on the right (B, D and F). All three 
trend lines are flat and close to origin. This implies that for well-covered cytosines, methylation readouts were almost independent of GC% context that 
are typical to these three methods (20–80%). At high GC values (> 75%), methylation levels appear to be higher in EPIC than either of EM-seq or WGBS 
(more points above the trendline in D and F; red points in the top right-hand corner of C and E)
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in mind. As such, targeted positions are primarily located 
in biologically relevant and non-repetitive regions: 
mostly within gene bodies, or in promoter regions. Meth-
ylation readouts from all three methods were thus con-
trasted in a context-dependent manner (Fig.  4). Whilst 
correlation between all three methods were high in all six 
studied genomic contexts (r > 0.93), the short read meth-
ods (EM-seq and WGBS) were again in closer agreement 
than either was with EPIC (Fig.  4), like the earlier con-
text-insensitive per-position analysis.

Direct methylation calls with ONT Cas9 more similar to 
EM-seq than WGBS in GC-rich loci
Few probes in the EPIC array are designed against highly 
GC-rich regions. To systematically benchmark the per-
formance of EM-seq and WGBS in a longer GC-rich 
loci, the multicopy (~ 300) human 45S rDNA gene was 
selected; this choice also allowed for ONT to be included 
into the technical comparison. The GC% content of 
this ~ 14 kb locus is much higher than the genome mean 
(72% vs. 42%).

Our ONT Cas9 attempts achieved an estimated 
350–480-fold increase in coverage along the 45S locus 
(Methods; Supplementary File S3). Each sample had 
approximately 1,500–2,500 reads mapping to the 45S 
locus (Supplementary Fig. S7), sufficient for downstream 
methylation level calling. A principal components analy-
sis revealed that methylation levels showed more vari-
ance across methods than across biological replicates 
(Supplementary Fig. S8). The EM-seq replicates had the 

least inter-replicate variance; WGBS replicates had the 
highest. Means were separately calculated for the three 
methods and used in subsequent comparative purposes.

In terms of coverage, we observed more unique EM-
seq reads mapping to the 45S locus than WGBS (Sup-
plementary File S1). Initial sequencing depths were not 
a confounding factor, as we equalised the sequencing 
depths of all input files for this analysis. After conserva-
tively removing cytosines with coverage values of < 50, 
the remaining 3,336 positions had comparable per-posi-
tion coverages across all three methods (EM-seq mean: 
947×; WGBS mean: 567×; ONT Cas9 mean: 608×). Cov-
erage values from the short-read methods were inversely 
correlated with GC%, and EM-seq outperformed WGBS 
in terms of coverage at all measured GC% contexts (45–
95%, Fig. 5). ONT Cas9 coverages were mostly indepen-
dent of GC% due to the length of the reads, and the DNA 
being read natively without conversion or PCR amplifica-
tion (Fig. 5, Supplementary Fig. S9).

In terms of beta values, EM-seq and WGBS reported 
similar betas when the local GC surrounding the mea-
sured cytosine was < 75% (Fig. 6B). Beyond that, WGBS 
progressively overestimated (or EM-seq underestimated) 
the observed betas, leading to the preponderance of 
red points above the line-of-best-fit in Fig.  6A, and the 
“hockey-stick” appearance of Fig. 6B. Despite this, these 
two Illumina sequencing-based methods still had a higher 
overall agreement with each other (r = 0.77; Fig. 6A), than 
either with ONT Cas9 (r = 0.54–0.58; Fig. 6C and E). The 
“hockey-stick” appearance in the residual plot of EM-seq 

Fig. 4 Methylation levels are well correlated in all biologically relevant genomic contexts across EM-seq WGBS and EPIC. Positions were annotated and 
binned by their genomic contexts. The first three categories are exclusive—all positions are either in a CpG island, CpG shore, or neither. The next three 
categories are not exclusive as the human genome contains overlapping genes: a position could be in the gene body of the upstream gene, and in the 
promoter region of the downstream gene. Across all biologically relevant contexts with varying beta value and GC% ranges, the short read methods (EM-
seq and WGBS) produced beta values that were in better agreement with each other than with EPIC.

