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Abstract 

Background  There has been a gradual increase in the occurrence of cardiovascular and cerebrovascular ischemic 
diseases, particularly as comorbidities. Yet, the mechanisms underlying these diseases remain unclear. Ferroptosis 
has emerged as a potential contributor to cardio-cerebral ischemic processes. Therefore, this study investigated 
the shared biological mechanisms between the two processes, as well as the role of ferroptosis genes in cardio-cere-
bral ischemic damage, by constructing co-expression modules for myocardial ischemia (MI) and ischemic stroke (IS) 
and a network of protein–protein interactions, mRNA-miRNA, mRNA-transcription factors (TFs), mRNA-RNA-binding 
proteins (RBPs), and mRNA-drug interactions.

Results  The study identified seven key genes, specifically ACSL1, TLR4, ADIPOR1, G0S2, PDK4, HP, PTGS2, and sub-
jected them to functional enrichment analysis during ischemia. The predicted miRNAs were found to interact with 35 
hub genes, and interactions were observed between 11 hub genes and 30 TF transcription factors. Additionally, 10 
RBPs corresponding to 16 hub genes and 163 molecular compounds corresponding to 30 hub genes were identified. 
This study also clarified the levels of immune infiltration between MI and IS and different subtypes. Finally, we identi-
fied four hub genes, including TLR4, by using a diagnostic model constructed by Least Absolute Shrinkage and Selec-
tion Operator (LASSO) regression analysis; ADIPOR1, G0S2, and HP were shown to have diagnostic value for the co-
pathogenesis of MI and cerebral ischemia by both validation test data and RT-qPCR assay.

Conclusions  To the best our knowledge, this study is the first to utilize multiple algorithms to comprehensively ana-
lyze the biological processes of MI and IS from various perspectives. The four hub genes, TLR4, ADIPOR1, G0S2, and HP, 
have proven valuable in offering insights for the investigation of shared injury pathways in cardio-cerebral injuries. 
Therefore, these genes may serve as diagnostic markers for cardio-cerebral ischemic diseases.
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Introduction
The prevalence of cardio-cerebral comorbidities has 
been significantly increasing. Historically, most studies 
and therapies for cardio-cerebral vascular diseases have 
focused solely on a singular disease within the cardio-
cerebral vascular system. This approach fails to provide 
a comprehensive and integrated diagnosis and treatment 
plan for patients with cardio-cerebral comorbidities, 
thereby impeding the precise management of cardio-
cerebral vascular comorbidities. Research indicates that 
the mechanisms of injury in myocardial and cerebral 
ischemia are similar. Both conditions share a common 
pathological mechanism known as atherosclerosis [1]. 
Additionally, the pathological state following the onset 
of cardio-cerebral ischemic disease is closely associated 
with ischemia–reperfusion injury [2]. Furthermore, many 
molecular events that occur after neurological injury 
also occur after cardiac injury [3]. These findings sug-
gest the presence of a shared injury mechanism in the 
heart and brain. Nevertheless, the precise cause of the 
injury remains uncertain and requires further investiga-
tion. Therefore, exploring shared therapeutic objectives 
for heart-brain injury, administering targeted treatments 
to safeguard the heart and brain, and adopting a brain-
centered homeopathic approach, is imperative.

Our team has shown that glutamate receptors serve as 
prevalent indicators of damage in cardiac and cerebral 
ischemia-hypoxia-reperfusion injuries. Additionally, it can 
control the progression of cardiac and cerebral ischemia/
reperfusion injury [4–6]. However, further studies are 
required to elucidate the underlying mechanisms. Research 
indicates that during cardiac transplantation and coronary 
artery occlusion, cardiomyocytes undergo ferroptosis, lead-
ing to inflammation and worsening of cardiac injury. The 
utilization of Fer-1, a ferroptosis inhibitor, has been shown 
to decrease the occurrence of ferroptosis in cardiomyocytes 
[7]. Additionally, in mice undergoing surgery for middle 
cerebral artery occlusion, ferroptosis intensifies surgically 
induced cerebral ischemia/reperfusion injury [8].

A recent biological information and validation study 
on ferroptosis-related genes (FRGs) during ischemic 
stroke (IS) screened hub genes related to ferroptosis and 
suggested a possible mechanism for dexmedetomidine-
mediated inhibition of ferroptosis during IS [9], and 
during myocardial ischemia (MI), the same biosignature 
study identified genes related to ferroptosis and car-
ried out immune infiltration analyses and confirmation 
of related hub genes [10, 11], these studies separately 
from the direction of MI and IS to explore the role of 
FRGs in MI and IS, but did not further study the com-
mon characteristics of the process of cardio-cerebral 
ischemia, and to further clarify the process of cardio-
cerebral ischemia with a consistent trend of expression 

of the hub genes of ferroptosis, which is precisely the 
problem explored in this paper, the study of the FRGs in 
cardio-cerebral ischemia. The study of the common role 
of ferroptosis genes in ischemia is of great significance 
in the search for common pathways and mechanisms of 
ischemic injury.

This study aimed to investigate the role of ferroptosis 
in cardiac and cerebral ischemic injuries by exploring 
the common pathways of injury between the two organs. 
Using various machine algorithms, the optimal model 
of the most relevant FRGs in heart and brain injury was 
determined. Bioinformatics, clinical specimens, and cell 
model validation were used to study the hub genes and 
biological processes associated with ferroptosis during 
MI and IS. This analysis aimed to identify common injury 
mechanisms and targets for cardio-cerebral ischemia–
reperfusion injury, which can aid in early intervention 
and treatment.

Materials and methods
Data acquisition
The MI related datasets GSE60993 [12], GSE66360 [13], 
and GSE48060obtained from the GEO database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo) [14]. The GSE60993 dataset 
was acquired from Homo sapiens, using the data platform 
being GPL6884. It consisted of 33 samples, including 17 
MI, 7 normal, and 9 unstable angina pectoris samples. For 
the present analysis, only 17 MI samples and 7 normal 
samples from GSE60993 were included. TheGSE66360 
dataset was obtained from Homo sapiens, with the data 
platform being GPL570. It comprises 99 samples, includ-
ing 49 MI samples and 50 normal samples. All the sam-
ples were selected for analysis. Finally, the GSE48060 
dataset, also from Homo sapiens, used the GPL570 data 
platform and contained 52 samples, including 31 MI 
and 31 normal samples. This analysis included 31 sam-
ples, including 21 normal samples. The training datasets 
used were GSE60993 and GSE66360, while GSE48060 
was used as the validation dataset. Additionally, the GEO 
database provided IS associated datasets GSE22255 [15], 
GSE16561 [16], and GSE58294, which were downloaded. 
Datasets GSE22255, which consisted of 40 samples (20 IS 
cases and 20 normal cases), and GSE16561, which con-
sisted of 63 samples (39 IS cases and 24 normal cases), 
were included in the analysis. The dataset GSE58294, 
which consisted of 92 samples (69 IS cases and 23 normal 
cases), was used as the validation dataset. All the samples 
were selected for inclusion in the analysis. The data plat-
forms used were GPL570 for GSE22255 and GSE58294, 
and GPL6883 for GSE16561. Specific grouping informa-
tion for the datasets can be found in the Supplementary 
material (Additional file 1: Table S1).

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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The GeneCards database (https://​www.​genec​ards.​org) 
[17] was used to identify genes associated with ferropto-
sis. Supplementary Material (Additional file 2: Table S2) 
displays the specific names of the 698 genes acquired 
from the GeneCards database using the search term 
“Ferroptosis”.

Identification of differentially expressed genes (DEGs) 
associated with ferroptosis
To obtain the integrated MI dataset, we used the R 
package sva to de-batch the datasets GSE60993 and 
GSE66360, comprising 66 MI cases and 57 control (nor-
mal) samples. Additionally, we obtained an integrated IS 
dataset using datasets GSE22255 and GSE16561, which 
included 59 IS and 44 control (normal) samples. After 
normalizing the combined dataset using the limma pack-
age [18], the effectiveness of batch effect removal was 
confirmed by conducting Principal Component Analy-
sis (PCA) on the expression matrix of the dataset both 
before and after the batch effect was eliminated. PCA 
is a data dimensionality reduction method that extracts 
the feature vectors (components) of high-dimensional 
data, converts them to low-dimensional data and displays 
these features in a two-dimensional graph.

The expression data of genes related to ferroptosis in 
the MI and IS were acquired by intersecting the gene 
expression data of the FRGs with the respective data 
for the MI and IS. To examine the impact of FRG gene 
expression levels in MI and IS, we conducted differential 
gene analysis on the combined dataset. This analysis uti-
lized the R package limma [19] to identify significant dif-
ferential genes. The threshold for differential genes was 
set at a fold change (FC) absolute value > 1.5 and p < 0.05. 
Additionally, genes with FC > 1.5 and p < 0.05 were con-
sidered up-regulated in expression. Differential genes 
were defined as those with FC > 1.5 and p < 0.05. Up-
regulated differential genes were identified as those with 
FC > 1.5 and p < 0.05, while down-regulated differential 
genes were identified as those with FC < -1.5 and p < 0.05. 
The expression patterns of genes related to iron-induced 
cell death were illustrated using the ggplot2 package in R 
for volcano plotting and the pheatmap package in R for 
heatmap visualization.

Assessment of biological characteristics between disease 
and control samples
 Gene Ontology  (GO) enrichment analysis is a widely 
used approach to study the functional enrichment of 
genes on a large scale, across various dimensions and 
levels. This analysis is typically conducted on three lev-
els: biological process (BP), molecular function (MF), 
and cellular component (CC) [18]. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) is an extensively utilized 

repository for housing data on genomes, biological path-
ways, diseases, and medications [20]. Disease Ontology 
(DO) provides gene annotations from a disease stand-
point. The R package clusterProfiler [21, 22] was used 
to perform GO functional annotation, KEGG pathway 
enrichment, and DO disease enrichment in order to 
identify significantly enriched biological processes. This 
analysis was conducted on DEGs related to ferroptosis 
between the disease and control samples from the inte-
grated dataset of MI and IS. The significance threshold 
for enrichment analysis was set at p < 0.05.

