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Abstract 

Background  N6-methyladenosine (m6A) refers to the methylation modification of N6 position of RNA adenine, a 
dynamic reversible RNA epigenetic modification that plays an important regulatory role in a variety of life processes. 
In this study, we used MeRIP-Seq and RNA-Seq of the longissimus dorsi (LD) muscle of adult (QA) and newborn (QN) 
Queshan Black pigs to screen key genes with m6A modification involved in muscle growth by bioinformatics analysis.

Results  A total of 23,445 and 25,465 m6A peaks were found in the whole genomes of QA and QN, respectively. 
Among them, 613 methylation peaks were significantly different (DMPs) and 579 genes were defined as differentially 
methylated genes (DMGs). Compared with the QN group, there were 1,874 significantly differentially expressed genes 
(DEGs) in QA group, including 620 up-regulated and 1,254 down-regulated genes. In order to investigate the rela-
tionship between m6A and mRNA expression in the muscle of Queshan Black pigs at different periods, a combined 
analysis of MeRIP-Seq and RNA-Seq showed that 88 genes were significantly different at both levels. Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes results showed that DEGs and DMGs were mainly involved in skeletal 
muscle tissue development, FoxO signaling pathway, MAPK signaling pathway, insulin signaling pathway, PI3K–Akt 
signaling pathway, and Wnt signaling pathway. Four DEGs (IGF1R, CCND2, MYOD1 and FOS) and four DMGs (CCND2, 
PHKB, BIN1 and FUT2), which are closely related to skeletal muscle development, were selected as candidate genes 
for verification, and the results were consistent with the sequencing results, which indicated the reliability of the 
sequencing results.

Conclusions  These results lay the foundation for understanding the specific regulatory mechanisms of growth in 
Queshan Black pigs, and provide theoretical references for further research on the role of m6A in muscle development 
and breed optimization selection.
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Introduction
With the advancement of epigenetic studies, chemical 
RNA modifications have received increasing attention 
from researchers. To date, more than 150 types of RNA 
post-transcriptional modifications have been identi-
fied in all organisms [1]. The common modifications are 
N6-methyladenosine (m6A), N1-methyladenosine (m1A), 
5-methylcytosine (m5C), and pseudouridine (ψ) [2]. In 
the 1970s, the presence of m6A modification was first 
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identified in hepatocellular carcinoma cells by Desro-
siers et  al. [3]. m6A refers to the methylation modifica-
tion of N6 position of RNA adenine, which occurs in the 
highly conserved consensus sequence RRACH (R = G 
or A; H = A, C, or U) [4] and is most enriched near the 
3′ untranslated regions (UTRs), followed by the coding 
sequence (CDS) region and 5′ UTRs [5]. It is one of the 
most abundant and highly conserved forms of post-tran-
scriptional modifications in eukaryotes and is widely pre-
sent in mRNAs, tRNAs, rRNAs, mRNAs, and lncRNAs 
[6]; and plays a role in post-transcriptional regulation, 
affecting mRNA splicing, expression, translation, and 
stability [7, 8]. In addition, it is involved in a variety of 
biological processes, such as energy metabolism and adi-
pogenesis [9].

To date, studies on m6A methylation modifications 
have focused on humans, mice, and other model ani-
mals; however, little is known about its specific mecha-
nisms of action. Similar to DNA and histone methylation 
classes, m6A methylation is dynamically reversible in 
mammals [10] and relies on the co-regulation of multi-
ple proteins, including m6A methyltransferases (writers), 
demethylases (erasers), and m6A methylated reading pro-
teins (readers) [11, 12]. m6A methyltransferases, such as 
METTL3, METTL14, and WTAP are the core proteins of 
methyltransferases that form the m6A methyltransferase 
complex and play a catalytic role [13]. m6A-methylated 
methyl is derived from S-adenosylmethionine (SAM); 
METTL3 binds SAM and transfers the methyl to a spe-
cific site in the mRNA [14]. METTL3 exerts catalytic 
activity, whereas METTL14 does not have catalytic activ-
ity but can facilitate the binding of METTL3 to sub-
strates. WTAP does not have methylation activity but can 
interact with the METTL3–METTL14 complex and par-
ticipate in the m6A modification process together. Only 
two types of demethylases have been identified, namely, 
FTO and AlkB homolog 5 (ALKBH5). FTO is the earli-
est identified demethylase. ALKBH5 can remove methyl 
directly from m6A-modified adenine without going 
through the oxidation process and can effectively remove 
m6A modification from mRNA [15]. m6A-binding pro-
teins mostly carry conserved YTH structural domains, 
such as the YTH homologous structural domain pro-
tein family (YTHDF1, YTHDF2, and YTHDF3) and 
YTH structural domain proteins (YTHDC1, YTHDC2). 
YTHDF1 is able to bind to m6A modification sites to 
improve mRNA translation efficiency, and YTHDF2 
promotes mRNA degradation and dynamically regulates 
mRNA abundance [5]. YTHDF3 can further enhance 
mRNA translation or degradation by binding to YTHDF1 
or YTHDF2 [16]. YTHDC1 is an intranuclear binding 
protein that is capable of participating in mRNA pro-
cessing and nuclear localization. YTHDC2 possesses 