 



Page 9 of 16Guanzon et al. BMC Genomics          (2024) 25:741 

vs. ONT Cas9 was still apparent, but less well-defined 
because of the poorer general agreement (Fig.  6D). At 
high GC (> 75%), ONT readouts were intermediate of the 
two short-read methods, but the intercepts and gradient 
values on the residual plots (flatter line closer to origin) 
indicate that ONT readouts were marginally closer to 
EM-seq than WGBS (Fig. 6D and F).

Discussion
EM-seq vs. WGBS
As an alternative to bisulphite conversion of 5-methyl-
cytosines, enzymatic conversion has several advantages: 
coverages that are less affected by GC context, lower 
DNA input requirements, and preservation of intact 
DNA strands [19, 20, 27]. In our hands, WGBS and 
EM-seq beta values were strongly correlated and highly 
concordant, which corroborates with previous reports 
[20, 37]. For GC-poor regions (< 40%), the coverage dif-
ferences between EM-seq and WGBS were similar, as 
opposed to the reported 6-fold coverage difference for 
10% GC regions [19, 20]. Conversely, we observed that 
EM-seq libraries have higher coverage in GC-rich regions 
compared to WGBS, supporting previous research [19, 
20]. This finding holds biological significance, as the 
methylation of GC-rich regions, such as CpG islands and 
GC-rich repeat expansions, plays a pivotal role in can-
cer development [22–24] and monogenic disorders [38]. 
We recommend the use of EM-seq especially for studies 

focusing on GC-rich regions, as beta values estimated 
from higher coverages are more precise [39].

Whole genome analysis of 28,704,358 CpGs revealed 
that only 124 dinucleotides (0.00043%) had significantly 
different methylation betas comparing WGBS to EM-
seq.  We delved into the immediate sequence contexts 
surrounding these CpGs to elucidate possible explana-
tions for the discordance. Strand bias has been observed 
in Illumina short read data, which is an important factor 
to consider for pathologies with strand-specific methyla-
tion patterns, such as the APC gene [40]. The majority of 
differentially methylated CpG sites had biased coverage 
to a specific strand, independent of library type. This bias 
leads to inter-strand methylation differences (absolute 
delta beta values) that closely approximate the overall 
beta value of the CpG dinucleotide. Overall, coverage dif-
ferences are likely the cause of discrepancies in methyla-
tion calls between EM-seq and WGBS methods.

We hypothesised that discordant readouts could be 
the result of TET2, a key enzyme in EM-seq, which has 
reported preferences for converting specific motifs (5’-
MCGW-3’) [35, 36]. From our data, TET2 did not seem 
to display the same motif preferences (Supplementary 
Fig. S5). New England Biolabs confirmed that use of 
the combination of EM-seq enzymes (TET2, Oxidation 
Enhancer and APOBEC) have been optimised to mini-
mise sequencing bias (NEB, personal communication).

Fig. 5 Per-position coverage values across the 45S locus. EM-seq and WGBS short reads have similar coverage profiles, with coverages inversely corre-
lated with the GC% of the sequence context around the position (± 50 bp). EM-seq however outperforms WGBS across the entire loci, with less stark dips 
in coverage at high GC% regions. ONT long reads have a “cross-shaped” coverage plot as the probe-guided Cas9 machinery makes blunt end cuts on one 
end (upstream/downstream of plotted region), while the other end is fragmented in a probabilistic manner
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EPIC vs. EM-seq vs. WGBS
Microarrays are a cost-effective tool for obtaining meth-
ylation information from larger sample sizes. Methyla-
tion readouts from EPIC have been shown to strongly 
correlate with both WGBS [15, 37] and EM-seq [37], with 

correlation coefficients all exceeding 0.85 from the cited 
studies. Our work builds upon these studies by confirm-
ing the strong correlations, and further framing methyla-
tion readouts across these three methods with local GC 
context.

