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Abstract 

Background  Pulmonary arterial hypertension (PAH) is a devastating chronic cardiopulmonary disease with-
out an effective therapeutic approach. The underlying molecular mechanism of PAH remains largely unexplored 
at single-cell resolution.

Methods  Single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database 
(GSE210248) was included and analyzed comprehensively. Additionally, microarray transcriptome data including 15 
lung tissue from PAH patients and 11 normal samples (GSE113439) was also obtained. Seurat R package was applied 
to process scRNA-seq data. Uniform manifold approximation and projection (UMAP) was utilized for dimensional-
ity reduction and cluster identification, and the SingleR package was performed for cell annotation. FindAllMarkers 
analysis and ClusterProfiler package were applied to identify differentially expressed genes (DEGs) for each cluster 
in GSE210248 and GSE113439, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome 
(KEGG) were used for functional enrichment analysis of DEGs. Microenvironment Cell Populations counter (MCP coun-
ter) was applied to evaluate the immune cell infiltration. STRING was used to construct a protein-protein interaction 
(PPI) network of DEGs, followed by hub genes selection through Cytoscape software and Veen Diagram.

Results  Nineteen thousand five hundred seventy-six cells from 3 donors and 21,896 cells from 3 PAH patients 
remained for subsequent analysis after filtration. A total of 42 cell clusters were identified through UMAP and anno-
tated by the SingleR package. 10 cell clusters with the top 10 cell amounts were selected for consequent analysis. 
Compared with the control group, the proportion of adipocytes and fibroblasts was significantly reduced, while CD8+ 
T cells and macrophages were notably increased in the PAH group. MCP counter revealed decreased distribution 
of CD8+ T cells, cytotoxic lymphocytes, and NK cells, as well as increased infiltration of monocytic lineage in PAH lung 
samples. Among 997 DEGs in GSE113439, module 1 with 68 critical genes was screened out through the MCODE 
plug-in in Cytoscape software. The top 20 DEGs in each cluster of GSE210248 were filtered out by the Cytohubba 
plug-in using the MCC method. Eventually, WDR43 and GNL2 were found significantly increased in PAH and identified 
as the hub genes after overlapping these DEGs from GSE210248 and GSE113439.
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Conclusion  WDR43 and GNL2 might provide novel insight into revealing the new molecular mechanisms 
and potential therapeutic targets for PAH.

Keywords  Hub gene, WDR43, GNL42, Pulmonary arterial hypertension, Single-cell sequencing, GEO

Introduction
Pulmonary artery hypertension (PAH) is a chronic severe 
progressive cardiopulmonary disease characterized by 
pulmonary arterial pressure elevation and right ven-
tricular hypertrophy [1]. The prevalence of PAH is 10.6 
per million adults in America nowadays [2]. Despite the 
benefits of treatments targeting nitric oxide, prostacyclin, 
and endothelin pathways to delayPAH progression and 
improve survival, only lung transplantation is consid-
ered a curative approach [3]. PAH remains an incurable 
chronic disease with a poor prognosis [4]. Vasoconstric-
tion, obstructive pulmonary vasculopathy characterized 
by hyperproliferation and anti-apoptosis phenotype of 
PASMCs, excessive fibrosis, inflammation, thrombosis, 
and altered mitochondrial metabolic all participated in 
the mechanisms implicated in PAH [5]. However, there 
remains largely unexplored on the pathogenesis of PAH. 
Therefore, systematic analysis of the function of different 
cell types in the pulmonary tissue of PAH patients might 
help deepen understanding of the pathological mecha-
nism of PAH.

Microarray transcriptome has been increasingly and 
widely used to examine gene expression in PAH [6, 7]. 
However, data of microarray transcriptome represents 
the average gene expression amounts of various cells at 
the whole level of tissue [8]. Lung tissues contain vari-
ous cell types, including smooth muscle cells, endothelial 
cells, fibroblasts, immune cells, inflammatory cells, etc. 
They play different roles throughout the development 
of PAH. Currently, a novel single-cell RNA sequencing 
(scRNA-seq) technology is emerging to investigate cell 
heterogeneity, characterize each cell subpopulation, and 
putative intracellular communication [9, 10]. This inno-
vative technology has advanced our understanding of 
PAH at the cell subpopulation level. scRNA-seq has been 
carried out in lung samples of both PAH rodent models 
and PAH patients. Previous research reported NF-κB 
signaling activation in immune cells of monocrotaline 
and hypoxia-induced PH rat model [11]. Based on the 

scRNA-seq data of lung ECs from hypoxic pulmonary 
hypertension mice, Julie and his colleagues indicated 
CD74 was involved in the regulation of endothelial cell 
proliferation and barrier integrity [12]. However, scRNA-
seq data on PAH is relatively small and still in its infancy 
currently.

In the present study, integrated bioinformatics analysis 
of scRNA-seq and microarray transcriptome data from 
the GEO dataset was analyzed to identify the hub genes 
in PAH. Differentially expressed genes (DEGs) from 
GSE210248 and GSE113439 were identified and common 
DEGs were selected. Protein-protein interaction network 
(PPI) network was constructed using the aforementioned 
DEGs, followed by hub gene selection through Cytoscape 
software. Finally, GNL2 and WDR43 were identified as 
hub genes, which might provide new insight into the 
pathogenesis of PAH and act as novel candidates and 
therapeutic targets for PAH.