a specific helix and protein repeat structural domain 
where binding to the m6A modification site is achieved, 
which in turn promotes mRNA translation [17]. In addi-
tion to proteins containing the YTH structural domain, 
an increasing number of binding proteins play important 
functions in the m6A modification process.

Queshan Black pig is a local excellent pig breed with 
high fertility, adaptability, excellent meat quality, and sta-
ble genetic performance in Henan Province, China. Our 
laboratory has conducted long-term research around this 
breed to understand its specific physiological characteris-
tics, growth, and development mechanism [18, 19]. Based 
on the indispensable role played m6A methylation modi-
fications in regulating gene expression and participating 
in various biological processes, we hypothesized that 
m6A modifications are involved in the muscle growth 
and development of Queshan Black pigs. Understanding 
the molecular mechanisms of muscle growth is essential 
for maintaining meat yield and quality. Therefore, this 
study sequenced QN and QA LD samples by MeRIP-Seq 
and RNA-Seq to identify differential methylation peaks 
(DMPs) and differentially expressed genes (DEGs), so as 
to further explore their function and mechanism. This 
study may provide a theoretical basis for further research 
on the specific regulatory mechanisms of growth of Que-
shan Black pigs and the optimal selection of this breed.

Materials and methods
Ethics statement
All of the experiments involving animals were carried out 
in accordance with the guidelines for the care and use of 
experimental animals established by the Ministry of Sci-
ence and Technology of the People’s Republic of China 
(Approval Number DWLL20211193). The animal study 
was reviewed and approved by the Ethics Committee of 
Henan Agricultural University. In addition, all experi-
ments were conducted in accordance with the relevant 
approved guidelines and regulations during slaughter, 
sampling, and sample conservation.

Animals and tissue collection
Three QA and three QN pigs, all male, were selected in 
this study. The Queshan Black pigs used in this experi-
ment were all from Queshan Black pig breeding farm in 
Henan Province. Each group of pigs were fed under the 
same conditions. The piggery type is completely enclosed 
piggery, the breeding environment is suitable, the pigs 
are healthy, no genetic diseases. Piglets were slaughtered 
at 3  days of age with a weight of 2.2 − 2.5  kg. The body 
length of QN1 − QN3 were 34, 35 and 35  cm, respec-
tively. Adult pigs were slaughtered at 270 days of age and 
weighing 100 − 102  kg. The body length of QA1 − QA3 
were 103, 111 and 103 cm, respectively. The longissimus 
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dorsal (LD) muscle between the 6th and 7th ribs was col-
lected and immediately stored in liquid nitrogen. After-
ward, the muscle samples were placed at − 80  °C for 
subsequent experiments.

RNA isolation, library preparation and sequencing
Total RNA was isolated and purified using TRIzol rea-
gent (Invitrogen, Carlsbad, CA, USA) following the 
manufacturer’s procedure. The total RNA quality and 
quantity were determined by Bioanalyzer 2100 and RNA 
6000 Nano LabChip Kit (Agilent, CA, USA) with RIN 
number > 7.0. Poly(A) RNA was specifically captured 
from 50  μg total RNA using Oligo-dT magnetic beads 
and fragmented using Magnesium RNA Fragmentation 
Module (NEB, cat.e6150, USA). The cleaved RNA frag-
ments were incubated for 2 h at 4  °C with m6A-specific 
antibody (No. 202003, Synaptic Systems, Germany) in IP 
buffer (50  mM Tris–HCl, 750  mM NaCl, and 0.5% Ige-
pal CA-630) supplemented with BSA (0.5  mg/ ml). The 
eluted RNA was precipitated with 75% ethanol. Accord-
ing to the chain-specific library prepared by the dUTP 
method, the eluted m6A fragment (IP) and the unpro-
cessed input control fragment were converted into the 
final cDNA library. The average insert size of the paired-
end libraries was 100 ± 50  bp. Lastly, we performed 
paired-end sequencing (PE150) on an Illumina Novaseq™ 
6000 platform (LC-Bio Technology Co., Ltd., Hangzhou, 
China) following the vendor’s recommended protocol.