Fig. 6 Pairwise comparisons of per-position methylation levels across the 45S locus. (A) and (B) are for EM-seq vs. WGBS; (C) and (D) are for ONT Cas9 
vs. EM-seq; while (E) and (F) are for ONT Cas9 vs. WGBS. Each point in the plots on the left (A, C and E) represent a single cytosine, and its position on 
the plot corresponds to the mean betas assayed using the method labelled on the axes. It is further coloured by the GC% of its local sequence context 
(± 50 bp) to demonstrate context-dependent biases in methylation level measurements. For each point, the residual (differences in assayed methylation 
levels) was computed and plotted against the same GC% value on the right (B, D and F). Overall trend lines indicate that at high GC levels (> 75%), WGBS 
overestimates methylation levels relative to EM-seq, while ONT readouts are intermediate of both EM-seq and WGBS. Axes for plots in the same column 
were equalised to facilitate visual comparisons
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As the EPIC protocol uses bisulphite-converted input 
DNA, like WGBS, we anticipated that beta values from 
EPIC would be more similar to WGBS instead of EM-
seq.  We observed that EPIC–EM-seq consistently had 
fractionally higher correlation values in all analysis than 
EPIC–WGBS. These observations were recapitulated in 
a similar analysis within the Supplementary section of 
Foox et al. [37], where EPIC–EM-seq had r = 0.853 and 
EPIC–WGBS had r = 0.852 (Swift WGBS was labelled as 
“MethylSeq”). While differences are minor, coverage is 
likely the reason driving this difference. As EM-seq has 
a more uniform coverage distribution across the genome 
than WGBS [19, 20, 37], beta values from the former are 
less “digital” (weaker clustering around common frac-
tional values e.g., 0, 0.25, 0.33, 0.5, 1). This produces 
higher correlation values against “analogue” EPIC read-
outs (fluorescence readouts rarely cluster around com-
mon fractions).

For the subset of positions (n = 103,670) with sufficient 
data across all 12 datasets from three methods, betas 
were independent of window GC% (Fig. 3). However, for 
a small number of probes (n = 235) at high GC (> 75%), 
EPIC overestimates betas relative to both EM-seq and 
WGBS. This could be due to probes being cross-reactive, 
i.e., they hybridise to, and produce readouts from, off-tar-
gets elsewhere in the genome [15, 41]. Amongst the high 
GC probes, there were significantly more cross-reactive 
probes (n = 20 out of 235, 8.5%) than expected (n = 4,805 
of 103,670, 4.6%; p < 0.01, Fisher’s exact test). To deter-
mine the broader biological implications for these obser-
vations, we extended the correlation analysis by grouping 
positions by their annotated genomic contexts. Due 
to the technical limitations leading to EPIC being less 
capable to report extreme beta values (of 0 and 1), the 
GC-rich, lowly methylated CpG islands had higher beta 
readouts in EPIC than both short-read methods. Overall, 
readouts remain strongly correlated across all genomic 
contexts in all three methods (r > 0.93), with EM-seq–
WGBS having the strongest correlations.

ONT vs. EM-seq vs. WGBS
The direct detection of methylated cytosines from ONT 
reads is still undergoing rapid improvements. This is not 
limited to only improvements in hardware including 
pore chemistry and library consumables, but also soft-
ware such as modified base callers [28, 29]. Furthermore, 
recent variations in ONT sequencing e.g., Cas9-driven 
enrichment [42] and adaptive sequencing [43] provides 
alternative avenues to enrich for loci of interest, enabling 
higher coverages (and thus more accurate methylation 
readouts) for little-to-no additional effort.

By utilising an amplification-free, Cas9-driven enrich-
ment of a GC-rich rDNA loci, we were able to compare 
methylation readouts from ONT direct detection against 

EM-seq and WGBS in this challenging context. In addi-
tion, the selection of a multicopy gene resulted in cover-
ages that exceeded 500× for all three techniques, which 
increases accuracy of the methylation values. Our analy-
sis revealed that EM-seq and WGBS had coverage values 
that were inversely correlated to local GC%, with WGBS 
having much stronger dips in coverage within extremely 
GC-rich regions (Fig.  5; Supplementary Fig. S9D, S9F). 
Of importance, we observed that ONT coverages remain 
unaffected by the same GC context bias, due to the long-
read nature of this technology (Fig.  5). Previous litera-
ture also supports our findings, in the context of ONT 
sequencing of bacterial genomes with varying GC con-
tent [32]. Therefore, ONT is the optimal method for con-
ducting studies involving genomes with large variations 
in GC contexts across the genome. In addition, shallower 
sequencing (< 30× coverage) due to cost considerations 
would still provide adequately informative methylation 
readouts in GC-rich contexts.