Gene Set Enrichment Analysis (GSEA) is a computa-
tional technique used to assesswhether a pre-established 
group of genes exhibits significant variances between two 
biological conditions. It is frequently employed to evalu-
ate alterations in pathways and biological process activity 
within expression dataset samples [23]. In order to exam-
ine the disparities in biological mechanisms between MI 
and IS disease samples and control samples, we utilized 
gene expression profiling datasets and referred to the 
gene sets ’c5.go.v7.4.entrez.gmt’ and ’c2.cp.kegg’. v7.4. The 
datasets from entrez.gmt [24] were enriched and visu-
alized using the GSEA method provided in the R pack-
age clusterProfiler. p < 0.05 was considered statistically 
significant.

Gene Set Variation Analysis (GSVA) is an unsuper-
vised analysis technique that is primarily employed to 
assess the gene expression matrix across various samples 
by converting it into a gene set expression matrix using a 
non-parametric approach. The enrichment results of the 
transcriptome gene sets were used to evaluate whether 
distinct metabolic pathways are enriched across various 
samples. To examine the variation in biological processes 
between disease and control samples of MI and IS in the 
combined dataset, we conducted gene set variation anal-
ysis on the gene expression profiling data of the disease 
and control samples of MI and IS. This analysis was per-
formed using the R package” GSVA” [25], and the refer-
ence gene set was obtained from the MSigDB database 
[24]. The dataset’s enrichment scores for each hallmark 
were calculated using the set ’h.all.v7.4.symbols.gmt’, and 
the correlation between the dysregulated pathways in the 
patients was determined. p < 0.05 was considered statisti-
cally significant.

Construction of a diagnostic model for Ferroptosis
A risk score formula was established using the  Least 
absolute shrinkage and selection operator (LASSO) 
algorithm analysis to reduce dimensionality and identify 
differentially expressed feature genes among the genes 
related to ferroptosis. The formula incorporates the indi-
vidual normalized gene expression values weighted by 
the penalty coefficients of the feature genes.

https://www.genecards.org
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Random Forest (RF) [26] is a combination of multi-
ple algorithms that integrates multiple decision trees 
using the concept of integration learning. This belongs 
to the bagging (Bootstrap AGGregatING, Self-Service 
Sampling Integration) integration algorithm among 
other integration algorithms. The random forest is 
a frequently used technique for constructing mod-
els. This involves creating multiple decision trees and 
using the statistics of each tree to predict a specific 
sample. The final result was determined by selecting 
the most common prediction among the trees using 
a voting method. The RF package [27] was used for 
model construction using the expression matrix of 
DEGs related to ferroptosis in the integrated dataset. 
The parameters set.seed(234) and ntree = 1000 were 
employed.

An Support Vector Machine (SVM) is a generalized 
linear classifier used in supervised learning to classify 
data into two categories. It determines the decision 
boundary as a hyperplane with a maximum margin, 
which is obtained by solving the learning samples. 
SVM calculate the practical risk by a hinge loss func-
tion and incorporates a regularization term into the 
solution system to optimize the structural risk. Kernel 
methods enable SVM to perform nonlinear classifica-
tions, making them sparse and robust classifiers. SVM 
employs a hinge loss function to calculate the empiri-
cal risk and incorporates a regularization term to opti-
mize the structural risk, making it a classifier that is 
both sparse and resilient. The kernel method allows 
the SVM to perform nonlinear classification, making it 
a popular choice among kernel learning methods.

The Receiver Operating Characteristic (ROC) [28] is 
a graphical analysis tool that enables the selection of 
the most suitable model, elimination of the second-
best model, or determination of the optimal threshold 
within a single model. The ROC curveis a combined 
measure that represents the sensitivity and specificity. 
This illustrated the interplay between sensitivity and 
specificity using a compositional approach. Typically, 
the area under the ROC curve ranges from 0.5—1. The 
diagnostic performance improved as the  area under 
the curve (AUC) approaches 1. The AUC exhibits low 
accuracy ranging from 0.5 to 0.7, moderate accuracy 
from 0.7 to 0.9, and high accuracy at 0.9 and beyond.

To identify the diagnostic indicators linked to fer-
roptosis in MI and IS, the integrated datasets of MI 
and IS were subjected dimensionality reduction using 

riskScore =

i

Coefficient genei ∗mRNA Expression(genei)

I(X = xi) = −log2p(xi)

there techniques: LASSO, RF, and SVM. Subsequently, 
ROC Curves were generated using the R package 
pROC [29], and the AUC was calculated to evaluate 
the precision of the diagnostic models and determine 
the most suitable model.

Weighted Gene Association Co‑expression Network 
Analysis (WGCNA)
The WGCNA algorithm was used to examine the gene 
expression patterns in numerous samples to, facilitate 
gene clustering and module creation based on compara-
ble gene expression patterns. Additionally, it allows for 
the analysis of connections between modules and their 
biological characteristics [30]. For this investigation, we 
employed the R software WGCNA [30] to construct gene 
co-expression networks pertaining to MI and IS. Initially, 
we utilized the ideal soft threshold β (8 for MI and 7 for 
IS) to create scale-free networks, individually. Next, the 
dissimilarity Topology Overlap Matrix (TOM)-based 
dissimilarity (dissTOM) was calculated and used to per-
form gene dendrograms and module identification with 
a maxClusterSize of 6000 and a minClusterSize of 30 to 
perform hierarchical clustering to identify co-expression 
modules. Subsequently, we computed Pearson’s correla-
tion Coefficient (PCC) and its corresponding p value. 
These results were visualized using a heatmap to com-
pare the module feature genes with clinical features. 
From this analysis, we identified disease-associated genes 
by selecting gene modules with an absolute correlation 
value greater than 0.3 and p < 0.05, which were consid-
ered clinically relevant.

Building a network of protein‑protein interaction (PPI), 
mRNA‑miRNA, mRNA‑RBP, mRNA‑TF and mRNA‑drugs 
interactions
The PPI network [31] consists of proteins that inter-
act with each other to engage in different aspects of life 
processes, including biological signaling, gene expres-
sion regulation, energy and material metabolism, and cell 
cycle control. The Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) database [32] serves as 
a repository for exploring identified proteins and fore-
casting protein interactions. In this study, we utilized the 
STRING database to link the co-morbid genes of MI and 
IS with a PPI network (minimum required interaction 
score low confidence [0.150]. Subsequently, we exported 
the PPI and employed Cytoscape [33] software for addi-
tional analysis. The Cytohubba [34] plug-in consists of 12 
algorithms (Betweennes, BottleNeck, Closeness, Clus-
teringCoefficien, Degre, DMN, EcCentricity, EPC, MCC, 
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MNC, Radiality, and Stress), which calculate the top 30 
nodes in each algorithm. Genes that appeared in at least 
5 algorithms were defined as hub nodes, indicating their 
significant connectivity with other nodes. These hub 
nodes may play crucial roles in regulating the entire bio-
logical process and warrant further investigation.

MiRNAs, which are single-stranded RNA molecules 
encoded by endogenous genes, are a type of non-
coding RNA with a length of approximately 19–25 nt. 
They play crucial regulatory roles in the evolution of 
biological development. In post-transcriptional gene 
regulation, miRNAs play crucial roles in tumorigen-
esis, biological development, organogenesis, and epi-
genetic regulation by effectively controlling target gene 
expression. Viral defense mechanisms play important 
regulatory roles. Typically, miRNAs possess an intricate 
regulatory system, in which a single miRNA can con-
trol numerous target genes; conversely, a target gene 
can be regulated by multiple miRNAs [27]. To examine 
the correlation between hub genes and miRNAs, we 
acquired miRNAs associated with hub genes from the 
Starbase database (http://​starb​ase.​sysu.​edu.​cn/). This 
database offers seven prediction programs (TargetScan, 
microT, miRmap, PicTar, RNA22, PITA, and miRanda) 
for predicting the results. To construct the mRNA-
miRNA regulatory network, interactions between miR-
NAs and mRNAs were predicted using two or more 
programs,and Cytoscape software were used to visual-
ize the mRNA-miRNA regulatory network.

Transcription factors (TFs) through gene expression 
control. To examine the regulatory function of central 
genes, the miRNet database was used to retrieve and 
construct the interaction network between TFs and 
central genes. Using the Cytoscape software, we visual-
ized the network of interactions between hub genes and 
TFs.

Furthermore, the Encyclopedia of RNA Interactomes 
(ENCORI) database was used to predict the interac-
tions between RBP and hub genes. We then filtered 
the mRNA-RBP interaction pairs based on the crite-
ria of clipExpNum >  = 5 and clipIDnum > 10, and sub-
sequently constructed the mRNA-RBP interaction 
network.

The Comparative Toxicogenomics Database (CTD) 
(http://​ctdba​se.​org/) is a digital platform that connects 
chemicals, genes, phenotypes, and diseases, and estab-
lishes toxicological data to enhance the comprehension 
of human health-related information. By applying the 
screening criterion of having at least three references 
and two organisms, the CTD database was used to iden-
tify potential medications or small molecule compounds 
that interact with hub genes. Furthermore, we employed 

Cytoscape to create a visual representation of the net-
work of interactions between mRNA and drugs.

Molecular subtypes of Ferroptosis
The Uniform Manifold Approximation and Projection 
(UMAP) algorithm, a nonlinear dimensionality reduction 
technique, can partition or condense a group of individu-
als into a sequence of separate clusters using specified 
characteristics. By utilizing the umap package in R [35], 
the algorithm categorizes the integrated dataset of MI 
and IS patients into distinct subtypes, relying on charac-
teristic genes.