Bioinformatics analysis process
Fastp software (v0.19.4, https://​github.​com/​OpenG​ene/​
fastp) was used to remove the reads with adaptor con-
tamination, low-quality bases, and undetermined bases 
with default parameter [20]. The sequence quality of the 
IP and input samples were verified using FastQC (https://​
www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/) 
and RseQC (http://​rseqc.​sourc​eforge.​net/) [21, 22]. Then, 
HISAT2 (v2.0.4, http://​daehw​ankim​lab.​github.​io/​hisat2) 
was used to map reads to the Sus scrofa (version 11.1) 
[23]. Peak calling and diff peak analysis were performed 
by R package exomePeak2 (v1.5.0, https://​bioco​nduct​
or.​org/​packa​ges/​relea​se/​bioc/​html/​exome​Peak2.​html). 
The threshold settings of differential peak and differen-
tial expression were |log2FC|≥ 1 and p-adjust < 0.05. and 
peaks were annotated by intersection with gene archi-
tecture using R package ANNOVAR (http://​www.​openb​
ioinf​ormat​ics.​org/​annov​ar/) [24, 25]. MEME (v5.3.3, 
http://​meme-​suite.​org) and HOMER (v4.10, http://​
homer.​ucsd.​edu/​homer/​motif ) were used for de novo 
and known motif finding, followed by motif localiza-
tion with respect to the peak summit [26, 27]. StringTie 
(v2.1.2, https://​ccb.​jhu.​edu/​softw​are/​strin​gtie) was used 
to determine the expression levels of all transcripts and 

genes from input libraries by calculating the FPKM (total 
exon fragments / mapped reads [millions] × exon length 
[kB]) [28]. The differentially expressed transcripts and 
DEGs were selected with |log2FC|≥ 1 and p-adjust < 0.05 
by R package edgeR (v4.1, https://​bioco​nduct​or.​org/​
packa​ges/​edgeR) [29]. The gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichments of DEGs were performed by KOBAS (v3.0) 
online analyses. P < 0.05 was considered statistically sig-
nificant. All KEGG pathways shown in the manuscript 
can be found on the official KEGG website [30-32]. Pro-
tein − protein interaction (PPI) analysis was performed 
for DEGs and DMGs. The selected genes were imported 
into STRING (v11.5) for online analysis, and correspond-
ing data were imported into Cytoscape (v.3.9.1) for visu-
alization. Cytoscape (v.3.9.1) was also used to visualize 
the network of pathways and genes. Gene set enrichment 
analysis (GSEA) was performed using the OmicStudio 
tools at https://​www.​omics​tudio.​cn/​tool. The pathway 
with |NES|> 1, NOM p-val < 0.05, FDR q-val < 0.25 was 
considered statistically significant.

MeRIP‑qPCR
According to the manufacturer’s instructions, total RNA 
was extracted from the LD muscle tissue, the RNA frag-
ments were converted into ~ 200nt fragments using the 
riboMeRIP™ m6A Transcriptome Profiling Kit (10 Assay) 
(RN: R11096.6, RiboBio, Guangzhou, China), and anti-
m6A magnetic beads were prepared. Part of the RNA 
samples were taken as Input, and the rest were used as 
IP group for immunoprecipitation. Protein A/G mag-
netic beads were added into IP group and incubated at 
4℃. Then the MagenTM Hipure Serum/plasma miRNA 
kit (R4317-03, Magen, Guangzhou,China) was used for 
elution and RNA recovery, and the obtained RNA was 
used for subsequent reverse transcription and q-PCR 
verification.