One challenge not commonly articulated about ONT 
modified base calling is that calls are based on confi-
dence, rather than binary calls expected from sequenc-
ing converted DNA. For now, most methylation callers 
set confidence thresholds (e.g., 0–20% as unmethylated, 
20–80% as undetermined, 80–100% as methylated) to 
generate beta values for comparative purposes. For this 
work, as the comparisons involved methods that generate 
binary calls, we used the default confidence thresholds of 
megalodon to generate ONT beta values. Correlations for 
ONT–EM-seq (r = 0.58) and ONT–WGBS (r = 0.54) were 
lower than EM-seq–WGBS (r = 0.77), most likely driven 
by greater technical commonalities between EM-seq and 
WGBS. Another reason would be that ONT readouts are 
the least biased by GC-context, followed by EM-seq and 
WGBS, with the latter having the most severe bias. This 
can be seen by uncertainties in measuring betas, quanti-
fied as the discrepancies in beta values (Fig. 6B, D and F), 
rising quickly in extremely GC-rich (> 75%) contexts. The 
overestimation of betas by WGBS in GC-rich contexts is 
in line with previous work that observed greater recovery 
of fully methylated fragments than fully unmethylated 
ones after bisulphite treatment [21].

It is important to note that the calling of modified bases 
from raw ONT signals is a rapidly developing field. Beta 
values differ based on methylation caller [29] and modi-
fied base models. Our current analysis used “remora”, a 
model trained purely on synthetic datasets (M.SssI-con-
verted methylated DNA and PCR-amplified unmethyl-
ated DNA). Previously, when we used “rerio”, trained on 
a mix of WGBS data and synthetic datasets, ONT read-
outs behaved more like WGBS at extremely GC-rich 
contexts (ONT, personal communication; data available 
on GitHub). While future algorithmic refinement and 
improvement in ONT pore/chemistry could affect direct 
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detection of modified bases, we remain confident that 
ONT methylation readouts would be less affected by GC-
context biases than short-read methods.

Practical considerations across all four methods
Ultimately, the choice of detection method is dependent 
on the biological question or translational needs. We 
focused on the relative performances of each method in 
GC-rich regions due to their relevance in cancer biology 
[22–24] and monogenic disorders [38]. We recommend 
selecting the method which is most cost-efficient and 
produces the highest quality data, especially when the 
question or need does not involve GC-rich regions. For 
brevity, this comparison is presented as a table (Table 1).

To conclude, both EM-seq and WGBS produces con-
cordant methylation readouts, making either method 
a reliable choice for obtaining accurate data across the 
majority of cytosines in most genomes. While construc-
tion of EM-seq libraries is more time-consuming, they 
offer enhanced accuracies for readouts in GC-rich loci or 
genomes. On the other hand, EPIC presents a more cost-
effective option, with the limitation of interrogating a 
smaller, predetermined set of positions in specific organ-
isms. For researchers seeking unbiased coverage and 
rapid results, ONT emerges as a promising technology, 

particularly suitable for extremely GC-rich loci. However, 
it should be noted that ONT requires a slightly higher 
level of laboratory expertise and its analytical pipelines 
are still in the process of maturation.

Methods
Human ethics approval
Whole blood samples were collected from participants 
for a previous study that studied the dietary effects of 
fasting during a high protein, partial meal replacement 
program [33]. This trial was registered with the Aus-
tralian New Zealand Clinical Trials Registry (http://
www.anzctr.org.au; ACTRN12616000110482, registered 
2/2/2016). Approval for this study is covered by CSIRO 
Health and Medical Human Research Ethics Committee 
(05/2015 and 2021_121_LR).

Sample collection and DNA extraction
Four whole blood samples were obtained from two par-
ticipants, WR025 and WR069 (both females, aged 32 and 
28 respectively), at two collection timepoints: V1, at the 
start of the study and V9, 16 weeks into the study. Sam-
ples were labelled with participant ID and visit ID, i.e., 
“WR025V1”, “WR025V9”, “WR069V1” and “WR069V9”.

Table 1 Picking the right tool for the job. Practical considerations involved in all four methods, as well as their relative strengths and 
weaknesses
Criteria EM-seq WGBS EPIC ONT
Flexibility in DNA 
conversion

NEB-only Any bisulphite conversion kit N/A

Flexibility in library 
construction

NEB-only More options Illumina-only ONT-only

Flexibility in 
sequencing

Illumina-only Depends on library type Illumina-only ONT-only

Experimental 
complexity

Well-established protocols which can be performed by trained scientists. Protocols actively being developed 
and slightly more complex.