Exploration of immune infiltration
The immune microenvironment is composed of a com-
plex interconnected network primarily comprising 
immune cells, cells involved in inflammation, fibro-
blasts, and mesenchymal cells, as well as a variety of 
cytokines and chemokines. The examination of immune 
cell infiltration in samples plays a crucial role in guiding 
disease research and predicting treatment prognosis. 
Single sample gene set enrichment analysisss  (GSEA) 
algorithm extends the GSEA method to determine the 
levels of` 28 immune cells in disease and control sam-
ples [32]. This information was presented as box plots, 
allowing visualization of the immune cell composition 
in patients with various MI and IS subtypes. Statistical 
significance was determined using the Wilcoxon test to 
calculate variations in the proportions of immune cells. 
A p-value < 0.05 was considered statistically significant.

CIBERSORx utilizes a machine learning technique 
that expands the algorithm framework to deduce gene 
expression profiles specific to cell types, eliminating the 
requirement for physically isolating cells. RNA-Seq data 
[36] is utilized to approximate the quantity of immune 
cells present in a specimen. Using the CIBERSORTx algo-
rithm (https://​ciber​sortx.​stanf​ord.​edu/), we determined 
the prevalence of 22 immune cell types in various patient 
subtypes within the integrated MI and IS datasets. The 
R package corrplot [37] was used to create heat maps 
showing the correlation between the degree of immune 
cell infiltration.

ESTIMATE analysis is a computational method that 
measures the level of immune infiltration in tumor sam-
ples using gene expression data that indicates the pres-
ence of stromal and immune cell gene signatures. The 
ESTIMATE package for R [38] was used to estimate vari-
ations in immune scores between control samples and 
patients with MI and IS. This package calculates the cor-
relation between hub gene expression levels and immune 
scores.

http://starbase.sysu.edu.cn/
http://ctdbase.org/
https://cibersortx.stanford.edu/
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Modeling of cellular hypoxia‑reoxygenation
Hypoxia-reoxygenation models were created using 
CL-0481 rat neuronal PC12 cells from ProCell Life 
Science&Technology Co., Ltd. (Wuhan, China) and iCell-
r012 rat cardiomyocyte H9c2 cells from iCell Bioscience 
Co., Ltd. (Shanghai, China). The model was validated 
using a CCK-8 assay and flow cytometry., The detailed 
procedure has been described elsewhere [4], and the cells 
were gathered and preserved in a − 80℃ facility.

Clinical blood specimen collection
To further identify the presence of hub genes in brain 
and heart ischemia, we obtained nine blood samples 
from individuals undergoing clinical cardiopulmonary 
resuscitation, 12 blood samples from patients with 
acute IS, 12 blood pressure samples from patients with 
acute MI, and 12 blood pressure samples from indi-
viduals with a normal physical examination between 
March and October 2022. The collection time and spe-
cific treatments for all blood samples as described in 
our previous study [4].

Validation using real‑time fluorescence quantitative PCR 
(RT‑qPCR)
RT-qPCR was used to determine the mRNA levels of hub 
genes. RNA was extracted using the CWBIO Ultrapure 
RNA Extraction Kit (CW0581M). The cDNA was synthe-
sized using a reverse transcription kit (R223-01; Vazyme). 
The procedure involves three steps. Each reaction was a 
total volume of 20 μL, consisting of 10 μL ChamQ Uni-
versal SYBR qPCR Master Mix (Q711-02, Vazyme China) 
(2X), 4 μL of both forward and reverse primers, 1 μL 
cDNA, and the necessary amount of nuclease-free water. 
Each sample was analyzed in triplicate. The particular 
cycling conditions were as follows: initial denaturation 
at a temperature of 95  °C for 10 min, followed by dena-
turation at 95 °C for 10 s, annealing at 58 °C for 30 s, and 
extension at 72  °C for 30  s. A melting curve (final dis-
sociation curve) was generated. The 2−ΔΔCt method was 
used to calculate the relative expression of the gene, with 
β-actin chosen as the endogenous reference. Supplemen-
tary Material (Additional file 3: Table S3 and Additional 
file 4: Table S4) displays the primers used.

Statistical analysis
R software (version 4.1.1) was used for all data process-
ing and analyses. The statistical significance of variables 
that followed a normal distribution was assessed using 
an independent t-test to compare the two groups of con-
tinuous variables. Differences between variables that did 
not follow a normal distribution were analyzed using the 

Wilcoxon rank-sum test to compare the two groups of 
independent variables. Pearson’s correlation analysis was 
used to calculate correlation coefficients between various 
genes. ROC curves were generated using the R package 
pROC to evaluate the precision of the diagnostic model, 
and the AUC was computed. The statistical significance 
of all p-values was assessed using a two-sided test, and 
p < 0.05 was considered to indicate statistical significance. 
The results of RT-qPCR are reported as means ± standard 
deviation. Comparison of two groups of data that were 
normally distributed was conducted using the Student’s 
t-test. Groups were compared using one-way analysis of 
variance (ANOVA). Unless otherwise specified, p value 
of < 0.05 was considered statistically significant.

Results
Analysis of DEGs associated with ferroptosis
According to the flowchart (Fig.  1), the MI datasets 
GSE60993 and GSE66360 were initially combined (Addi-
tional file  5: Figure S1A), revealing a noticeable batch 
effect in the merged data (Additional file 5: Figure S1C). 
Subsequently, the batch effect was eliminated from the 
datasets (Additional file  5: Figure S1B) to obtain gene 
expression profile data with consistent expression levels 
(Additional file 5: Figure S1D). The integrated data com-
prised 66 MI and 57 normal samples. Subsequently, the 
IS datasets GSE22255 and GSE16561 were combined 
(Additional file  5: Figure S1E), which revealed a notice-
able discrepancy between them (Additional file  5: Fig-
ure S1G). This discrepancy was eliminated from the 
datasets (Additional file 5: Figure S1F), resulting in gene 
expression profiling data that exhibited uniform expres-
sion levels (Additional file 5: Figure S1H). The integrated 
data comprised of data from 59 patients with IS and 44 
healthy controls.

To identify the DEGs associated with ferroptosis, we 
obtained the expression data of FRGs in MI and IS by 
intersecting the combined datasets of MI and IS with 
the FRGs. The analysis resulted in 22 DEGs, with 20 
upregulated (FC > 1.5 and p < 0.05) and 2 downregulated 
genes (FC <  − 1.5 and p < 0.05) (Fig. 2A). The DEGs were 
visualized using the R package pheatmap (Fig. 2C), which 
revealed significant differences in expression among the 
different subgroups of the combined MI dataset. The 
analysis of IS and control samples resulted in the identifi-
cation of 66 differentially expressed genes: 35 upregulated 
and 31 downregulated genes (Fig. 2B). Heat maps created 
using the R package pheatmap (Fig. 2D) clearly indicate 
the 66 differentially expressed genes in various subgroups 
of the combined IS dataset. Box plots of expression levels 
revealed that all genes related to ferroptosis that were dif-
ferentially expressed in MI showed significant differential 
expression in both disease and normal samples (Fig. 2E). 
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Fig. 1  Technology flowchart. MI: Myocardial Infarction. IS: Ischemic Stroke
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Similarly, all genes related to ferroptosis, which were dif-
ferentially expressed in IS, also showed significant differ-
ential expression in both the disease and normal samples 
(Fig. 2F).

To identify the FRGs that showed co-differential 
expression in both MI and IS, we intersected 22 differ-
entially expressed FRGs from the merged MI dataset 
with 65 differentially expressed FRGs from the merged 

Fig. 2  Examination of DEGs in relation to ferroptosis was conducted using combined MI and IS dataset. A Volcano plot of differentially expressed 
MI genes. Red nodes indicate upregulated genes, blue nodes indicate downregulated genes, and gray nodes indicate genes that do not differ 
significantly. B Volcano plot showing IS DEGs. C Heatmap displaying the expression levels of DEGs in MI, with MI samples represented in yellow 
and normal samples represented in blue. D Expression level heatmap displaying DEGs, with IS samples represented in yellow and normal samples 
represented in blue. E Boxplot differentially expressed boxplots of ferroptosis-related MI DEGs in disease and normal samples. *p < 0.05; **p < 0.01; 
***p < 0.001. F Boxplot of differential expression of ferroptosis-related IS DEGs in disease and normal samples. *p < 0.05; **p < 0.01; ***p < 0.001. MI: 
Myocardial Infarction. IS: Ischemic Stroke. DEGs: Differentially Expressed Genes
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IS dataset. This resulted in the identification of seven 
FRGs (ACSL1, TLR4, ADIPOR1, G0S2, PDK4, HP, and 
PTGS2) that were differentially expressed in both MI 
and IS. Box plots of expression levels revealed that the 
seven genes related to ferroptosis, which were co-dif-
ferentially expressed in MI and IS, exhibited significant 
differential expression between diseased and normal 
samples in both the MI-merged dataset (Fig.  3A) and 
the IS-merged dataset (Fig.  3B). Next, we conducted 
ROC validation on the combined MI and IS datasets 
to assess the diagnostic impact of the seven FRGs co-
differentially expressed in MI and IS. These seven 

genes have a discernible diagnostic effect on both MI 
and normal samples (Fig. 3C) and a specific diagnostic 
effect on both IS and normal samples (Fig. 3D).

A total of 22 genes related to ferroptosis showed dif-
ferential expression between MI and normal samples. 
We examined the correlation between the expression 
levels of these 22 genes in the normal and MI samples. 
The findings indicate that the majority of differentially 
expressed FRGs exhibited a positive correlation in MI 
samples (Fig.  4A), and a negative correlation in normal 
samples (Fig. 4B).