Quantitative Real‑Time PCR
We verified four DEGs and four DMGs to study the status 
of m6A in LD tissues of Queshan Black pigs at different 
periods. RNA extracted from muscle was reverse-tran-
scribed into cDNA using the Evo M-MLV RT Kit with 
gDNA Clean for qPCR kit (AG11705, Accurate Biotechnol-
ogy (Hunan) Co.,Ltd, Changsha, China). q-PCR was per-
formed using the SYBR Green Premix Pro Taq HS qPCR 
Kit (AG11701, Accurate Biotechnology (Hunan) Co.,Ltd, 
Changsha, China) using the CFX96 real-time PCR detec-
tion system (Thermo Fisher Scientific, USA) according 
to the instructions. The GAPDH was used as the internal 
reference gene to normalize the gene expression levels. 
The relative expression of genes was calculated using the 
2−ΔΔCt method. MeRIP-qPCR does not require internal 
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reference genes, and the IP/input ratio is calculated by 2−
ΔCt (ΔCt = CtIP − Ctinput) and the ratio of IP RNA template 
and input RNA template to initial RNA when reverse tran-
scription is introduced. Detailed primers are shown in sup-
plementary Table 1 (Table S1).

Statistical analysis
The data are expressed as mean ± standard deviation 
(n = 3). The student’s t-test and one-way analysis of variance 
(ANOVA) was performed using GraphPad Prism 8 soft-
ware to determine the significance of differences between 
comparison groups. The difference between the means was 
considered statistically significant when p-value ≤ 0.05.

Result
Sequence statistics, quality control and reference genome 
alignment
After using fastp to filter out unqualified sequences from 
the raw data, the clean data was used for MeRIP-Seq and 
RNA-Seq analysis. We obtained two sets of QA and QN 
muscle sample data readings with three biological repli-
cates per set. For the valid data of each group of samples, 
base proportion with mass value ≥ 20 (sequencing error 
rate less than 0.01), base proportion with mass value ≥ 30 
(sequencing error rate less than 0.001) and GC content 
proportion are shown in Table S2.

The IP samples from the longissimus dorsi (LD) mus-
cles of QA and QN pigs are denoted as QA_IP and QN_IP, 
respectively, in the m6A-Seq library in Figure S1. The LD 
muscle samples from QA and QN pigs are denoted as 
QA_input and QN_input in the RNA-Seq library, respec-
tively. Each set of samples was repeated three times. The 
unique mapped reads are shown in Table S3. According 
to the regional distribution information of the reference 
genome, which can be defined compared with exon, intron, 
and spacer regions, the percentage contents of sequenced 
sequences localized to exon regions should be the highest 
under normal conditions. The analysis results are shown in 
Figure S1.

Identification of m6A modification sites and analysis 
of differential methylation peaks
Based on MeRIP-seq (IP) and RNA-seq (Input) sequenc-
ing data, the position information and length information 
of peaks on the genome were obtained. Reads near TSS 
were abundant at the transcriptome start of genes, and 
the peak distribution is shown as a heat map in Fig. 1A. 

Next, with p-adjust < 0.05 and |log2FC|≥ 1 for thresh-
old selection differential methylation peaks (DMPs) and 
differentially methylated genes (DMGs). A total of 613 
DMPs were screened and 579 DMGs were annotated in 
the QA group compared with the QN group (Table S4). 
A total of 176 peaks showed increased expression (cor-
responding to 167 genes upregulated in m6A abundance), 
and 437 peaks showed decreased expression (correspond-
ing to 418 genes downregulated in m6A abundance) as 
shown in Figs. 1B and C. The m6A peaks in QA and QN 
were enriched in the CDS near the stop codon (Fig. 1D). 
Through exomePeak2 analysis, 8,825 and 10,845 peaks 
were specifically expressed in the QA and QN groups, 
respectively, and 14,620 peaks were common between 
the two groups (Fig.  1E). The transcription products 
were divided into four regions, namely, 5′ UTR, 3′ UTR, 
exonic region, and intronic region. The distribution of 
m6A peaks in QA and QN was similar (Figs. 1F and G). 
The analysis of DMPs enrichment sites showed that 
53.51% of the DMPs were enriched in the 3′ UTR, about 
30.83% were in the exonic region, and 15.17% of the m6A 
modifications occurred in the 5′ UTR (Fig. 1H). By ana-
lyzing the distribution of m6A peaks for each mRNA or 
gene, we found that most of the mRNAs or genes had 
one m6A peak (mRNAs with upregulated peaks: 362/384, 
mRNAs with downregulated peaks: 714/758, genes with 
upregulated peaks: 360/383,; genes with downregulated 
peaks: 693/747. Figs.  1I and J). All variable m6A peaks 
were mapped to human chromosomes. The presence 
of m6A peaks was found in all chromosomes, especially 
chr1, chr3, and chr6 (Fig.  1K). In Table  1, the differen-
tial m6A peaks were concentrated in the 3′ UTR. The 
Table 1 showed the top 20 differential m6A peaks, where 
log2FC < 0 represents hypomethylation, and log2FC ≥ 0 
represents hypermethylation.