Materials and methods
Data acquisition
Data were all processed and analyzed by R software (Ver-
sion 4.3.0). Both scRNA-seq (GSE210248) and microar-
ray transcriptome (GSE113439) data were obtained from 
the Gene Expression Omnibus (GEO, http://​www.​ncbi.​
nlm.​nih.​gov/​geo/) database [13] and downloaded through 
the GEO query package (Version 2.68.0). GSE210248 and 
GSE113439 were selected in the current research because 
the samples in the two datasets were obtained from the 
lung/pulmonary arteries of participants with pulmonary 
hypertension, rather than the PAH rodent model. Addi-
tionally, GSE11339 has a relatively large The details of the 
two datasets enrolled in this study were listed in Table 1. 
The GSE210248 scRNA-seq data and GSE113439 array 
data were generated on GPL20301 Illumina Hiseq 4000 and 
GPL6244 Affymetrix Human Gene 1.0 ST Array platform, 
respectively. GSE210248 data included pulmonary arteries 
from 3 PAH patients and 3 healthy donor control. The data-
set contains 19,576 cells from the control group and 22,704 

Table 1  Overview of the enrolled datasets in the current study

Datasets Type Platform Sample size (PAH/
Control)

Cells (Control/HPH)

GSE210248 scRNA sequencing GPL20301 Illumina Hiseq 4000 3/3 19,576/22704

GSE113439 microarray GPL6244 Affymetrix Human Gene 1.0 ST 
Array

15/11 -

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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cells from the PAH group. The data of GSE113439 included 
fresh frozen lung samples from the recipients’ organs of 15 
PAH patients and 11 normal lung samples obtained from 
tissue flanking lung cancer resections.

Processing of scRNA‑seq data
Seurat package (Version 4.3.0) was used for quality control. 
Cells with 200–2500 genes and < 5% mitochondrial genes 
were selected for consequent analysis. A total of the 19,576 
cells in control group and 21,896 cells in the PAH group 

were screened out for analysis. Data of genes was further 
normalized using the “LogNormalize” method and further 
scaled. Then, the top 2000 highly variable genes (HVGs) 
were identified by the FindVariableFetures function with 
the “vst” method. Subsequently, principal component 
analysis (PCA) was applied to identify significant principal 
components (PCs), and the p-value was visualized using 
the JackStraw and ScoreJackStraw functions. Uniform 
manifold approximation and projection (UMAP) was uti-
lized for dimensionality reduction with 20 PCs and cluster 

Fig. 1  Single-cell RNA sequencing analysis of GSE210148 in PAH. A The features, counts, and mitochondrial gene percentage of each sample. 
B Correlation between genes and counts in each sample. C HVGs were colored in red, and the top 10 HVGs were labeled. D PCs selection using 
JackStraw function. E Heatmap of top 10 DEGs in each cluster. The top 10 DEGs were labeled in yellow color
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Fig. 2  Clustering and annotation of single-cell RNA sequencing data. A UMAP visualization of PAH and donor groups. B UMAP visualization 
for the top 10 cell clusters. C UMAP visualization for the top 10 cell clusters in PAH and donor group. D Cluster distribution with the average cell 
number and cell proportion in each sample
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identification across these cells. “Harmony” R package was 
used for batch correction to avoid the batch effect of sample 
identity which might disrupt the downstream analysis [14]. 
SingleR package (Version 2.2.0) [15] was utilized for cell 
annotation according to the reference datasets HumanPri-
maryCellAtlasData [16] and BlueprintEncodeData [17]. 
FindAllMarkers analysis with |log2 fold change (FC)|> 1 
and adjusted p value < 0.05 were performed to screen out 
the differentially expressed genes (DEGs) for each cell clus-
ter. scRNAtoolVis package (Version 0.0.5) was performed 
to display the top DEGs and visualized by jjvolcano.

Processing of microarray transcriptome data
DEGs between the control and PAH groups with an 
adjusted p value < 0.05 were screened out using the limma 
package (Version 3.56.2) [18]. All DEGs were visualized 
using the volcano plot and the top 50 DEGs were visual-
ized through the heatmap plot in the “ggplot2” package.

Functional enrichment analysis
Gene Ontology (GO) [19] and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [20] analysis were carried 
out by the clusterprofiler package [21]. GO enrichment 
included 3 subontologies: biological process (BP), molec-
ular function (MF), and cellular component (CC) [19]. 
P < 0.05 is considered statistically significant.

Microenvironment Cell Populations counter (MCP counter)
The infiltration of microenvironment immune cells 
including B lineage, CD8 T cells, cytotoxic lymphocytes, 
endothelial cells, monocytic lineage, myeloid dendritic 
cells, neutrophils, NK cells, and T cells was quanti-
fied through the MCP counter (Version 1.2.0) based on 
scRNA-seq data [22].

PPI network construction and identification of hub genes
DEGs in scRNA-seq and microarray transcriptome data 
were screened by FindAllMarkers analysis in the Seurat 

package and the limma package. Subsequently, protein–
protein interaction (PPI) networks were constructed 
for the prediction of internal connection among the 
picked DEGs using the STRING database (Version 11.5, 
https://​string-​db.​org/) with an interaction conference 
score set to 0.4 [23]. Then, hub genes were screened 
out and network visualization was performed using 
Cytoscape software (Version 3.10.0) [24]. The Molecu-
lar Complex Detection (MCODE) plug-in was used to 
build clustering function modules in the PPI network. 
Then, the CentiScaPe plug-in was used to calculate the 
degree, betweenness, and centroid value of each gene 
within the network. CytoHubba plug-in was used for 
ranking nodes in the target network using Maximal 
Clique Centrality (MCC) methods. The Venn diagram 
was produced by the jvenn website (https://​jvenn.​toulo​
use.​inrae.​fr/​app/​examp​le.​html) for gene overlapping 
and common gene selection.