Fig. 3  Analysis of genes related to ferroptosis that were co-differently expressed in MI and IS. A Boxplots presenting the differential expression 
of genes related to ferroptosis, which are co-differentially expressed in MI samples and normal samples, for MI and IS. B Differential expression box 
plots of genes related to ferroptosis, which are co-differentially expressed in MI and IS in IS samples compared to normal samples, can be visualized 
using boxplots. C ROC curves were generated for 7 DEGs related to ferroptosis in the combined MI dataset, including MI and IS. D ROC curves 
were generated for 7 FRGs that were differentially expressed in both MI and IS. These genes were identified in the combined MI dataset. *p < 0.05; 
**p < 0.01; ***p < 0.001. MI: Myocardial Infarction. IS: Ischemic Stroke. ROC: Receiver Operarating Curve. FRGs: Ferroptosis-related Genes. DEGs: 
Differentially Expressed Genes
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Fig. 4  Correlation analysis of FRGs expressed differentially is conducted using the combined MI and IS dataset. A Correlation analysis 
was conducted on the gene expression levels of 22 differentially expressed FRGs in MI disease samples. Positive correlations are represented in blue 
and negative correlations are represented in pink. B In normal samples, a correlation analysis was conducted on the gene expression levels of 22 
FRGs that were differentially expressed in MI. C Correlation analysis was conducted on the gene expression levels of 35 IS FRGs that exhibited 
increased expression in disease samples. D In normal samples, a correlation analysis was conducted on the expression levels of 35 differentially 
expressed IS genes that are related to ferroptosis. E In disease samples, a correlation analysis was conducted on the gene expression levels of 31 
downregulated IS FRGs. F In normal samples, a correlation analysis was conducted on the gene expression levels of 31 downregulated IS FRGs. MI: 
Myocardial Infarction. IS: Ischemic Stroke. FRGs: Ferroptosis-related Genes

(See figure on next page.)
Fig. 5  Characterizing biological features of genes showing differential expression using the combined MI and IS dataset. A The significance level 
is represented by the node color, while the number of genes included in the current GO Term is represented by the node size. The horizontal axis 
represents generation, and the vertical axis represents GO terms in BP enrichment analysis of MI DEGs. B Enrichment analysis of BP in GO terms 
for DEGs from IS. C Conducting CC enrichment analysis on the GO terms of MI DEGs. D Conducting CC enrichment analysis on the GO terms 
of IS genes that are expressed differentially. E Performing MF enrichment analysis on the GO terms of DEGs in MI. F Conducting MF enrichment 
analysis on the GO terms of DEGs in IS. G Enrichment analysis of MI’s DEGs using KEGG. H KEGG enrichment analysis of the differentially expressed 
genes in IS. I Disease enrichment analysis of the differentially expressed genes in MI. J Disease enrichment analysis of the differentially expressed 
genes in individuals with IS. MI: Myocardial Infarction. IS: Ischemic Stroke. GO: Gene Ontology. KEGG: Kyoto Encyclopedia of Genes and Genomes. 
BP: Biological Process. CC: Cellular Component. MF: Molecular Function. DEGs: Differentially Expressed Genes
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Fig. 5  (See legend on previous page.)
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A total of 65 genes related to ferroptosis were dif-
ferentially expressed between the IS and normal sam-
ples. Among these genes, 35 were upregulated and 31 
were downregulated. Next, we examined the association 
between the expression levels of 35 distinct FRGs that 
showed increased expression, and 31 FRGs that showed 
decreased expression in both normal and MI samples. 
The findings indicated that the majority of FRGs that 
exhibited increased expression displayed favorable asso-
ciations in both IS samples (Fig. 4C) and normal samples 
(Fig. 4D). FRGs expressed in a distinct manner, exhibit-
ing reduced expression, exhibited positive correlations in 
nearly all of the IS samples (Fig. 4E) and in almost all of 
the normal samples (Fig. 4F).

The GO functional annotation of MI DEGs in the 
merged datasets revealed that these genes were primar-
ily enriched in various biological processes, including 
tissue and temperature homeostasis, and smooth mus-
cle cell proliferation (Fig. 5A, Additional file 6: Table S5). 
Moreover, in terms of cellular components, they were 
associated with transcription regulator complexes, ter-
tiary granule lumens, and tertiary granules (Fig.  5C). 
Furthermore, these genes exhibited molecular functions, 
such as tetrapyrrole binding, STAT family protein bind-
ing, and protein heterodimerization activity (Fig.  5E). 
KEGG Pathways were enriched in Yersinia infection, toll-
like receptor signaling pathway, TNF signaling pathway, 
and other pathways (Fig. 5G, Additional file 7: Table S6). 
Finally, they were also associated with diseases such as 
varicose veins, trypanosomiasis, and retinal diseases 
(Fig. 5I).

Functional annotation of GO revealed that the DEGs 
in the combined dataset were primarily enriched in bio-
logical processes such as temperature regulation, oxida-
tive stress response, and nutrient-level response (Fig. 5B, 
Additional file  8: Table  S7). They were also associated 
with cellular components such as the vesicle lumen, U1 
snRNP, and the spliceosomal snRNP complex (Fig.  5D). 
Additionally, these genes exhibited molecular functions 
such as ubiquitin protein ligase binding, ubiquitin-like 
protein ligase binding, and ubiquitin-like protein-con-
jugating enzyme binding (Fig.  5F). Furthermore, they 
were enriched in KEGG pathways such as Spliceosome, 
Shigellosis, and Peroxisome (Fig.  5H, Additional file  9: 
Table  S8). Finally, these genes were linked to diseases, 
such as stomach carcinoma, polycystic ovary syndrome, 
and peripheral nervous system neoplasms (Fig. 5J).

GSEA and  GSVA enrichment
GSEA was performed on the merged MI and IS data-
sets to investigate the correlation between expressed 
and involved biological processes, affected cellular com-
ponents, and molecular functions in disease and control 

samples. Promoted biological processes in MI disease 
samples (Fig.  6A, Additional file  10: Table  S9) included 
igg binding (Fig.  6C), rage receptor binding (Fig.  6D), 
positive regulation of membrane protein ectodomain 
proteolysis, immunoglobulin binding, and regulation 
of dendritic cell differentiation. Conversely, inhibition 
of biological processes in MI disease samples (Fig.  6B) 
comprised negative regulation of multicellular organ-
ism growth (Fig.  6E), pseudouridine synthase activ-
ity (Fig.  6F), pseudouridine synthesis, small nucleolar 
ribonucleoprotein complex, and positive regulation of 
RNA polymerase ii transcription pre-initiation complex 
assembly. Promoted biological processes in the IS disease 
samples (Fig. 6G, Additional file 11: Table S10) included 
oxygen transport (Fig.  6I), platelet alpha granule mem-
brane (Fig.  6J), innate immune response in the mucosa, 
pattern recognition receptor activity, and positive regu-
lation of vascular endothelial growth factor production. 
Conversely, the inhibition of biological processes in IS 
disease samples (Fig.  6H) involved nucleotide salvage 
(Fig. 6K), RNA methylation (Fig. 6L), positive regulation 
of mitochondrial translation, mitochondrial small riboso-
mal subunit, and RNA modification, among others.

To investigate the functional disparities between the 
disease and control samples in the merged MI and IS 
datasets, we conducted GSVA. The results revealed that 
MI samples exhibited significant activation of hallmark 
angiogenesis, hallmark apical junctions, hallmark apical 
surfaces, hallmark apoptosis, and other biological pro-
cesses (Fig. 7A, Additional file 12: Table S11). Addition-
ally, IS samples showed significant activation of hallmark 
hedgehog signaling, hallmark heme metabolism, and 
hallmark hypoxia (Fig. 7B, Additional file 13: Table S12). 
Furthermore, we computed the connections between 
differentially expressed genes in relation to ferroptosis 
and hallmark biological processes in 22 MI cases. The 
findings indicate that secreted protein acidic and rich in 
cysteine (SPARC) demonstrated a significantly positive 
correlation with hallmark glycolysis, hallmark 16 JAK/
STAT3 signaling, hallmark inflammatory response, hall-
mark interferon alpha response, and hallmark interferon 
gamma response. Additionally, SPARC exhibited a sig-
nificant negative correlation with hallmark pancreatic 
beta cells and spermatogenesis (Fig.  7C). Correlation 
analysis between 65 IS genes associated with ferroptosis 
and hallmark biological processes revealed that ACSL1 
exhibited a significant positive correlation with upregu-
lated hallmark KRAS signaling, downregulated hallmark 
uv response dn, and ADIPOR1. In contrast, the hallmark 
e2f targets, hallmark interferon-alpha response, hallmark 
oxidative phosphorylation, and hallmark unfolded pro-
tein response exhibited a significant negative correlation 
(Fig. 7D).
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Fig. 6  GSEA of the combined dataset of MI and IS. A GSEA reveals the activation of biological processes in patients with MI, with enrichment scores 
plotted on the horizontal axis, GO terms on the vertical axis, a color table indicating p-values, and node size indicating the number of enriched 
genes. B GSEA of biological processes suppressed in patients with myocardial infarction. C Igg binding demonstration in the enrichment results 
in A. D Rage receptor binding demonstrated in the enrichment results in A. E Negative regulation of multicellular organism growth demonstrated 
in enrichment results in B. F The enrichment results showed the presence of pseudouridine synthase activity in B. G GSEA of biological processes 
activated in patients with IS. H GSEA of biological processes inhibited in patients with IS. I Oxygen transport demonstrated in the enrichment 
results in G. J Platelet alpha granule membrane demonstrated in the enrichment results in G. K Nucleotide salvage display demonstrated 
in the enrichment results in H. L RNA methylation display in enrichment results in H. GSEA: Gene Set Enrichment Analysis. MI: Myocardial Infarction. 
IS: Ischemic Stroke
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Co‑expression modules for MI and IS
WGCNA was applied to the integrated MI datasets. To 
ensure a topology without scaling, the recommended soft 
threshold for scale-free R was 0.80 (Additional file  14: 
Figure S2A). The WGCNA identified five modules in the 
integrated MI dataset. Each gene module is indicated in a 
different color. To evaluate the correlation between each 
module and disease, heat maps were generated using 
Spearman’s correlation coefficients, illustrating the mod-
ule-feature relationships (Fig.  8A). The modules named 
“gray” and “brown” strongly correlated with MI and were 
chosen as MI-associated modules (gray module, R = 0.3, 
P = 8e-04;’ brown module, R = 0.55, P = 7e-11). (Fig.  8C). 
Furthermore, we graphed the gene importance compared 
to the module affiliation for the “gray” (Additional file 14: 
Figure S2B) and “yellow” (Additional file 14: Figure S2C) 
modules individually. Scatter plot of gene significance vs. 
module membership. The total number of MI-associated 
genes was 3407.