Motif analysis
RNA methylation and demethylation are initiated by the 
combined action of multiple binding proteins to the motifs 
of methylation sites. A motif is a biologically important 
nucleic acid sequence pattern that is highly conserved. We 
performed motif prediction for the two groups of samples 
and ranked them according to p-value. The smaller the 
p-value, the higher the ranking (Fig. 2). A common motif 
structure in RNA modification is RRACH (where R = A or 
G; H = A, C, or U).

(See figure on next page.)
Fig. 1  Overview of altered m6A-modified transcripts in Queshan Black pig LD muscle. A Enrichment of reads near TSS at the transcriptome 
initiation site of the genes. B Volcano plots showing significantly different m6A peaks. C Number of up- and downregulated DMPs. D Metagene 
plots displaying the regions of m6A peaks identified across the transcripts in QA and QN groups. E The number of common and specific m6A peaks 
in QA and QN groups. F–G Distribution of m6A peaks in QA and QN groups. H Distribution of DMPs. I Distribution of altered m6A peaks per mRNA. J 
Distribution of altered m6A peaks per gene. K Distribution of altered m6A peaks in human chromosomes
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Fig. 1  (See legend on previous page.)
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Enrichment analysis of differentially methylated genes
GO and KEGG pathways of DMGs were performed 
to analyse the potential function of m6A-modified 
genes in the skeletal muscle growth and development 
of Queshan Black pigs. The enriched GO terms for 
the DMGs mainly included protein phosphorylation, 

regulation of glucose metabolic process, positive reg-
ulation of actin filament polymerization and regula-
tion of cell cycle (Fig.  3A, Table S5). KEGG pathway 
enrichment analysis showed that DMGs were enriched 
to the PI3K–Akt signaling pathway, Wnt signaling 
pathway, p53 signaling pathway, Thyroid hormone 