Results
ScRNA profiling in PAH
The scRNA-seq data of GSE210248 was downloaded 
from the GEO database and analyzed through R soft-
ware. In general, 42,280 cells comprising 19,576 cells from 
donors (control) and 22,704 cells from PAH patients were 
included. After filtrating improper gene amounts or mito-
chondrial genes ≥ 5%, 19,576 cells from donors and 21,896 
cells from PAH patients remained. Figure  1A presented 
the expression characteristics of each sample. As shown 
in Fig. 1B, nCount_RNA (the number of unique molecular 
identifiers) was positively correlated with nFeature_RNA 
(the number of genes) with a correlation coefficient of 
0.93. Figure  1C displayed and labeled the top 10 HVGs: 
SFTPC, CCL21, SFTPA1, IGKC, STFPA2, STFPB, PGC, 
TPSB2, TPSAB1, S100A12. The top 20 PCs identified by 
PCA were visualized by JackStrawPlot (Fig. 1D). In addi-
tion, the top 10 DEGs in each cluster were presented by 
heatmap and labeled in yellow (Fig. 1E).

Table 2  Cell numbers in each cluster

Sample Donor 1 Donor 2 Donor 3 PAH 1 PAH 2 PAH 3

Adipocytes 3260 21 769 28 179 309

CD4+ T-cells 22 11 40 15 169 179

CD8+ T-cells 32 73 231 129 912 3579

Chondrocytes 171 5 29 2 60 310

Endothelial cells 255 30 484 21 145 139

Epithelial cells 114 2 162 16 0 31

Fibroblasts 1642 32 187 24 60 150

Macropages 348 21 74 23 156 1190

Monocytes 1221 66 592 38 351 789

NK cells 20 8 350 29 43 161

https://string-db.org/
https://jvenn.toulouse.inrae.fr/app/example.html
https://jvenn.toulouse.inrae.fr/app/example.html
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Table 3  The top 10 DEGs in each cell cluster between control and PAH group