WGCNA was used to identify gene modules linked 
to IS using integrated IS datasets. To ensure a scale-
free topology (Additional file  14: Figure. S2D), the 
ideal soft threshold for scale-free R was determined to 
be 0.80. WGCNA identified nine modules in the inte-
grated IS dataset, wherein each color corresponded 
to a distinct gene module. To evaluate the correlation 
between each module and disease, heat maps illus-
trating the module-feature relationships were gener-
ated using Spearman correlation coefficients (Fig. 8B). 
The IS-associated modules, namely the pink mod-
ule (R = 0.31, P = 0.002) and blue module (R = 0.38, 
P = 7e-05), exhibited a strong correlation with IS 
(Fig.  8D). Furthermore, we graphed scatter plots dis-
playing the correlation between gene significance and 
module membership for the “pink” (Additional file 14: 
Figure S2E) and "blue" (Additional file 14: Figure S2F) 
modules, respectively. We obtained a total of 3412 
genes related to MI.

Shared gene and network analysis of MI and IS
To identify shared genes between MI and IS, we extracted 
co-expressed genes associated with diseases in MI and IS 
from the combined datasets. Subsequently, we identified 

3137 and 3806 genes that were differentially expressed in 
MI and IS, respectively. By intersecting the set of genes 
co-expressed with diseases and the set of genes differ-
entially expressed in MI and IS, we identified 168 genes 
shared between MI and IS (Fig. 9A).

To examine the interactions among the DEGs, we 
built a PPI network using 168 common genes associ-
ated with MI and IS. The PPI network comprised 653 
pairs of interactions and 163 shared genes. This net-
work was visualized using Cytoscape. WDR59, ARG1, 
and MPO had the highest number of gene interactions 
(29, 29, and 28, respectively) (Fig. 9B).

Hub genes were extracted by calculating the top 30 
nodes in each of the 12 algorithms in CytoHubba and 
selecting 35 genes that appeared in at least 5 algorithms 
(Fig. 9C). Using the R package “GOSemSim” [39], we cal-
culated the semantic similarity of hub genes in Go. These 
findings indicated that CTSG, ORM1, and MPO exhib-
ited functional correlations with multiple genes (Fig. 9D).

We predicted the miRNAs that interacted with 35 
hub genes. Subsequently, we utilized Cytoscape to visu-
ally represent the network of mRNA-miRNA interac-
tions (Fig. 9E). miRNAs are represented as sky-blue oval 
blocks in the network of mRNA-miRNA interactions, 
whereas mRNAs are depicted as red dots. The mRNA-
miRNA interaction network reveals that our network 
comprised 11 hub genes and 71 miRNA molecules, 
forming a total of 84 mRNA-miRNA interaction pairs.

Using Cytoscape (Fig. 9F), we visualized the interac-
tion relationship data of 11 hub genes and 30 TFs in the 
mRNA-TF network that we constructed. The mRNA-
TF interaction network contained 39 pairs of mRNA-
TF interactions.

A network of hub genes was built and 10 RNA-bind-
ing proteins (RBPs) corresponding to 16 hub genes 
were identified (Fig.  9G). The two RBPs, CSTF2T and 
FMR1, simultaneously target 11 crucial genes. The 
mRNA-RBP interaction network contained 81 pairs of 
mRNA-RBP interactions.

In the mRNA-drug interaction network (Fig. 9H), we 
built a network of hub genes associated with mRNA 
drugs and discovered 163 potential drugs or molecular 
compounds linked to 30 hub genes. We discovered that 

(See figure on next page.)
Fig. 7  GSVA of the combined MI and IS datasets. A The hallmark distinction between MI and normal samples is represented by coordinates, 
wherein the hallmark is on the horizontal axis and the GSVA score is on the vertical axis. Cluster1 is indicated in pink, while cluster2 is indicated 
in blue. B The difference in hallmark between IS and normal samples. Significance levels are denoted as *p < 0.05; **p < 0.01; and ****p < 0.001. C 
Association of MI ferroptosis-related differential genes with characteristic on the horizontal axis and characterized genes on the vertical axis. Node 
size signifies the degree of significance, and node color signifies the degree of correlation. D. Correlation of IS ferroptosis-related differential genes 
with hallmark. Significance levels are denoted as *p < 0.05; **p < 0.01; and ****p < 0.001. GSVA: Gene Set Variation Analysis. MI: Myocardial Infarction. 
IS: Ischemic Stroke
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Fig. 7  (See legend on previous page.)
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Fig. 8  WGCNA of the combined MI, IS-based datasets. A Identification of MI-associated co-expression modules. B Identification of IS-associated 
co-expression modules. C The MI-associated module characterized genes are correlated with variables, represented by Pearson correlation 
coefficients and corresponding p values. Positive correlation is indicated in red, while negative correlation is indicated in blue. The clinical 
variables are plotted on the horizontal axis and the module characterized genes on the vertical axis. D Correlation between IS-associated module 
characterized genes and variables. WGCNA: Weighted Gene Co-expression Network Analysis. MI: Myocardial Infarction. IS: Ischemic Stroke

(See figure on next page.)
Fig. 9  MI and IS shared genes and network analysis. A Wayne diagram displays the genes shared by MI and IS. Genes co-expressed with MI are 
shown in yellow, MI DEGs in blue, IS DEGs in purple, and IS co-expressed genes in green. B The PPI network of common genes. The shared genes 
are represented as blue nodes, whereas the shared genes with a greater number of shared genes in the medium degree are depicted in red. C Gene 
frequencies in the 12 algorithms are displayed in a table with genes and frequencies represented on the horizontal and vertical axes, respectively. 
D Gene similarity scores of hub genes in the PPI network of DEGs are represented by GO semantic similarity. The level of similarity is shown 
on the horizontal axis and genes are displayed on the vertical axis. E The network of hub genes and miRNAs is represented by mRNA-miRNA. 
Hub genes and miRNAs are depicted as red and blue nodes, respectively. F Network of hub genes and TFs is represented by mRNA. Hub genes 
and transcription factors are depicted as red and blue nodes, respectively. G The network of hub genes and RBPs consisting of red nodes 
representing hub genes and blue nodes representing RBPs. H The network of hub genes and drugs is represented by red and blue nodes for hub 
genes and drugs, respectively. MI: Myocardial Infarction. IS: Ischemic Stroke. PPI: protein–protein interaction. GO: Gene Ontology. RBPs: RNA-binding 
protein. DEGs: Differentially Expressed Genes
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Fig. 9  (See legend on previous page.)
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C006780 simultaneously targeted 20 hub genes. The 
network of interactions between the mRNA and drugs 
consisted of a grand total of 349 pairs.

Construction of a diagnostic model related to Ferroptosis
The diagnostic value of the seven FRGs codifferentially 
expressed in MI and IS in the integrated MI datasets 

Fig. 10  Feature selection screening for diagnostic markers. A Model training error plot for the MI RF algorithm. B RF model displays 7 genes 
related to ferroptosis in MI, arranged in descending order of MeanDecreaseGini, which are co-differentially expressed by MI and IS. C The ROC 
curves for diagnostics in the training set for MI used by RF model. D SVM Classification Surface Visualization in MI, with circles denoting the support 
vectors outside the data samples, and triangles indicate support vectors in the data. E The ROC curves for diagnostics in the training set for MI used 
by SVM. F The merged datasets were used to generate diagnostic model plots for LASSO regression of DEGs in MI. G LASSO variable trajectory 
plots of MI’s diagnostic model for differential genes. H The ROC curves for diagnostics in the training set for MI used by LASSO regression. I RF 
Model training error plot for the algorithm in IS. J The RF model displays 7 genes related to ferroptosis (in descending order of MeanDecreaseGini) 
that show co-differential expression in MI and IS. K The ROC curves for diagnostics in the training set for IS used by RF model. L SVM Classification 
Surface Visualization in IS. M The ROC curves for diagnostics in the training set for IS used by SVM. N IS LASSO regression model for diagnostics 
in the training set. O Trajectory plots of LASSO variables for IS differential gene diagnostic models. P ROC curves for IS’s LASSO regression model 
for diagnostics in the training set. MI: Myocardial Infarction. IS: Ischemic Stroke. ROC: Receiver operating characteristic curve. LASSO: Least absolute 
shrinkage and selection operator. SVM: Support Vector Machine. RF: Random Forest
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was assessed by analyzing their expression using RF 
(Fig.  10A). MeanDecreaseGini indicates the decrease in 
the Gini coefficient of a node. We filtered the results of 
specific analyses using MeanDecreaseGini > 0 as a crite-
rion because nodes with reduced Gini coefficients were 
more valuable. From the results presented in (Fig. 10B), 
we identified six diagnostic markers of MI derived from 
seven genes associated with ferroptosis that were co-dif-
ferentially expressed in both MI and IS. The markers were 
determined using the RF algorithm. In addition, ROC 
curves were generated for the combined MI datasets 
using the established RF model (Fig. 10C), which yielded 
an AUC value of 0.617. Subsequently, we employed a 
SVM to screen the selected genes and construct an MI 
diagnostic model. The radial kernel function was utilized, 
and the optimal number of feature genes obtained from 
the seven FRGs codifferentially expressed in MI and IS 
was five. Among these, two were randomly selected to 
represent the support vectors in the data (Fig. 10D). Fur-
thermore, we predicted and plotted ROC curves based 
on the established model using the integrated MI data-
sets (Fig.  10E), resulting in an AUC value of 0.887. In 
conclusion, a diagnostic model for MI was developed 
using LASSO regression analysis (Fig.  10F). This model 
identified four MI diagnostic markers from a set of seven 
FRGs that were differentially expressed in both MI and 
IS. Furthermore, we visualized the results of the LASSO 
regression and generated trajectory plots for the LASSO 
variables (Fig. 10G). ROC curves were predicted for the 
integrated MI datasets using the established LASSO 
regression model (Fig. 10H) and achieved an AUC value 
of 0.896.