Table 1  The top 20 differentially expressed m6A peaks

Gene name Log2FC Regulation Chromosome Peak region Peak star Peak end p-adj

USP49 4.66 Hypermethylation 7 3′ UTR​ 36,984,082 36,984,282 0.00

ENSSSCG00000041922 4.23 Hypermethylation 17 5′ UTR​ 48,666,269 48,666,369 0.02

MYO19 4.05 Hypermethylation 12 3′ UTR​ 38,024,950 38,029,720 0.00

CFAP70 4.04 Hypermethylation 14 3′ UTR​ 76,075,293 76,075,468 0.02

PRSS36 3.89 Hypermethylation 3 5′ UTR​ 17,345,869 17,346,919 0.03

FAM217B 3.87 Hypermethylation 17 5′ UTR​ 59,967,918 59,969,185 0.02

ENSSSCG00000028892 3.78 Hypermethylation 6 3′ UTR​ 92,429,402 92,429,680 0.03

SATB2 3.71 Hypermethylation 15 3′ UTR​ 102,964,778 102,965,078 0.05

CLK1 3.71 Hypermethylation 15 5′ UTR​ 104,561,110 104,561,260 0.00

RIMKLB 3.62 Hypermethylation 5 3′ UTR​ 62,683,415 62,683,540 0.05

ENSSSCG00000039926  − 8.71 Hypomethylation Y 3′ UTR​ 6,511,355 6,511,580 0.00

ENSSSCG00000033122  − 5.50 Hypomethylation 6 CDS 61,825,045 61,825,620 0.00

ENSSSCG00000041158  − 4.87 Hypomethylation 1 5′ UTR​ 99,841,915 99,842,090 0.00

SLC9A1  − 4.69 Hypomethylation 6 CDS 84,385,735 84,385,835 0.00

PIDD1  − 4.57 Hypomethylation 2 CDS 502,063 502,452 0.00

ENSSSCG00000041218  − 4.11 Hypomethylation 13 CDS 9,844,590 9,872,000 0.01

ENSSSCG00000038327  − 3.97 Hypomethylation 6 CDS 61,825,266 61,825,816 0.00

PLEKHA5  − 3.84 Hypomethylation 5 CDS 53,781,210 53,782,987 0.01

RIMKLB  − 3.63 Hypomethylation 5 3′ UTR​ 62,679,815 62,679,915 0.02

ENSSSCG00000051287 -3.61 Hypomethylation 3 CDS 17,778,552 17,778,702 0.00

Fig. 2  Sequence showing the motifs with significant differences in muscle samples at the m6A peak. A Top four motifs in the QA group. B Top four 
motifs in the QN group
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signaling pathway, ECM-receptor interaction and 
other pathways related to myogenesis and develop-
ment (Fig.  3B, Table S6). PPI analysis was performed 
for DMGs in GO terms and KEGG pathways shown 
in Figs.  3A and B. As shown in Fig.  3C, larger nodes 
indicate more connections. The network diagram of 
partial pathways and DMGs is shown in Fig. 3D. The 
results indicate that DMGs have a potential role in 
regulating gene expression and biological metabolism 
during the skeletal muscle growth and development of 
Queshan Black pigs.

Analysis of differentially expressed genes
RNA-Seq analysis was performed in all Input samples, 
and the overall distribution of DEGs could be understood 
through the volcano map in Fig. 4A. In this study, FPKM 
was used to measure the abundance of gene expression in 
different samples. As shown in Fig. 4B, this study found 
that among the 19,023 genes identified in the two groups 
of samples, 1,874 genes were differentially expressed 

in the QA group compared with the QN group, includ-
ing 620 upregulated genes, 1254 downregulated genes 
(|log2FC|≥ 1 and p-adjust < 0.05, Table S7), and 17,149 
genes without remarkable difference. As shown in 
Fig. 4C, the clustering patterns of genes between samples 
in two periods. Gene expression and expression density 
plots are shown in Figs. 4D and E, respectively. The top 
20 DEGs are shown in Table 2.

GO and KEGG analyses were performed to fur-
ther reveal the functions of DEGs. GO enrichment 
analysis of DEGs showed that including muscle organ 
development, fatty acid metabolic process, fat cell dif-
ferentiation, muscle contraction, skeletal muscle tis-
sue development and myotube differentiation, were 
significantly enriched (Fig. 5A, Table S8). KEGG analysis 
showed that DEGs were significantly enriched in such 
as PPAR signaling pathway, calcium signaling pathway, 
AMPK signaling pathway, Fatty acid degradation, Fatty 
acid metabolism, FoxO signaling pathway, MAPK sign-
aling pathway, mTOR signaling pathway, Wnt signaling 

Fig. 3  DMGs functional enrichment analysis. A GO enrichment terms and B KEGG analysis of DMGs. C PPI analysis of DMGs. D Pathways and 
DMGs network diagram. Octagonal nodes represent DMGs, rectangular nodes represent pathways, red represents up-regulation, blue represents 
down-regulation
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pathway, and other pathways related to fat deposition and 
muscle development regulation (Fig.  5B, Table S9). As 
shown in Fig. 5C, PPI analysis was performed for DEGs 

in GO terms and KEGG pathways shown in Figs. 5A and 
B. The network diagram of partial pathways and DEGs is 
shown in Fig. 5D.

Fig. 4  DEG analysis between QA and QN. A DEGs expression volcano diagram. B Number of up- and downregulated DEGs. C Heat map of DEGs. D 
Violin diagram of gene expression. E Density diagram of gene expression
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A conjoint analysis of MeRIP‑Seq and RNA‑Seq data
In order to explore the potential regulatory effect of 
m6A modification on gene expression during skeletal 
muscle growth and development, the data of m6A-Seq 
and RNA-Seq were jointly analyzed in this study to fur-
ther screen genes with substantial changes at the mRNA 
and m6A levels. The results revealed a negative correla-
tion between methylation peak and gene expression 
level (Fig. 6A). This study found that 11,491 genes were 
modified by m6A in the QA group and 12,384 genes were 
modified by m6A in the QN group, among which 1,874 
genes were significantly differentially expressed. Based on 
the results, 88 genes were screened out with remarkable 
alterations at both levels (Fig. 6B, Table S10). This result 
implies that m6A modifications may affect the expression 
of these genes during muscle growth and development. 
The overlapping results of DEGs and DMGs are shown in 
Fig.  6C, including 22 genes in common between "m6A_
up" and "mRNA_up" (hyper-up) and 11 genes in common 
between "m6A_up" and "mRNA_down" (hyper-down). 
29 genes (hypo-up) were common in "m6A_down" and 
"mRNA_up" and 27 genes (hypo-down) were common in 
"m6A_down" and "mRNA_down".