cluster p_val avg_log2FC pct.1 pct.2 p_val_adj gene

NK cells 3.23E-57 2.07039378 0.952 0.339 6.32E-53 GZMB

NK cells 4.92E-50 2.0951293 0.722 0.064 9.63E-46 SFTPC

NK cells 1.60E-46 2.04057065 0.78 0.133 3.14E-42 FGFBP2

NK cells 8.08E-34 1.62372396 0.738 0.202 1.58E-29 SPON2

NK cells 5.62E-29 1.46648213 0.759 0.292 1.10E-24 HOPX

NK cells 2.47E-22 1.79013003 0.347 0.009 4.83E-18 S100A8

NK cells 4.38E-21 1.50916294 0.392 0.039 8.57E-17 S100A9

NK cells 1.65E-20 2.35866194 0.37 0.039 3.23E-16 PTGDS

NK cells 4.32E-19 1.80928128 0.286 0 8.45E-15 PLA2G2A

NK cells 4.38E-08 1.38693313 0.799 0.742 0.00085751 CCL3

Macrophages 4.67E-280 4.03072278 0.77 0 9.15E-276 ATP5E

Macrophages 4.20E-278 3.95218871 0.765 0 8.22E-274 GPX1

Macrophages 2.48E-270 3.22972958 0.747 0 4.85E-266 GNB2L1

Macrophages 2.95E-250 2.89671615 0.7 0 5.78E-246 ATP5L

Macrophages 5.45E-239 2.66855548 0.673 0 1.07E-234 C14orf2

Macrophages 2.78E-223 2.64832443 0.634 0 5.45E-219 TCEB2

Macrophages 2.08E-137 3.4251223 0.411 0 4.07E-133 SEPP1

Macrophages 1.86E-113 3.58695812 0.53 0.07 3.65E-109 CCL2

Macrophages 9.23E-66 2.85414508 0.359 0.053 1.81E-61 FABP4

Macrophages 3.97E-43 2.54189771 0.474 0.202 7.78E-39 CD524

Fibroblasts 2.28E-100 3.61565966 0.845 0 4.46E-96 GNB2L17

Fibroblasts 3.82E-92 4.6633342 0.863 0.077 7.47E-88 PLA2G2A8

Fibroblasts 8.51E-92 3.07543157 0.804 0 1.67E-87 SELM6

Fibroblasts 1.74E-90 2.69884577 0.948 0.244 3.42E-86 CFD8

Fibroblasts 1.34E-87 2.85203685 0.783 0 2.62E-83 ATP5E7

Fibroblasts 4.21E-73 2.7374571 0.827 0.179 8.24E-69 MFAP55

Fibroblasts 7.35E-72 2.68411819 0.812 0.145 1.44E-67 SLPI8

Fibroblasts 1.74E-68 2.59723614 0.831 0.192 3.41E-64 APOD6

Fibroblasts 4.53E-61 2.65393169 0.745 0.141 8.87E-57 RARRES1

Fibroblasts 3.16E-44 2.60853672 0.535 0.026 6.18E-40 HAS1

Monocytes 7.36E-248 3.58327494 0.634 0 1.44E-243 ATP5E6

Monocytes 4.65E-239 3.28083274 0.618 0 9.10E-235 GNB2L16

Monocytes 1.03E-232 3.65768818 0.607 0 2.02E-228 GPX16

Monocytes 7.81E-213 2.67403707 0.569 0 1.53E-208 ATP5L6

Monocytes 1.44E-185 2.47998988 0.514 0 2.82E-181 C14orf26

Monocytes 8.57E-169 3.59846333 0.763 0.311 1.68E-164 S100A97

Monocytes 5.30E-140 3.81550818 0.639 0.191 1.04E-135 S100A87

Monocytes 2.25E-111 3.17127943 0.343 0 4.40E-107 CCL3L31

Monocytes 1.87E-75 2.81840302 0.313 0.042 3.65E-71 CCL26

Monocytes 6.94E-71 3.46351087 0.332 0.063 1.36E-66 S100A12

Epithelial_cells 8.08E-16 2.60617797 0.712 0 1.58E-11 GKN2

Epithelial_cells 1.49E-15 4.06737565 0.77 0.085 2.92E-11 PGC

Epithelial_cells 3.32E-13 2.03992994 0.845 0.298 6.49E-09 NAPSA

Epithelial_cells 1.34E-12 2.62868014 0.809 0.404 2.62E-08 SFTPA26

Epithelial_cells 1.90E-12 1.91495198 0.835 0.255 3.73E-08 SFTPD

Epithelial_cells 2.83E-11 2.06833734 0.835 0.383 5.55E-07 SFTPA15

Epithelial_cells 1.58E-07 2.50721409 0.406 0 0.0030941 GNB2L15

Epithelial_cells 3.73E-07 2.29401564 0.388 0 0.0073072 ATP5E5

Epithelial_cells 7.30E-07 1.83558137 0.374 0 0.01428215 ATP5L5

Epithelial_cells 2.25E-05 1.98895129 0.295 0 0.4404569 FGG

Endothelial_cells 8.84E-45 2.37517579 0.525 0.056 1.73E-40 SLPI5
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Table 3  (continued)