To assess the diagnostic significance of the seven MI 
and IS co-DEGs related to ferroptosis in the combined 
IS dataset, we examined the expression of these genes 
using the RF algorithm (Fig.  10I). MeanDecreaseGini 
indicates a decrease in the Gini coefficient of a node. 
The more Gini coefficients are reduced by the nodes, the 
more valuable they are. We filtered the specific analy-
sis results using MeanDecreaseGini > 6 as the criterion. 
The findings indicated (Fig.  10J) that we identified six 
diagnostic indicators for IS from seven FRGs that were 
codifferentially expressed by MI and IS using the RF algo-
rithm. Subsequently, we used the established RF model to 
predict and visualize the ROC curves on the integrated 
IS datasets (Fig. 10K), achieving an AUC value of 0.816. 
Next, we employed an SVM to screen the selected genes 
and construct the IS diagnostic model, utilizing the radial 
as the kernel function. Among the seven FRGs co-differ-
entially expressed by MI and IS, we identified five opti-
mal feature genes, two of which were randomly chosen 
to demonstrate the support vectors in the data (Fig. 10L). 

Furthermore, we predicted and plotted ROC curves 
based on the model constructed using the integrated IS 
dataset (Fig. 10M), which yielded an AUC value of 0. 841.
In conclusion, a diagnostic model for IS was developed 
using the LASSO regression analysis (Fig. 10N). All seven 
FRGs, which were codifferentially expressed in MI and 
IS, served as diagnostic markers for MI. Furthermore, we 
visualized the results of the LASSO regression and gener-
ated trajectory plots for the LASSO variables (Fig. 10O). 
Additionally, we predicted and plotted ROC curves for 
the integrated IS datasets using the established LASSO 
regression model (Fig. 10P) and achieved an AUC value 
of 0.892.

After evaluating the AUC values of the diagnostic mod-
els created using RF, SVM, and LASSO, LASSO regres-
sion analysis was chosen as the ultimate method for 
constructing the diagnostic models for both MI and IS. 
The MI diagnostic model comprised 4 hub genes (TLR4, 
ADIPOR1, G0S2, and HP), whereas the IS diagnostic 
model consisted of 7 hub genes (ACSL1, TLR4, ADI-
POR1, G0S2, PDK4, HP, and PTGS2). These models were 
selected as the final models.

To confirm whether these hub genes exhibited the 
same differential expression and expression patterns in 
other datasets, we generated box plots of the hub genes 
in the GSE48060 dataset by comparing the MI and nor-
mal samples (Fig.  11A). Of the four hub genes, three 
displayed significant differences in expression between 
the MI and normal samples, and their expression pat-
terns aligned with the combined datasets. Additionally, 
we used the established LASSO regression model, which 
included the four hub genes, to predict the GSE48060 
dataset and plotted ROC curves (Fig. 11B), resulting in an 
AUC value of 0.624. Furthermore, we independently veri-
fied the ROC curve of the hub genes in the model. The 
figure clearly illustrates that HP (Fig. 11E) and ADIPOR1 
(Fig. 11F) exhibited a significant difference in expression 
between the MI and normal samples, demonstrating spe-
cific diagnostic implications.

We created box plots comparing the hub genes in 
the GSE58294 dataset between IS and normal samples 
(Fig.  11C). Of the seven hub genes, five exhibited nota-
ble variations in expression between IS and normal 
samples. Expression patterns were aligned with the com-
bined datasets. Using the GSE58294 dataset, a LASSO 
regression model was constructed with seven hub genes, 
allowing expression prediction. Subsequently, an ROC 
curve (Fig.  11D) was generated with an AUC value of 
0.706. Furthermore, we conducted ROC validation and 
observed that G0S2 (Fig.  11G) and ACSL1 (Fig.  11H) 
exhibited specific diagnostic impacts on both the IS and 
Normal samples.
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Immune infiltration analysis of combined datasets
The ssGSEA was used to evaluate the extent of immune 
cell infiltration in the combined datasets by comparing 
MI and IS samples to normal samples. The results indi-
cate that the levels of immune cells, such as activated 

CD4 T cells, activated dendritic cells, central mem-
ory CD8 T cells, neutrophils, and T follicular helper 
cells, were higher than those in the normal samples. 
The levels of eosinophils, macrophages, natural killer 
cells, natural killer T cells, and regulatory T cells were 

Fig. 11  The validation set demonstrates the expression of important genes. A Plot comparing the MI hub genes categorized under MI grouping 
and Normal grouping in the GSE48060 dataset. B ROC curves for the LASSO regression model of MI in the diagnosis of the validation set GSE48060. 
C Plot comparing the IS hub genes grouped under IS subgroups and Normal subgroups in the GSE58294 dataset. D The ROC curves for the LASSO 
regression model of IS in the diagnosis of the validation set GSE58294. E ROC curves for HP in the GSE48060 validation set, showing the ROC curve 
for diagnosis in the same validation set GSE48060. F ADIPOR1 ROC curve of diagnosis in validation set GSE48060. G G0S2 ROC curve of diagnosis 
in validation set GSE58294. H ACSL1 ROC curve of diagnosis in validation set GSE58294. nsp > 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001. MI: 
Myocardial Infarction. IS: Ischemic Stroke. ROC: Receiver Operating Characteristic. LASSO: Least Absolute Shrinkage and Selection Operator
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notably elevated in MI samples (Fig.  12A). Compared 
to normal samples, IS samples exhibited significantly 
higher levels of these immune cells (Fig. 12B). The cor-
relation between the expression levels of the identified 
genes and immune cells in MI and IS samples was cal-
culated. The findings indicated a significant correlation 
between the expression of the identified genes, TLR4 
and G0S2, and the presence of various immune cells 
in the MI samples (Fig.  12C). Similarly, the expression 
of the identified genes, TLR4 and HP, was significantly 
correlated with the content of multiple immune cells in 
IS samples (Fig. 12D). By separately calculating the cor-
relation between the immune cell composition in MI 
and IS samples, we observed that monocytes, central 
memory CD8 + T cells, immature dendritic cells, regula-
tory T cells, gamma delta T cells in IS samples, and mac-
rophages exhibited a positive correlation (Fig. 12E). In IS 
samples, there was a positive correlation between Type 
2  T helper cells and macrophages, monocytes, natural 
killer cells, neutrophils, mast cells, regulatory T cells, 
T follicular helper cells, natural killer T cells, activated 
dendritic cells, central memory CD8 T cells, MDSC, 
plasmacytoid dendritic cells, immature dendritic cells, 
and gamma delta T cells. However, memory B cells were 
negatively correlated with most immune cells (Fig. 12F).

Identification of patient subtypes by characterized genes
Using the UMAP method (Fig.  13A), two subtypes of 
patients, cluster1 and cluster2, were identified based 
on four hub genes. Cluster1 contained 23 samples 
whereas cluster2 contained 43 samples. Cluster analy-
sis revealed variations in the identified genes between 
the two sample groups (Fig.  13C). This indicated that 
the four crucial genes exhibited significant differen-
tial expression in distinct subgroups of the MI com-
bined dataset. The differences in the expression of the 
four hub genes between the two MI disease subtypes 
(cluster1 and cluster2) were examined, and the results 
are illustrated in a group comparison plot (Fig.  13E). 
Additionally, the featured genes exhibited differential 
expression between the two patient subtypes (p < 0.05).

Using the UMAP method (Fig. 13B), two subtypes of 
patients, namely cluster1 and cluster2, were identified 
based on the seven hub genes. There were 25 samples 
in Cluster1 and 34 samples in cluster2.The the clus-
tering outcomes revealed variations in the identified 
genes between the two sample groups (Fig.  13D). This 
indicated that the seven hub genes exhibited differen-
tial expression in distinct subgroups of the combined 
IS dataset. The differences in expression of the seven 
hub genes between the two IS disease subtypes (clus-
ter1 and cluster2) were examined, and the findings of 
the expression difference analysis are illustrated using 
a group comparison plot (Fig. 13F). Additionally, a sig-
nificant proportion of the highlighted genes exhibited 
differential expression between the two patient subtypes 
(p < 0.05).