Data analysis 
complexity

Robust and mature packages/pipelines available. Pipelines are still in flux.

Turnaround time 
(from DNA extracts)

2–4 days 3 days 1–2 days (data is streamed)

Relative costs (per 
sample)

$$ $$$ $ $$  (for ONT Cas9)
$$$$$ (for whole genome)

Strengths Cheaper than WGBS. Cover-
age more evenly distributed 
across genome. Data quality 
better from GC-rich loci than 
WGBS.

Easier to compare against 
publicly available data (most 
are WGBS/RRBS). Bisulphite 
conversion (without library 
building) cheaper than 
enzymatic conversion, bet-
ter suited for translation into 
amplicon-based assays.

Very cost effective 
for getting a subset 
of methylated and 
biologically relevant 
positions across more 
samples. Ideal for 
model organisms.

Almost unbiased coverage regardless 
of context. Quickest turnaround time. 
Least affected by GC-context biases.

Weaknesses Increased laboratory time 
than WGBS. Comparisons 
against existing data should 
consider readout divergenc-
es at GC-rich loci.

Coverage and methylation 
readouts biases very pro-
nounced at GC-rich loci.

Not very practical for 
non-model organisms. 
Custom panels possible 
but less cost effective 
and less reliable.

Higher inputs required.
Methylation data from whole genome 
possible, but more costly. Methyla-
tion calls are not binary, unlike bulk 
of existing data. Higher complexity in 
sequencing and in analysis.

http://www.anzctr.org.au
http://www.anzctr.org.au
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DNA was extracted from approximately 3 ml of whole 
blood using the Gentra Puregene Blood Kits (#158,467; 
Qiagen, Hilden, Germany), following the “Whole Blood” 
subsection in the manufacturer-provided handbook. The 
optional RNase digestion step was carried out with the 
kit-provided RNase A solution. DNA quality and yields 
were assessed on a NanoDrop 1000 and Qubit 4 Fluo-
rometer with Qubit dsDNA BR Assay kit (Thermo Fisher 
Scientific, Waltham, MA).

Genome-wide/loci-specific methylation profiling with 
EM-seq and WGBS
For each sample, 1 µg of genomic DNA was pooled with 
1:20 dilutions of unmethylated lambda (1 µl of 0.1 ng/µl) 
and methylated pUC19 control DNA (1 ul of 0.005 ng/µl) 
from the EM-seq kit (E7120L; NEB, Ipswich, MA). Vol-
umes were made up to 50 ul with 0.1x TE buffer (Sigma-
Aldrich, Burlington, MA). The pooled DNA samples were 
sheared to an average insert size of approximately 350 bp 
to 400 bp, using a Bioruptor (UCD400; Diagenode, Den-
ville, NJ) on the high setting for 20–35 cycles (30  s on, 
30  s off). Sheared DNA were run on a gel, and samples 
were subjected to additional shearing cycles if they were 
not sufficiently sheared. DNA concentrations were again 
quantified with a Qubit 4 Fluorometer (Thermo Fisher 
Scientific, Waltham, MA) to ensure DNA inputs for 
library creation were consistent across samples.

For EM-seq, 200 ng of sheared DNA was processed 
using the NEBNext Enzymatic Methyl-seq Kit (E7120; 
NEB, Ipswich, MA) following the manufacturer’s instruc-
tions for large insert libraries. For WGBS, 100 ng of 
sheared DNA was bisulphite-converted using the EZ 
DNA Methylation-Gold Kit (D5005; Zymo Research, 
Irvine, CA). Subsequently, the converted total DNA was 
processed using the Accel-NGS Methyl-Seq DNA Library 
Kit (#30,024; Swift Biosciences, Ann Arbor, MI). EM-seq 
and WGBS libraries were quantified using the KAPA 
library quantification kit (KK4854; Roche Molecular Sys-
tems, Pleasanton, CA) and pooled in equimolar amounts. 
Pooled libraries were sequenced using the NovaSeq 
6000 S4 2 × 150 bp flowcell (Illumina, San Diego, CA) at 
the Ramaciotti Centre for Genomics (UNSW, Sydney, 
Australia), aiming for 30× coverage in perfectly pooled 
samples.