GO analysis showed that these genes were enriched 
in terms, such as long-chain fatty acid transport, thy-
roid hormone transport, response to muscle activity, 
adipose tissue development and regulation of I-kappaB 
kinase/NF-kappaB signaling (Fig. 6D, Table S11). KEGG 

pathway enrichment analysis showed that these genes 
were enriched in Calcium signaling pathway, FoxO sign-
aling pathway, insulin signaling pathway, and PI3K–
Akt signaling pathway and Thyroid hormone signaling 
pathway, which are remarkably associated with muscle 
development (Fig.  6E, Table S12). The network diagram 
of partial pathways and codifferential genes is shown in 
Fig. 6F. The differentially methylated sites in QA and QN 
showed altered intensity around the corresponding m6A 
peaks, according to Integrative Genomics Viewer (IGV) 
software (Fig. 6G).

Gene set enrichment analysis
The results of gene set enrichment analysis (GSEA) 
showed that it was consistent with the above KEGG 
enrichment results, skeletal muscle cell differentiation, 
Insulin signaling pathway and FoxO signaling pathway 
were also highly enriched (Fig. 7A-C). In addition, Fatty 
acid-related Fatty acid biosynthesis, Fatty acid degrada-
tion and fatty acid metabolism were also significantly 
enriched (Fig. 7D-F).

Validation by MeRIP‑qPCR and qRT‑PCR
As shown in Fig.  8A, qRT-PCR was used in this study 
to detect the expression levels of methylation-related 
enzymes in QA and QN. The expressions of methylated 
transferase METTL3, METTL14, demethylated enzyme 
FTO, ALKBH5 and methylated reading protein YTHDF2, 

Table 2  The top 20 differentially expressed genes

Gene name Fold change Regulation Locus Strand P-adj

ACBD7 270.63 up chr10, 46,740,585–46,750,606  +  0.00

ETNPPL 205.15 up Chr8, 113,363,049–113,384,783  +  0.00

PVALB 157.04 up chr5, 10,955,491–10,973,289  +  0.00

ENSSSCG00000044722 148.78 up chr13, 75,843,255–75,845,051  +  0.00

PIP4K2C 138.18 up chr5, 22,854,137–22,867,037  +  0.00

ENSSSCG00000033029 131.34 up chr4, 86,919,184–86,929,920  +  0.00

ASB14 117.16 up chr13, 39,123,650–39,146,914  −  0.00

ENSSSCG00000045624 81.99 up chr1, 30,776,427–30,802,130  +  0.00

ENSSSCG00000047072 76.60 up chr8, 3,764,912–3,769,144  −  0.00

SERPINB11 61.84 up chr1, 158,015,718–158,030,763  −  0.00

IL18BP 0.00 Down chr9, 6,488,808–6,591,333  +  0.00

PCK2 0.00 Down chr7, 75,187,194–75,197,733  −  0.00

RXFP2 0.00 Down chr11, 8,266,716–8,321,022  +  0.00

TRPV3 0.00 Down chr12. 49,635,927–49,671,613  −  0.00

STK33 0.00 Down chr9, 786,509–936,723  +  0.00

SLC6A13 0.00 Down chr5, 67,577,197–67,612,681  −  0.00

CPLX1 0.01 Down chr8, 197,881–232,038  −  0.00

ADAMTS19 0.01 Down chr2, 132,145,389–132,409,915  +  0.00

ACTC1 0.01 Down chr1, 136,281,167–136,286,545  +  0.00

SLF2 0.01 Down chr14, 111,996,760–112,068,251  +  0.00
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YTHDF3 in QN were significantly higher than those in 
QA group. In order to verify the accuracy of the sequenc-
ing results, four DMGs and four DEGs that may have 
potential regulatory relationships with muscle growth 
and development were screened in this study (Table  3), 
among which CCND2 showed significant differences at 
both levels. The methylation level of DMGs and the gene 
expression level of DEGs were detected by MeRIP-qPCR 
and qRT-PCR respectively (Fig.  8B-D). The expression 
trends obtained by the experiment were consistent with 
the sequencing results. The consistency of the results 

confirmed the existence of m6A modification in the mus-
cle of Queshan Black pig, which verified the reliability of 
the sequencing data.