Variations in immune traits among subcategories
To evaluate the extent of immune cell infiltration in the 
two distinct patient subtypes, the CIBERSORTx algo-
rithm was employed. According to the findings, a notable 
distinction was observed in the correlation of immune 
cells between cluster1 and cluster2 patient groups 
(Fig. 14A and B) in individuals with MI. The correlation 
between the four hub genes and immune cell content 
in patients with the MI subtype was calculated sepa-
rately. These findings indicate that the expression levels 
of multiple hub genes in patients in the cluster1 group 
were significantly positively correlated with NK cells at 
rest, macrophages M2, and neutrophils. Additionally, the 
expression levels of T CD4 memory cells at rest and in 
activated dendritic cells demonstrated a significant nega-
tive correlation with the expression levels of several hub 
genes (Fig.  14C). In the cluster2 patient group, expres-
sion of the central HP gene showed a significant positive 
correlation with the presence of various immune cells 
(Fig. 14D).

The correlation between immune cells in patients in 
cluster1 group (Fig.  14E) differed significantly from 
that in patients in cluster2 group (Fig.  14F). Associa-
tions between the seven hub genes and immune cell 
composition in patients with IS were also individually 

Fig. 12  Comparison of immunological features in diseased and normal samples using ssGSEA. A The histogram displays the composition 
of immune cells in MI and normal samples. Cluster2 samples are represented by the color blue, while cluster1 samples are represented by the color 
pink. The immune cells are shown on the horizontal axis, and the cell content is represented on the vertical axis. B Comparison of immune cell 
composition between IS samples and normal samples using a histogram. C The relationship between identified genes and immune cells in MI 
samples is shown, with the size of the nodes representing the level of significance and the color indicating the correlation. Immune cells are 
represented on the horizontal axis, while characterized genes are represented on the vertical axis. D Relationship between identified genes 
and immune cells in IS samples. E The analysis of correlation between immune cell contents in MI samples shows that red represents negative 
correlation while blue represents positive correlation. F The correlation between the composition of immune cells in IS samples. MI: Myocardial 
Infarction. IS: Ischemic Stroke

(See figure on next page.)
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Fig. 12  (See legend on previous page.)
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Fig. 13  Characterization gene to patient clustering analysis. A UMAP clustering result plots of MI patients, cluster1 is indicated in pink and cluster2 
is indicated in blue. B UMAP clustering result plots of IS patients. C A heatmap displaying the expression levels of MI characterized genes in two 
clusters, with cluster1 represented by pink and cluster2 represented by blue. D The expression levels of IS characterized genes in both clusters are 
represented by a heatmap, with cluster1 shown in pink and cluster2 shown in blue. E The expression levels of FRGs that are differentially expressed 
vary between cluster1 and cluster2 samples in MI patients. Cluster1 samples are indicated in pink, while cluster2 samples are indicated in blue. 
The hub gene is represented on the horizontal axis, while the gene expression level is shown on the vertical axis. F Expression levels of FRGs 
that are differentially expressed vary between samples from cluster1 and cluster2 in patients with IS. nsp > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. MI: 
Myocardial Infarction. IS: Ischemic Stroke. UMAP: Uniform Manifold Approximation and Projection. FRGs: Ferroptosis-related Genes



Page 24 of 31Liao et al. BMC Genomics          (2023) 24:731 

computed. These findings indicated a significant posi-
tive correlation between the expression level of the hub 
gene PDK4 and the presence of various immune cells in 
patients belonging to the CLUSTER1 group (Fig. 14G). 
In patients in cluster2 group, there was a strong positive 
correlation (Fig.  14H) between the abundance of vari-
ous immune cells and the expression level of the central 
gene, TLR4.

RT‑qPCR validation of hub genes expression in cellular 
models and clinical disease blood specimens
Compared to the controls, TLR4 mRNA expression was 
significantly increased in both cell models and blood 
specimens of clinical diseases (Fig.  15A and G). In the 
PC12 cell model, ADIPOR1 mRNA expression did not 
differ significantly from that in normal PC12 cells but 
was significantly higher in the H9c2 cell model and blood 
specimens from patients with clinical diseases (Fig. 15B 
and H). GOS2 mRNA expression was significantly higher 
in both cell models and blood specimens of patients with 
clinical diseases than in the control group (Fig. 15C and 
I). Similarly, HP mRNA showed a significant increase 
in both the cell model and blood specimens of patients 
with clinical diseases compared to the control group 
(Fig.  15D and J). ACSL1 mRNA expression was signifi-
cantly elevated in the IS and MI groups compared to the 
control group, whereas there was no significant change in 
expression in the cardiopulmonary resuscitation group 
compared to the control group, and in the cellular model, 
where the expression of ACSL1 mRNA was significantly 
elevated (Fig. 15E and K), and the PDK4 mRNA expres-
sion was significantly higher in the IS group compared 
with the control group, whereas there was no significant 
change in expression in the MI and cardiopulmonary 
resuscitation(CPR) groups compared with the control 
group, and PDK4 mRNA expression was significantly 
higher in the PC12 cell model, whereas there was no 
significant change in expression in the H9c2 cell model 
(Figs. 15F and L). PTGS2 mRNA expression was signifi-
cantly higher in MI group compared to controls, but no 
significant change in IS and CRR groups (Fig.  15M), In 

the cellular model, we confirmed by repeated verification 
of specimen RNA, primers and experimental conditions 
that PTGS2 mRNA expression was low in rats, and RT-
qPCR was unable to detect the relevant expression of 
PTGS2 mRNA.

Discussion
Effective preventative and curative techniques for car-
dio-cerebral damage resulting from cardiac arrest and 
complex cardio-cerebral vascular conditions are limited, 
leading to unsatisfactory treatment outcomes due to the 
limited timeframe and irreversible damage to heart mus-
cle cells and neurons [40–42]. Despite functional and 
structural disparities, research indicates a remarkable 
resemblance in injury mechanisms between the heart and 
brain [1, 43]. However, the precise underlying mechanism 
remains unclear and requires further investigation. The 
involvement of ferroptosis in the progression of various 
diseases, including tumors and neurodegenerative dis-
eases, has been previously reported [44]. An experiment 
conducted in mice with myocardial ischemia–reperfusion 
injury demonstrated an increase in non-heme iron con-
tent in the myocardium. Ferroptosis inhibitors alleviate 
ventricular remodeling and injury, indicating ferroptosis 
in the cardiomyocytes of mice with myocardial ischemia–
reperfusion injury [45]. Following myocardial reperfusion, 
ACSL4 and iron levels increased, whereas GPX4 levels 
decreased [46]. Li et  al. found that in reperfusion injury 
due to cardiac transplantation or cardiac coronary artery 
occlusion, cardiomyocytes undergo ferroptosis and trig-
ger inflammation that exacerbates cardiac injury, and the 
use of an inhibitor of ferroptosis reduces cardiomyocyte 
ferroptosis [7]. Tuo et  al. discovered that the effects of 
surgery on cerebral ischemia–reperfusion injury caused 
by middle cerebral artery occlusion (MCAO) were wors-
ened by ferroptosis [47]. This study demonstrated that the 
suppression of ferroptosis reduced the damage caused by 
cerebral ischemia–reperfusion injury in the hippocampal 
neurons of mice in the MCAO model. This was achieved 
by enhancing GPX4 expression as described in a previ-
ous study [48]. These reports uncover the involvement 

Fig. 14  Immune characteristics between patients with different subtypes- CIBERSORTX. A The correlation between immune cell content 
in the cluster1 patient group with MI is indicated in pink for positive correlation and blue for negative correlation. B Correlation between immune 
cell composition in the cluster2 patient group and MI. C The correlation between immune cells and MI signature genes in the cluster1 patient 
group. The immune cells are shown on the vertical axis, while the signature genes are shown on the horizontal axis. Positive and negative 
correlations are indicated in red and blue, respectively. The size of the nodes represents the significance, and the color of the nodes represents 
the correlation. D Correlation between immune cells and MI signature genes observed in the cluster2 patient group. E The association 
between the number of immune cells in the cluster1 patient group and IS. F The relationship between the number of immune cells in the cluster2 
patient group and IS. G The correlation between immune cells and genes characterized by IS in patients belonging to the cluster1 group. H The 
correlation between immune cells and genes characterized by IS in patients belonging to the cluster2 group. *p < 0.05; **p < 0.01; ***p < 0.001. MI: 
Myocardial Infarction. IS: Ischemic Stroke

(See figure on next page.)
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Fig. 14  (See legend on previous page.)
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of ferroptosis in cardiovascular disorders; however, addi-
tional investigations are required to fully understand 
its precise molecular mechanisms. This study aimed to 
establish a diagnostic model for the FRGs in patients with 
MI and IS. Multiple machine algorithms have been used 
to achieve this goal. Therefore, the best diagnostic model 
was selected for this study. In the future, bioinformatics 
methods will be used to analyze the biological processes 
of the hub genes, and further clinical specimens and cel-
lular modeling experiments will be conducted to verify 
these findings. This study identified the hub genes related 
to ferroptosis in the process of cardiac ischemia–reper-
fusion injury and explored the biological mechanism of 
FRGs in this process.

In this study, we analyzed the expression of seven hub 
genes associated with ferroptosis in MI, IS, CRP, and 
physical examination populations, as well as in the H9c2 
and PC12 cellular models, based on the aims of our study 
and the results of our validation dataset. We discovered 

that TLR4, ADIPOR1, G0S2, and HP play significant 
roles in the pathogenesis of MI and IS. The test set also 
confirmed that these hub genes have a diagnostic value 
for understanding the pathogenesis of MI and IS.