Analyses comparing WGBS against EM-seq in e.g., 
mapping rates, coverages, dinucleotide compositions, 
and per-position methylation levels are confounded by 
sequencing depth—for example, beta values are more 
accurate with greater sequencing depths. To remove this 
confounding effect, we equalised the sequencing depths 
of all short-read datasets used in this work to the shal-
lowest one (166,282,895 reads). This rarefaction was car-
ried out with a Python script (https://github.com/lyijin/

common/blob/master/subsample_fastq.py), prior to read 
trimming.

The rarefied FASTQ files were processed using a self-
written pipeline in Snakemake (https://github.com/lyijin/
bismsmark) on the CSIRO High Performance Comput-
ing clusters. The pipeline depends on bismark v0.23.1 
[44] and trim-galore v.0.6.7 (https://github.com/FelixK-
rueger/TrimGalore), while automatically applying tool-
author-recommended command-line flags to deal with 
quirks associated with each method (https://github.com/
FelixKrueger/Bismark/tree/master/Docs). For the WGBS 
datasets, the low-complexity bases added by the adaptase 
in the Accel-NGS kit necessitates the trimming of 10 bp 
from both ends of R1 and R2, and another 5 bp from off 
the 5’ end of R2 (i.e., 15 bp in total on the 5’ end of R2). 
For the EM-seq datasets, as the method-specific flags 
were added during manuscript preparation, they were 
treated as normal bisulphite-seq data: no special flags 
during trimming, but during extraction of methylation 
levels, methylation information in the first two bases on 
the 5’ end of R2 were discarded.

Genome-wide methylation levels were obtained by 
mapping the data (with default parameters) against the 
human GRCh38 patch 13 genome (https://www.ncbi.
nlm.nih.gov/assembly/GCF_000001405.39/) with ALT 
and unplaced contigs removed. This was chosen as the 
updated Infinium MethylationEPIC array annotations 
(next section) is based on this version, allowing for com-
parisons that are free of annotation differences.

Loci-specific methylation levels were mapped against 
KY962518, a more modern 45S reference sequence pro-
duced with single-molecule sequencing [45], instead of 
U13369 that was pieced together from Sanger sequencing 
data from multiple labs [46]. The full KY962518 sequence 
contained a ~ 13  kb transcribed region and a ~ 32  kb 
intergenic spacer. As we were interested in methylation 
in the former region, we modified the sequence by plac-
ing the last 1  kb of the intergenic spacer (putative pro-
moter region) in front of the ~ 13 kb transcribed region, 
and discarded the remaining ~ 31 kb of intergenic spacer. 
To deal with the slightly heterogenous rDNA reads aris-
ing from 45S genes that are not fully identical [47], we 
relaxed mapping parameters with --score-min L,0,-0.6 
(bismark default is L,0,-0.2), which allowed reads with 
more mismatches to map to the 45S reference sequence. 
This resulted in higher coverages across the locus, and in 
most CpG dinucleotides, the methylation levels of cyto-
sines on the Watson strand was closer to that on the 
Crick strand (more concordant methylation levels on 
both strands; data not shown).

Code written to parse bismark intermediate files into 
tabular form is at https://github.com/lyijin/cpgberus/
tree/master/04_parse_bismark_covs, and code for EM-
seq to WGBS statistical comparisons analysed using 

https://github.com/lyijin/common/blob/master/subsample_fastq.py
https://github.com/lyijin/common/blob/master/subsample_fastq.py
https://github.com/lyijin/bismsmark
https://github.com/lyijin/bismsmark
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/Bismark/tree/master/Docs
https://github.com/FelixKrueger/Bismark/tree/master/Docs
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
https://github.com/lyijin/cpgberus/tree/master/04_parse_bismark_covs
https://github.com/lyijin/cpgberus/tree/master/04_parse_bismark_covs
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bsseq (version 1.22.0) [48] and DSS R packages (version 
2.34.0) [49] is at https://github.com/lyijin/cpgberus/tree/
master/05_CpG_sequence_context with no smooth-
ing or coverage cut-offs. The DSS package models count 
methylation data using a Beta-Binomial distribution, 
where biological variations are represented by the dis-
persion parameter. These dispersion parameters are esti-
mated using a shrinkage estimator based on a Bayesian 
hierarchical model. Subsequently, a Wald test is con-
ducted at each CpG site [49]. Code that investigated 
potential MCGW-driven biases in EM-seq readouts is 
at https://github.com/lyijin/cpgberus/tree/master/13_
check_mcgw_emseq_wgbs. Figures 1 and 2 were plotted 
using ggplot2 (version 3.3.3) [50], GGally (version 2.1.1) 
https://github.com/ggobi/ggally, ComplexHeatmap (ver-
sion 2.2.0) [51] and motifStack (version 1.30.0) [52].