cluster p_val avg_log2FC pct.1 pct.2 p_val_adj gene

Endothelial_cells 2.61E-28 2.49810917 0.316 0 5.11E-24 GNB2L14

Endothelial_cells 6.41E-28 2.02900096 0.352 0.023 1.26E-23 S100A85

Endothelial_cells 6.67E-28 2.18205705 0.312 0 1.31E-23 ATP5E4

Endothelial_cells 1.61E-25 1.77403574 0.345 0.033 3.16E-21 S100A95

Endothelial_cells 1.60E-16 2.21981929 0.194 0 3.13E-12 C10orf103

Endothelial_cells 2.25E-13 1.96717524 0.157 0 4.40E-09 CA4

Endothelial_cells 5.31E-10 2.72216931 0.218 0.062 1.04E-05 FCN3

Endothelial_cells 2.81E-08 1.82344434 0.137 0.023 0.00054916 IL1RL1

Endothelial_cells 3.70E-08 1.78576199 0.147 0.03 0.00072335 HPGD

Chondrocytes 4.41E-91 3.92030676 0.815 0 8.64E-87 SELM2

Chondrocytes 1.11E-89 3.22559095 0.805 0 2.17E-85 GNB2L13

Chondrocytes 7.48E-85 3.18022527 0.771 0 1.46E-80 ATP5E3

Chondrocytes 3.46E-76 3.02854454 0.707 0 6.77E-72 PRKCDBP2

Chondrocytes 2.07E-70 2.8402306 0.663 0 4.04E-66 SEPW12

Chondrocytes 1.17E-61 4.40187507 0.722 0.075 2.29E-57 CFD4

Chondrocytes 1.89E-52 3.67716374 0.527 0.003 3.69E-48 PLA2G2A4

Chondrocytes 2.62E-33 3.14176007 0.512 0.083 5.13E-29 FBLN13

Chondrocytes 1.80E-16 2.53079619 0.288 0.051 3.52E-12 SFRP22

Chondrocytes 8.36E-15 2.6062608 0.195 0.013 1.64E-10 S100A84

CD8+ T-cells 6.49E-256 2.48007975 0.628 0.061 1.27E-251 SFTPC3

CD8+ T-cells 6.42E-217 1.79380393 0.318 0.01 1.26E-212 S100A83

CD8+ T-cells 2.04E-147 1.2227903 0.202 0.005 4.00E-143 PLA2G2A3

CD8+ T-cells 6.46E-73 1.12580015 0.265 0.037 1.26E-68 SCGB1A13

CD8+ T-cells 2.84E-66 1.32786131 0.298 0.052 5.56E-62 S100A93

CD8+ T-cells 9.02E-46 1.04286872 0.369 0.105 1.77E-41 PRF11

CD8+ T-cells 7.02E-43 1.86545565 0.336 0.1 1.38E-38 GZMB1

CD8+ T-cells 8.10E-30 1.01438835 0.301 0.1 1.58E-25 CFD3

CD8+ T-cells 2.45E-19 1.10154655 0.595 0.39 4.80E-15 NKG71

CD8+ T-cells 0.00369386 3.86973914 0.113 0.068 1 HBB1

CD4+ T-cells 9.14E-39 2.45943115 0.63 0.052 1.79E-34 SFTPC2

CD4+ T-cells 8.64E-27 2.68921472 0.301 0 1.69E-22 GNB2L12

CD4+ T-cells 1.37E-25 2.32625235 0.288 0 2.68E-21 ATP5E2

CD4+ T-cells 3.31E-23 2.0635857 0.26 0 6.48E-19 ATP5L2

CD4+ T-cells 2.50E-17 1.55626068 0.192 0 4.89E-13 GLTSCR22

CD4+ T-cells 6.26E-17 1.37413653 0.233 0.008 1.23E-12 S100A82

CD4+ T-cells 2.66E-15 1.72645498 0.384 0.069 5.21E-11 IGFBP62

CD4+ T-cells 5.22E-15 1.31327107 0.164 0 1.02E-10 ATP5G22

CD4+ T-cells 2.95E-11 1.54092574 0.384 0.099 5.78E-07 DCN2

CD4+ T-cells 2.06E-10 1.35530821 0.356 0.091 4.02E-06 CFD2

Adipocytes 1.57E-180 3.44999227 0.76 0 3.08E-176 GNB2L11

Adipocytes 3.29E-166 3.7989569 0.83 0.128 6.44E-162 PLA2G2A1

Adipocytes 7.83E-165 3.19946236 0.721 0 1.53E-160 SELM1

Adipocytes 3.95E-160 2.86553955 0.709 0 7.73E-156 ATP5E1

Adipocytes 2.64E-127 2.25769098 0.617 0 5.17E-123 ATP5L1

Adipocytes 2.84E-125 2.2359181 0.611 0 5.56E-121 C14orf21

Adipocytes 6.09E-123 2.20576993 0.604 0 1.19E-118 TCEB21

Adipocytes 1.03E-99 2.28601276 0.527 0 2.01E-95 SEPP11

Adipocytes 6.50E-93 2.10602684 0.503 0 1.27E-88 PRKCDBP1

Adipocytes 1.39E-47 2.24942588 0.306 0 2.72E-43 C10orf101
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Cell clusters identification in scRNA‑seq
Forty-one thousand four hundred seventy-two cells 
were divided into 42 cell clusters and visualized through 
UMAP, and cell annotation was performed by SingleR 
package (Fig.  2A). The number of cells in some clusters 
was too small, therefore, 10 clusters (Adipocytes, CD4+ 
T cells, CD8+ T cells, chondrocytes, endothelial cells, 
epithelial cells, fibroblasts, macrophages, monocytes, and 
NK cells) with the top 10 cell amounts were selected for 
subsequent analysis. Cell numbers of each cluster were 
shown in Table 2. The distribution of each cluster in the 
selected 10 clusters was presented in Fig.  2B, and the 
results of cell cluster distribution grouped by control and 
PAH were displayed in Fig. 2C. Additionally, the number 
and proportion of cells in each sample were exhibited in 
Fig. 2D. In comparison with the control group, the pro-
portion of adipocytes (39.4% vs. 5.6%) and fibroblasts 
(18.1% vs. 2.5%) was significantly reduced in the PAH 
group, while CD8+ T cell (3.3% vs. 50.0%) and mac-
rophages (4.3% vs. 14.8%) were notably increased in PAH 
lung tissues compared with donors.

DEGs of each cluster in GSE210248
The DEGs of each cluster between the control and PAH 
groups were identified using the FindMarkers function. 
The top 10 DEGs in each cluster were listed in Table 3. 
For instance, GZMB, ATP5E, GNB2L17, GKN2, ATP5E6, 
SLPI5, SELM2, SFTPC3, SFTPC2, and GNB2L11 were 
the most significant DEG in NK cells, macrophages, 

fibroblasts, monocytes, epithelial_cells, endothelial_cells, 
chondrocytes, CD8+ T-cells, CD4+ T-cells, and adipo-
cytes based on adjusted p-value. scRNAtoolVis package 
was further performed to intuitively illustrate the top 5 
upregulated and the top 5 downregulated genes in the 
PAH group compared with the control group and visual-
ized by jjvolcano (Fig. 3).

DEGs of pulmonary tissue in GSE113439
The limma package was utilized to explore the DEGs in 
lung samples of 11 control and 15 PAH patients. DEGs 
with |logFC|> 0.856 and adjusted p-value < 0.05 were pre-
sented in Fig. 4A. Compared with the control group, 828 
genes were found upregulated, and 169 genes were down-
regulated in the lung tissue of PAH patients. A Heatmap 
of the top 50 DEGs was shown in Fig. 4B. The majority 
of DEGs were upregulated, only the gene GPR146 was 
found downregulated among these top 50 DEGs. The 
results of KEGG functional enrichment analysis were 
shown in Fig. 4C. These upregulated DGEs were enriched 
in ribosome biogenesis in eukaryotes, herpes simplex 
virus 1 infection, RNA transport, homologous recom-
bination, cell cycle, proteoglycans in cancer, aminoacyl-
tRNA biosynthesis, spliceosome, fatty acid metabolism, 
small cell lung cancer, etc. The downregulated DEGs 
were enriched in systemic lupus erythematosus, Notch 
signaling pathway, hypertrophic cardiomyopathy, alco-
holism, asthma, vascular smooth muscle constriction, 
cAMP signaling pathway, cardiac muscle contraction, 

Fig. 3  The top 5 upregulated and top 5 downregulated DEGs in the PAH group compared with the control group using the jjVolcano map
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breast cancer, and adrenergic signaling in cardiomyo-
cytes. The cell component (CC), biological process (BP), 
and molecular function (MF) of GO enrichment analysis 
were presented in Fig.  4D-F. The top 10 enriched path-
ways in CC included chromosomal region, nuclear speck, 
spindle, microtubule, condensed chromosome, chromo-
some, centromeric region, spindle pole, mitotic spindle, 
midbody, and centriole; The top 10 enriched pathways in 
BP included chromosome segregation, organelle fission, 
nuclear division, ribonucleoprotein complex biogenesis, 
nuclear chromosome segregation, mitotic nuclear divi-
sion, sister chromatid segregation, mitotic sister chroma-
tid segregation, regulation of chromosome organization, 
protein localization to chromosome; The top 10 enriched 

pathways in MF included ATPase activity, tubulin bind-
ing, microtubule binding, catalytic activity, acting on 
DNA, GTPase binding, helicase activity, DNA-dependent 
ATPase activity, protein folding chaperone, RNA helicase 
activity, and RNA-dependent ATPase activity.