TLR4 (Toll-like receptor 4 (TLR4) plays a signifi-
cant role in initiating the innate immune response and 
transmitting signals via a cascade of molecules [49]. The 
inflammatory response plays a crucial role following car-
diac and cerebral ischemia/reperfusion injury [50, 51]. 
Recently, the association between TLR4 and inflamma-
tion was investigated. TLR4 exhibits the greatest expres-
sion among cardiac TLRs, Research has indicated that 
blocking the TLR4 signaling pathway can decrease the 
inflammatory response in heart muscle and potentially 
protect against further harm to the already injured myo-
cardium [52]. Preclinical research has utilized genetically 
modified animal models to investigate the involvement 
of TLR4 in promoting inflammation and development 
of cardiac fibrosis and dysfunction [53]. Additionally, 

Fig. 15  The expression of hub genes in cellular models and blood samples from clinical conditions. The mRNA expression levels of TLR4 A, G, 
ADIPOR1 B, H, GOS2 C, I, and HP D, J, ACSL1E, K, PDK4 F, L, and PTGS2 M were analyzed in PC12 cells, H9c2 cells, and blood samples obtained 
from patients undergoing CPR, acute IS, acute MI, as well as those undergoing normal physical examination. nsp > 0.05; *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001. Ctrl: Control. CPR: cardiopulmonary resuscitation.IS: ischemic stroke. MI: myocardial ischemia
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investigations have shown that during stroke, mol-
ecules typically contained within cells are released 
into the extracellular space owing to uncontrolled cell 
death. TLR4 has been identified as a potential target for 
stroke treatment because of its ability to bind circulat-
ing immune cells and activate an inflammatory response 
[54]. Additionally, the TLR4-NF-κB signaling pathway 
has been shown to alleviate inflammation in acute kidney 
injury [55]. TLR4 is a central gene involved in ferropto-
sis associated with ischemic stroke [56]. Recent findings 
also suggest that TLR4 plays a role in cardio-cerebral 
ischemic disorders, as evidenced by decreased expression 
of TLR4 in the cortex and hippocampus after cardiopul-
monary resuscitation in rat models [57]. Taken together, 
these studies and our report further suggest an important 
role for TLR4 in cardiac ischemia–reperfusion injury; 
therefore, it is worthwhile to investigate the mechanisms 
of iron death and the role of TLR4 in this process.

ADIPOR1 (adiponectin receptor 1) plays a role in con-
trolling fatty acid breakdown and glucose concentration. 
Interaction between ADIPOR1 and APPL1 diminishes 
the cardioprotective effects of adiponectin on myocar-
dial ischemia/reperfusion injury in type 2 diabetic mice 
[58]. Autophagy-mediated ADIPOR1-AMPK signaling 
can suppress apoptosis in brain cells induced by cardiac 
arrest or cardiopulmonary resuscitation [59]. Addition-
ally, the ADIPOR1-AMPK signaling pathway plays a 
crucial role in IS injury and can hinder the progression 
of cerebral injury after IS through lipocalin [60]. These 
findings align with our research and provide a basis for 
further investigation of shared pathways in cardiac and 
cerebral ischemic injuries.

G0S2 (G0/G1 switch 2) is primarily found in mitochon-
dria and plays a role in promoting the extrinsic apoptotic 
signaling pathway. A retrospective clinical study indi-
cated that low levels of G0S2 expression in peripheral 
blood may be a marker for MI [61]. Overexpression of 
G0S2 attenuates the decline in cardiomyocyte ATP and 
increases mitochondrial ATP production under hypoxia, 
whereas the knockdown of G0S2 expression leads to an 
increase in cardiomyocyte ATP decline [62]. No studies 
have investigated the relationship between G0S2 and IS 
have been published. However, in conjunction with the 
results of our study, we observed a significant increase 
in G0S2 expression in the peripheral blood of IS patients 
who underwent cardiopulmonary resuscitation. Further 
studies are required to elucidate the precise mechanisms.

ADIPOR1 and G0S2, as important findings in our 
study, provide a strong basis for us to study the common 
pathways of heart-brain ischemic injury in the direc-
tion of pre-glutamate metabolism and lipid metabolism. 
The aberrant expression of these two genes may play a 
key role in future clinical diagnosis and treatment, but 

further studies are still needed to verify their biological 
functions and potential clinical application value.

HP (haptoglobin) encodes a preprotein that binds to 
tetramers to produce binding beads. Bound adhesins 
can overutilize the available hemoglobin, thereby pre-
venting oxidative damage caused by iron, inflamma-
tion, atherosclerosis, and cerebrovascular disease [63, 
64]. The binding bead protein genotype is a consist-
ent marker of coronary heart disease risk in individu-
als with elevated glycosylated hemoglobin levels [65]. 
In diabetic patients, the binding bead protein genotype 
is a major determinant of cardiovascular disease risk 
and can be used to predict CVD risk of cardiovascular 
disease in the presence of diabetes [66]. This suggests 
that HP is closely linked to the development of cardio-
vascular diseases, particularly ischemic diseases. Addi-
tionally, different HP genotypes are closely associated 
with atherosclerosis in patients with ischemic stroke, 
and the HP2-2 genotype serves as a genetic biomarker 
for precision medicine and personalized healthcare in 
stroke patients [67]. The MCAO model also showed that 
proteins attached to the binding beads had an effect on 
macrophage/microglia-induced inflammation and were 
able to protect the brain from ischemic injury. This 
attachment improves survival and motor function and 
reduces brain damage in rats. Therefore, HP may be an 
effective treatment for cerebral ischemia [68]. Along 
with the corresponding analysis of biological functions, 
this provides a direction for future investigations into 
the shared pathways of ischemic injury.

Using GO functional analysis, we examined the DEGs 
in the combined datasets and discovered that these 
genes shared numerous common functions in MI and 
IS, including oxidative stress and apoptosis. KEGG path-
way enrichment analysis indicated that the DEGs were 
primarily enriched in MI and IS within pathways such 
as the Toll-like signaling pathway, IL-17 signaling path-
way, Ferroptosis, and Adipocytokine signaling pathway. 
Various studies have demonstrated that resveratrol effec-
tively improves acute MI through mechanisms associated 
with reduced oxidative stress and inflammation, poten-
tially by affecting TLR4 expression [69]. Additionally, 
the IL-17 signaling pathway can influence the connec-
tion between multiple sclerosis and acute MI, making it a 
potential target for pharmacological intervention in acute 
MI [70]. Similarly, in acute IS, the upregulated expres-
sion of lncRNA ENSG00000226482 has been identified 
as a diagnostic and therapeutic biomarker. This effect is 
mainly achieved through activation of the adipocytokine 
signaling pathway [71]. The findings of these studies align 
with ours and provide direction for further investigation 
of the functions of upstream and downstream hub genes 
in ischemic injury.
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We used ssGSEA to evaluate the levels of immune infil-
tration in the MI and IS datasets. Additionally, we inves-
tigated the features of distinct ferroptosis-related hub 
genes in various subtypes of MI and IS along with their 
immune profiles. The analysis revealed significant differ-
ential expression of most hub genes among the subtypes 
and substantial variation in immune cell correlations 
across different disease subtypes. During MI and IS, the 
infiltration of various immune cell types is strongly asso-
ciated with the progression of cardio-cerebral vascular 
diseases [72–75]. Therefore, it is imperative to further 
investigate associated immune infiltration.

In the field of computational biology, the continuous 
progress of interactions prediction research has pro-
vided us with insights into the molecular mechanisms of 
MI and IS as well as potential biomarkers. In particular, 
mRNA-TF, miRNA-ncRNA, and mRNA-miRNA inter-
action prediction has become an area of great interest, 
which is crucial for revealing the interactions of miRNAs, 
non-coding RNAs, etc. with MI and IS. In future stud-
ies: we plan to further improve and develop more accu-
rate interactions prediction models to better identify the 
effects of mRNA-miRNA-ncRNA interactions on MI 
and IS. In the future, we will explore more multi-omics 
data, including transcriptomics, proteomics, metabo-
lomics data and single-cell multi-omics data [76], to fur-
ther comprehensively understand the pathophysiological 
processes of MI and IS by using autocoders, non-negative 
matrix decomposition, conditional random field graph 
convolutional networks, network distance analysis and 
asymmetric autocoders for the framework of single-cell 
data analysis [77–80], and eventually We will provide 
better diagnostic and therapeutic methods for cardiac 
and cerebral ischemia injuries through functional valida-
tion and clinical practice.

In a previous study, we examined the biological mech-
anisms of the genes associated with glutamate recep-
tors in MI and IS. Additionally, we identified glutamate 
receptor-related hub genes using LASSO regression 
analysis. However, we did not comprehensively analyze 
the biological processes involved in MI and IS [4]. Fer-
roptosis is a specific glutamate excitotoxic process caused 
by ROS aggregation [81]. This study utilized more rele-
vant datasets and multiple machine algorithms(RF, SVM, 
LASSO, CIBERSORX, ESTIMATE analysis, and nonlin-
ear dimensionality reduction algorithm, etc.) to further 
explore the role of ferroptosis in cardio-cerebral ischemia 
and the related biological processes during cardio-cer-
ebral ischemia, and screened out ferroptosis -related 
hub genes by using the test datasets as well as the vali-
dation of the clinical specimens and the cellular models, 
which provided an effective guideline to further explore 

the common pathway of cardio-cerebral injury, and pro-
vided theoretical support for the subsequent exploration 
of common pathways of cardio-cerebral ischemia injury 
based on the processes of glutamate signaling and ferrop-
tosis. Nevertheless, the current investigation has some 
shortcomings, and our confirmation of the hub genes 
was limited to the initial sample and cellular verification, 
necessitating further exploration of the precise mecha-
nism in the forthcoming research. Owing to the limited 
data available in the current datasets, it was not possi-
ble to integrate the hub genes with clinical information 
to analyze their correlation with onset time, prognosis, 
and other factors. Therefore, to thoroughly investigate 
the mechanism of ischemic injury, we collected pertinent 
blood samples and clinical data, and prepared them for 
additional sequencing.

Conclusions
Four ferroptosis-related hub genes, TLR4, ADIPOR1, 
G0S2, and HP, can be used as diagnostic markers of car-
dio-cerebral ischemic diseases and provide an effective 
guideline for further exploration of the common injury 
pathways of cardio-cerebral injuries.
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