Genome-wide methylation profiling with Illumina 
MethylationEPIC arrays
High molecular weight DNA (500–1,000 ng) was sent to 
the Australian Genome Research Facility (AGRF), Mel-
bourne, Australia. DNA was subjected to bisulphite con-
version, and methylation levels of over 850,000 sites were 
assayed with the Infinium MethylationEPIC BeadChip 
(Illumina, San Diego, CA).

Following receipt of data, the methylation levels asso-
ciated with the four samples “WR025V1”, “WR025V9”, 
“WR069V1” and “WR069V9” were extracted using code 
documented in https://github.com/lyijin/cpgberus/tree/
master/02_process_methepic_data. Raw data was sub-
jected to noob correction [53] and then the beta values 
extracted and annotated with the Illumina manifest v1.0 
B5 GRCh38 genome positions to maintain compatibility 
with WGBS and EM-seq read mapping. Some array fea-
tures were discarded. These included 990 probes noted as 
high variability after a manufacturing change, 38 probes 
that did not have a GRCh38 genome location, 1,407 
probes missing from the v1.0 B5 manifest and 36 pairs of 
probes mapping to the same GRCh38 coordinates. Illu-
mina also supplied the genome coordinates as 0-based, 
so these were adjusted to 1-based coordinates.

Three-way analysis of EPIC, EM-seq and WGBS data
The nature of the readouts was a key consideration in this 
three-way analysis: methylation readouts from EPIC were 
more “analogue”; while EM-seq and WGBS were more 
“digital” (e.g., methylation beta values of 0.50 are more 
common for the short-read methods than EPIC, as this 
results from having equal numbers of methylated and 
unmethylated reads). To reduce this “digital” effect, we 
picked positions that were covered ≥ 5 times in 3 of 4 EM-
seq samples and similarly ≥ 5 times in 3 of 4 WGBS sam-
ples. This cut-off was stringent enough to minimise the 
“digital” effect, and fits with observations where gains in 

sensitivity is greatest going from 1× to 5× [54] yet lenient 
enough in not forcing all 4 samples to require the mini-
mum 5× coverage that allowed for more positions for 
downstream analysis. Coverage values in WGBS samples 
were consistently lower than those for EM-seq: 27.6 mil-
lion positions were covered ≥ 5 times in 3 of 4 EM-seq 
samples, while 12.4  million positions were covered ≥ 5 
times in 3 of 4 WGBS samples. When further intersected 
with the > 850,000 positions from EPIC, we ended up 
with a common set of n = 103,670 positions with suf-
ficient coverage for all downstream analysis. For these 
positions, the overall mean coverages from both short-
read methods were comparable: 7.59 for EM-seq, 6.70 
for WGBS. Our analysis proceeded with the assumption 
that this gap in coverage did not overly influence the per-
position mean betas.

Code written to perform the three-way analysis of 
EPIC, EM-seq and WGBS data are available at https://
github.com/lyijin/cpgberus/tree/master/14_methepic_
vs_emseq_wgbs. Code used to annotate genomic context 
of probed positions in MethylationEPIC arrays utilised 
parsed databases generated with code at https://github.
com/lyijin/cpgberus/tree/master/01_txdb.

Loci-specific methylation profiling with ONT Cas9
CRISPR/Cas9 targeted sequencing was carried out using 
the Cas9 Sequencing Kit (SQK-CS9109; ONT, Oxford, 
UK) following the then-most recently available protocol 
(CAS_9106_v109_revC_16Sep2020) with modifications 
(Ramaciotti Centre for Genomics, UNSW Sydney, Aus-
tralia). 1.25  µg of unsheared DNA from the same four 
samples, i.e., “WR025V1”, “WR025V9”, “WR069V1” and 
“WR069V9”, were used in this experiment. The dephos-
phorylating genomic DNA incubation time was increased 
to 20 min, and during the cleaving and dA-tailing DNA 
step, incubation was performed for 15 min.