Different immune cell infiltration of pulmonary tissue 
in GSE113439
Using microarray transcriptome data from GSE113439, 
the MCP counter was utilized to evaluate the immune 
cell infiltration in control and PAH lung samples. As 
shown in Fig.  5A, statistically decreased distribution 
of CD8+ T cells, cytotoxic lymphocytes, and NK cells 
were found in lung tissues of PAH patients compared 

Fig. 4  DEGs of lung tissue from GSE113439 dataset. A Volcano plot of DEGs with |log2FC|> 0.856 and adjusted p value < 0.05. Upregulated 
and downregulated genes were colored by red and blue, respectively. B Heatmap displaying the top 50 DEGs of GSE113439. C KEGG of DEGs 
in GSE113439. Dot blot of the top 10 CC (D), BP (E), and MF (F) pathways of GO in GSE113439. The size and color of dots represent the count 
of genes and adjusted p value in the selected pathway
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with control subjects. However, increased infiltra-
tion of monocytic lineage was found in PAH lung tis-
sue. The Heatmap further displayed the abundance of 
each cell type with normalization value ranging from 
0–1 in each sample between the control and PAH group 
(Fig.  5B) (PAH: GSM310626-GSM3106340; Control: 
GSM3106341-GSM3106351).

Protein‑protein interaction network (PPI) network 
and common DEGs identification in GSE210248 
and GSE113439
The PPI network of DEGs from GSE113439 was gener-
ated by STRING (Fig.  6). The PPI network consisted 
of 945 nodes and 7266 edges in 997 DEGs. Then, the 
PPI network of the DEGs in each cluster of GSE210248 

Fig. 5  Dysregulated immune cells infiltration in PAH lungs. A The box plot of immune cells abundance in control and PAH group. B Heatmap 
displaying the abundance of immune cells in each sample of lung tissues in control and PAH patients
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was constructed through the STRING online web-
site. Figures 7A and 8H presented the PPI network of 
914 DEGs in adipocytes, 411 DEGs in CD8+ T cells, 

572 DEGs in chondrocytes, 377 DEGs in endothelial 
cells, 93 DEGs in epithelial cells, 1139 DEGs in fibro-
blasts, 822 DEGs in macrophages, and 1013 DEGs in 

Fig. 6  PPI network of DEGs from GSE113439



Page 12 of 20Qin et al. BMC Genomics          (2023) 24:788 

Fig. 7  PPI network of DEGs in each cluster of GSE210248. PPI network of the DEGs in adipocytes (A), CD8+ T cells (B), chondrocytes (C), endothelial 
cells (D), epithelial cells (E), fibroblasts (F), macrophages (G), and monocytes (H)
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Fig. 8  Veen’s diagram showing the common DEGs from GSE210248 and DEGs from GSE113439. A Veen’s diagram showing the common 
DEGs from GSE113439, DEGs from adipocytes, CD4+ T cells, and CD8+ T cells in GSE210248. B Veen’s diagram showing the common DEGs 
from GSE113439, DEGs from chondrocytes, and endothelial cells in GSE210248. C Veen’s diagram showing the common DEGs from GSE113439, 
DEGs from epithelial cells, fibroblasts, and macrophages. D Veen’s diagram showing the common DEGs from GSE113439, DEGs from monocytes 
and NK cells
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monocytes with the adjusted p-value < 0.05. A Venn 
diagram was drawn to screen out the common hub 
genes from GSE210248 and GSE113439. As shown in 
Fig.  8, a series of genes were identified through over-
lapping DEGs from each cluster in GSE210248 and 
DEGs from GSE113439. The details of overlapped 
genes were listed in Table 4.

Hub genes identification in PAH
Considering the amounts of selected common DEGs 
were relatively large. MCODE was utilized for the selec-
tion of candidate hub genes from the PPI network of 997 
DEGs in GSE113439. Module 1 with the highest score 
(68 nodes and 1142 edges) was screened out (Fig.  9A). 
The centralities of the candidate genes in module 1 were 
evaluated by the CentiScaPe plug-in and the details were 
shown in Table  5. Additionally, the CytoHubba plug-
in was used for ranking nodes in module 1 using MCC 
methods. The MCODE score of each gene is also sum-
marized in Table 5. Cytohubba plug-in was performed to 
further simplify these hub genes and pick out the most 
critical genes using the MCC method. No overlapped 
genes were found between DEGs from adipocytes, CD4+ 
T cells, and DEGs from GSE113409. Therefore, the top 
20 genes were filtered out in the remaining 8 clusters 
of GSE210248 and presented in Fig.  9B-I. Less than 20 
DEGs in chondrocytes and epithelial cells were presented 
because there are only 15 DEGs in chondrocytes and 14 
DEGs in epithelial cells were included in the network of 
Cytoscape software. We further screened out the com-
mon hub genes using data from module 1 and the top 
20 genes in these clusters. As shown in Fig. 10, WDR43 

in chondrocytes and GNL2 in CD8+ T cells were finally 
identified as the most significant genes in PAH. Further-
more, we detected the expression of WDR43 and GNL2 
in the lung samples of 15 PAH patients and 11 control 
subjects in GSE113439 and found significantly increased 
WDR43 and GNL2 expression (Fig. 11).

Discussion
The present study for the first time indicated WDR43 
and GNL2 might act as key genes involved in the patho-
genesis of PAH, providing a novel potential underlying 
mechanism of PAH. In the current study, common DEGs 
were screened out using integrated analysis of scRNA-
seq and microarray transcriptome through the limma 
package and Seurat package in R software. Subsequently, 
the PPI network of DEGs was constructed using the 
STRING website. Then, Cytoscape software was utilized 
to screen out the hub genes in the cluster of GSE210248 
and GSE113439. Ultimately, we identified two hub genes 
(WDR43 and GNL2) in PAH through a series of bioinfor-
matics analyses.

MCP counter illustrated dysregulated landscape of 
immune cells in lung tissues of PAH patients, which 
is consistent with previous reports. Marlene reviewed 
immune dysregulation in PAH and how immune-
mediated vascular injury promoted PAH develop-
ment [25]. For instance, circulating autoantibodies 
against endothelial cells might enhance the apoptosis of 
endothelial cells in PAH [26]. T cells and NK cells were 
considered as beneficial factors during the pathogenesis 
of PAH [27, 28]. Additionally, the role of perivascular 
macrophages has received extensive attention from 

Table 4  Common DEGs from each cluster of GSE210248 and GSE113439

List 1 List 2 Common DEGs

DEGs from GSE113439 DEGs from CD8+ T cells in GSE210248 ZNF33A, EPRS1, SRP72, GNL2, NARS1

DEGs from GSE113439 DEGs from Chondrocytes in GSE210248 WDR43, NEXN, FXYD1

DEGs from GSE113439 DEGs from Endothelial cells in GSE210248 RAMP3, CA4, HIF3A, DNASE1L3, CP, MMRN1, FCN3

DEGs from GSE113439 DEGs from Epithelial cells in GSE210248 TTN, LRRK2,

DEGs from GSE113439 DEGs from Fibroblasts in GSE210248 SMC4, CRIP2, STK38L, EPS8, MTREX, ST6GALNAC6, SEMA3B, C1orf198, FRMD4B, 
HIGD2A, DEPP1, RAMP2, CFH, NUCB2, CFI, MORF4L2, ITGA3, PPP1R14A, LAMA2, 
LTBP2, FAT1, CALD1, LBH, ANKRD36C, POSTN, PLS3, TMEM204, MTHFD2, ANO1, 
ARID5B, LRRC32, PDE1A, BST2, AOC3, IGF1, TSHZ2, PDGFD, MAP1B, ANK2, TXNRD1, 
SHISA3, ANGPTL1, FBN1, UGDH, PRELP, FGF7, AKAP12, SLC16A7, NAMPT, FAP, SULF1, 
STEAP2, LRRC17, STEAP1, HP, AOX1, HAS2, TNFAIP6

DEGs from GSE113439 DEGs from Macrophages in GSE210248 PRPF38B, RBPJ, SNX2, MIS18BP1, FCHO2, RARRES2, GOLIM4,. CLTC, WASHC4, 
SWAP70, TOP1, EIF5, PTMS, SP100, SELENOM, IFI16, MRC1, FMN1, FILIP1L, TLR2, 
SLC1A3, TIPARP, ACSL1, VCAN, MFAP4, USP53, ANKRD22, ELL2, SCGB3A1, IL1RAP, 
F13A1, UAP1, B3GNT5, CCDC80

DEGs from GSE113439 DEGs from Monocytes in GSE210248 AZI2, YME1L1, HSPD1, BBX, HSPA5, ATP6V1A, HIF1A, RASGEF1B, FCER1A, PKP2, AQP9, 
SERPINB2

DEGs from GSE113439 DEGs from NK cells in GSE210248 USP16, KIF5B, SLTM, GOLGA4, ICAM2, EIF3A, S100A4, PRDX5, RIOK3, EIF2S2, NCL, 
SYNE1, SYNE2, JAK1, HSPH1, XCL1, CCL5, NKG7, PLAC8, GNLY, FGFBP2, SPP1, AREG, 
CXCL8, PLA2G2A, HLA-DQB1, SCGB1A1
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Fig. 9  Hub genes of GSE113439 and hub genes of each cluster from GSE210248. A Selected hub genes in module 1 of GSE113439 using MCODE 
pulg-in. The Top 20 hub genes in CD8+ T cells (B), chondrocytes (C), endothelial cells (D), epithelial cells (E), fibroblasts (F), macrophages (G), 
monocytes (H), and NK cells (I) identified by cytohubba plug-in according to nodes’ score by MCC method from GSE210248
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researchers. Widespread Cd68+ macrophages were 
detected in occlusive plexiform lesions in clinical and 
experimental PAH models [29]. Inactivation or deletion 
of macrophages could prevent the development of PAH 
[30]. More researches need to be carried out to further 
explore the role of various immune cells in PAH and 
the underlying mechanisms.

The WD40 repeat (WDR) domain is the most abun-
dant protein interaction domain in the human pro-
teome. The WDR43 gene is located on chromosome 
2 and encodes the WDR43 protein containing 677 
amino [31]. Of note, WDR43 is an essential subunit of 
multiprotein complexes and is involved in a series of 
signaling pathways including ubiquitin-proteasome 
pathway, epigenetic regulation, DNA damage repair, 
and immune-related pathways [32]. For instance, the 
NOL11-WDR43-Cirhin protein complex is necessary 
for mitotic chromosome segregation [33]. Intriguingly, 
several bioinformatics analysis identified WDR43 as a 
crucial oncogene contributing to the development of 
colorectal/lung cancer via promoting the migration 
and proliferation of cancer cells through GEO and The 
Cancer Genome Atlas (TCGA) database. Mechanisti-
cally, c-MYC/WDR43/MDM2 mediated p53 degrada-
tion, and cyclin-dependent kinase 2 were involved in 
the underlyng mechanism [34–36]. However, the role of 
WDR43 in PAH remains uninvestigated.. Similarly, the 
imbalance of proliferation and apoptosis in pulmonary 
artery smooth muscle cells (PASMCs) was also the key 

Table 5  The centralities and MCODE score of candidate genes 
evaluated by CentiScape and CytoHubba plug-in