To enable multiplexing of the four samples on one 
GridION flow cell, native barcoding was then performed 
(SQK-NBD114; ONT, Oxford, UK) as per the Cas9-tar-
geted native barcoding protocol (Cas_native-v15). After 
barcoding and clean-up, all four samples were pooled in 
equal volume. Due to native barcoding been used, the 
adapter within the adapter ligation step was changed 
from the AMX adapter mix to AMII Adapter mix (sup-
plied within SQK-NBD114).

Following manufacturer recommendations, probes 
were designed for this experiment using CHOPCHOP 
v3 [55] to target the conserved regions upstream and 
downstream of the 45S gene (Table 2). Notably, we dis-
regarded ONT’s recommendation to pick probes with 
MM0 = 0, i.e., there should not be perfect matches to 
other parts of the genome. This is because the protocol 
assumes that experimenters are dealing with single-copy 
genes, with an MM0 of 0 implying no off-target events. 

https://github.com/lyijin/cpgberus/tree/master/05_CpG_sequence_context
https://github.com/lyijin/cpgberus/tree/master/05_CpG_sequence_context
https://github.com/lyijin/cpgberus/tree/master/13_check_mcgw_emseq_wgbs
https://github.com/lyijin/cpgberus/tree/master/13_check_mcgw_emseq_wgbs
https://github.com/ggobi/ggally
https://github.com/lyijin/cpgberus/tree/master/02_process_methepic_data
https://github.com/lyijin/cpgberus/tree/master/02_process_methepic_data
https://github.com/lyijin/cpgberus/tree/master/14_methepic_vs_emseq_wgbs
https://github.com/lyijin/cpgberus/tree/master/14_methepic_vs_emseq_wgbs
https://github.com/lyijin/cpgberus/tree/master/14_methepic_vs_emseq_wgbs
https://github.com/lyijin/cpgberus/tree/master/01_txdb
https://github.com/lyijin/cpgberus/tree/master/01_txdb
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In our case, the GRCh38 genome contained ~ 10 copies 
of 45S of varying lengths across 5 chromosomes. The rec-
ommendation for MM1 and MM2 to both be 0 was still 
followed, to reduce likelihood of off-target (non-45S-tar-
geting) events. Libraries constructed from the four sepa-
rately barcoded DNA and common probes were then 
sequenced in a multiplexed manner on a single GridION 
flow cell (R9.4.1; ONT, Oxford, UK).

Per-base methylation levels were directly called from 
PASS-quality ONT reads in the respective FAST5 files 
using an ONT-authored tool, megalodon v2.4.2 (https://
github.com/nanoporetech/megalodon). This tool had 
two dependencies, guppy v5.0.14 (from https://com-
munity.nanoporetech.com/downloads, requires login) 
and remora v0.1.2 (https://github.com/nanoporetech/
remora). The setting up of megalodon to utilise GPUs on 
the CSIRO cluster for faster calls, and the hacks needed 
to perform calls on a per-barcode basis (not supported 
by default), is documented at https://github.com/lyijin/
cpgberus/tree/master/06_process_ont_data.

Due to the multi-kb nature of the reads, the 45S refer-
ence sequence (modified KY962518) used for the short 
WGBS and EM-seq was not appropriate in the mapping 
of these long reads. We constructed another modified 
KY962518 sequence where we transposed the last 11 kb 
of the sequence to the start of the sequence (i.e., the 
12,345th base from the 5’ end of this modified reference 
would be the 2,345th bp in the one used for short reads, 
and 1,345th in the original KY962518 sequence).

To avoid confusing readers, the choice of reference 
sequences has been masked in analyses and plots by 
making sure the transcribed regions of all reference 
sequences start at + 1, i.e., treating the first 11 kb of the 
long-read reference as -11,000 to -1, and treating the first 
1 kb of the short-read reference as -1,000 to -1.

Code written for the loci-specific analysis is available 
at https://github.com/lyijin/cpgberus/tree/master/15_
ont_minimap2_coverage and https://github.com/lyijin/
cpgberus/tree/master/16_loci_specific_three_way.
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