Gene name Betweenness Centroid Degree MCODE_Score

KIF11 8.971739 -21 44 29.98578

GNL3 0 -43 22 24.85755

KIF23 355.464 -1 45 29.98578

NCAPG 8.971739 -21 44 29.98578

WDR43 0 -43 22 24.85755

DLGAP5 8.971739 -21 44 29.98578

MND1 0.232716 -35 31 30

CDC6 4.186865 -26 39 30.36032

ANLN 7.778993 -22 43 29.98578

CDK1 8.971739 -21 44 29.98578

WDR36 0 -43 22 24.85755

ECT2 7.922387 -22 43 30.20871

NOC3L 0 -43 22 24.85755

KIF20A 8.971739 -21 44 29.98578

BUB1 8.971739 -21 44 29.98578

CEP55 7.976828 -22 43 29.98578

KRR1 0 -43 22 24.85755

WDR75 0 -43 22 24.85755

TOP2A 712.4563 1 46 29.98578

DHX15 0 -43 22 24.85755

CENPF 8.971739 -21 44 29.98578

WDR3 0 -43 22 24.85755

PRC1 8.971739 -21 44 29.98578

TPX2 8.971739 -21 44 29.98578

GNL2 0 -43 22 24.85755

NUSAP1 6.571843 -23 42 29.98578

TTK 8.971739 -21 44 29.98578

MAK16 0 -43 22 24.85755

RSL1D1 0 -43 22 24.85755

KIF15 7.384273 -22 43 29.98578

DDX21 544.1357 -22 24 24.85755

MKI67 6.977592 -23 42 29.98578

CENPU 4.789195 -25 40 30.77897

KIAA0020 0 -43 22 24.85755

KPNA2 511.8998 -11 35 28.93763

SMC2 6.635866 -23 42 29.98578

ARHGAP11A 3.674459 -26 39 30.40952

CHEK1 4.024379 -27 39 30.53109

KIF20B 336.0392 -7 39 29.4958

KNTC1 6.087509 -24 42 30.63529

SDAD1 0 -43 22 24.85755

FANCI 3.879142 -26 39 30.77897

ATAD2 2.40196 -30 36 29.93952

CKAP2 2.746163 -30 35 26.91765

STIL 0.375244 -37 30 28

WDHD1 1.914333 -28 37 30.20871

EZH2 0.376068 -37 30 29

DDX10 0 -43 22 24.85755

SMC4 5.440622 -24 41 29.98578

Table 5  (continued)

Gene name Betweenness Centroid Degree MCODE_Score

PLK4 4.681379 -26 40 30.63529

RRM1 1.342468 -34 31 26.81379

PWP1 0 -43 22 24.85755

SGOL2 0.191789 -37 29 27.8069

CASC5 2.253639 -30 36 29.82955

ASPM 8.971739 -21 44 29.98578

CCNE2 0.272622 -40 27 24.92877

MIS18BP1 0.4634 -36 30 26.59355

ESF1 292.2717 -23 23 24.85755

LSG1 0 -43 22 24.85755

MPHOSPH10 0 -43 22 24.85755

NOP58 219.4768 -23 23 24.85755

DDX18 669.6512 -22 24 24.85755

DDX52 0 -43 22 24.85755

ESCO2 3.293206 -28 37 29.87903

SPDL1 0.679996 -35 31 26.45565

CENPE 8.971739 -21 44 29.98578

KIF18A 6.389363 -23 42 29.98578

SKIV2L2 0 -43 22 24.85755
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Fig. 10  Veen’s diagram showing the common hub genes from GSE210248 and GSE113439. A Veen’s diagram showing the common hub 
genes from GSE113439, CD8+ T cells, chondrocytes, and endothelial cells from GSE210248. B Veen’s diagram showing the common hub 
genes from GSE113439, epithelial cells, fibroblasts, and macrophages from GSE210248. C Veen’s diagram showing the common hub genes 
from GSE113439, monocytes and NK cells from GSE210248



Page 18 of 20Qin et al. BMC Genomics          (2023) 24:788 

characteristic in pulmonary hypertension [37]. There-
fore, we speculate WDR43 might contribute to PASMCs 
proliferation and migration, then leading to the pulmo-
nary artery remodeling.

GNL2, the G protein nucleolar 2, was found essential 
for cell growth and development through participating 
in the cell-cycle regulation pathway [38]. GNL2 acts as a 
checkpoint for ribosome export, and it plays a vital role 
in facilitating ribosomal biogenesis and protein synthesis 
[39]. GNL2 was found to play a critical role in the RNA 
metabolic network and was associated with proliferation 
[40]. Increased expression of GNL2 was correlated with 
poor prognosis in ovarian cancer patients with 1p34.3 
amplifications [41]. Results from another scRNA-seq 
data of periodontitis revealed GNL2 was upregulated 
in T cells [42]. While the role of GNL2 in PAH and its 
potential underlying mechanisms needs further explora-
tion. In combination with the KEGG analysis in the cur-
rent study, GNL2 might participate in the underlying 
mechanism of PH through the influence on the biosome 
biogenesis and cell cycle.

Nowadays, high-throughput RNA sequencing has 
been widely used to explore novel mechanisms of PAH 
[6, 43]. Especially, with the rapid development of single-
cell sequencing, integrated bioinformatics analysis of 
microarray transcriptome and scRNA-seq, a newly-ris-
ing research method, has attracted researchers’ atten-
tion lately [44]. A recent study indicated hpgd was a key 
gene in pulmonary artery endothelial cells (PAECs) using 
scRNA-seq data from PAECs of control and PAH rodents 
[45]. There still remains largely unknown on the mecha-
nism of PAH through integrated bioinformatics analysis. 
The current research might provide a novel insight into 
the pathogenesis of PAH.

Conclusion
In summary, we performed an integrated bioinformatics 
analysis of single-cell sequencing andmicroarray tran-
scriptome. Multi-step analysis suggested that WDR43 
and GNL2 were increased in PAH lung tissues and they 
were identified as hub genes in the pathogenesis of PAH. 
Our results highlight WDR43 and GNL2 as potential 
biomarkers and pharmacological therapeutic targets for 
PAH.
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