Discussion
With the rapid development of science and technology 
in recent years, RNA methylation research has become a 
cutting-edge research hotspot in the field of epigenetics 
based on DNA and protein modification research. RNA 
m6A methylation is a highly conserved epigenomic modi-
fication that is widely found in various eukaryotes, such 

Fig. 5  DEGs functional enrichment analysis. A GO enrichment terms and B KEGG analysis of DEGs. C PPI analysis of DEGs. D Pathways and 
DEGs network diagram. Octagonal nodes represent DEGs, rectangular nodes represent pathways, red represents up-regulation, blue represents 
down-regulation

Fig. 6  Results of MeRIP-Seq and RNA-Seq. A Correlation analysis diagram between methylation level and gene expression level. B Four-quadrant 
diagram of DMGs and DEGs. C Venn diagram of DMGs and DEGs. D GO enrichment terms and E KEGG analysis of codifferential genes (intersection 
genes of DMGs and DEGs). F Pathways and codifferential genes network diagram. G m6A enrichment and gene expression profile of CCND2 in 
QA and QN. Octagonal nodes represent codifferential genes, rectangular nodes represent pathways, red represents hyper-down, blue represents 
hypo-up, light blue represents hypo-down

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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as yeast, plants, drosophila, and mammals, but has been 
studied rarely in livestock production animals, such as 
pigs. RNA m6A modifications can play a variety of bio-
logical functions; it is involved in disease development, 
stem cell differentiation, mRNA metabolism, animal 
energy metabolism, fat deposition, muscle growth and 
development [33-37]. In 2017, Tao et al. constructed the 
first transcriptome-wide m6A methylation modification 
map of porcine muscle tissue with the help of methyla-
tion RNA IP and MeRIP-Seq techniques, revealing that 
m6A methylation modification sites are distributed in the 
CDS region, stop codon, and 3′ UTR region in the por-
cine transcriptome [35]. It has been previously reported 
that m6A peaks are enriched near the stop codon in 
human transcripts, and many methylation sites are con-
served in mouse and human transcripts [37]. The meth-
ylation modification sites in yak are concentrated in the 
stop codon, CDS, TSS, 3′ UTR, and, to some extent, in 
the 5′ UTR [38]. The results of the present study are con-
sistent with this finding, as methylation modifications 
were located near the stop codon and in the 3′ UTR. 
Thus, these results suggest that the overall distribu-
tion of m6A modification sites is similar in the mamma-
lian transcriptome, which again demonstrates that m6A 

modifications are conserved among species. In addition, 
our data showed that a large number of m6A methylation 
modifications existed in muscle tissue during the growth 
of the Queshan Black pig, which may have important 
effects on muscle fiber type, muscle cell maturation, 
muscle structural changes and further play an important 
regulatory role in the muscle growth and development of 
pigs by regulating gene expression levels.

RNA m6A modifications may play a key regulatory role 
in the differentiation and development of animal cells; for 
example, genes consistently modified by m6A are asso-
ciated with myoblast growth and differentiation during 
three different developmental stages in yak [35]. In the 
transcriptome of embryonic stem cells, m6A-modified 
genes are involved in the regulation of embryonic stem 
cell pluripotency [7]. Therefore, in Queshan Black pig, 
two sequencing libraries, namely, m6A-Seq (IP) and 
RNA-Seq (Input), and the results were analyzed bioinfor-
matically. By MeRIP-Seq, we detected a large number of 
m6A methylation peaks in the transcriptome of the mus-
cle tissues of Queshan Black pigs, with 613 DMPs were 
detected. In this study, through GO, KEGG and GSEA, 
it is speculated that DEGs and DMGs have potential 
important functions in the regulation of skeletal muscle 

Fig. 7  Gene set enrichment analysis (GSEA) indicated significant enrichment in A skeletal muscle cell differentiation. B FoxO signaling pathway. C 
Insulin signaling pathway. D Fatty acid biosynthesis. E Fatty acid degradation and F Fatty acid metabolism
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development and are involved in many important path-
ways, such as AMPK signaling pathway, FoxO signaling 
pathway, PI3K-Akt signaling pathway and Wnt signaling 
pathway. Among them, the AMPK signaling pathway is 
an important signaling pathway of energy metabolism 
that is heavily involved in skeletal muscle metabolic pro-
cesses; controls skeletal muscle growth and development 

by regulating many downstream targets; is related to 
myocyte energy metabolism, protein synthesis, and 
catabolism; and plays an important role in regulating 
muscle mass and regeneration [39]. The MAPK signaling 
pathway is a class of transcription factors that promote 
skeletal muscle development, and genes on this pathway 
are continuously expressed from myogenic cell develop-
ment to myotube formation. The Wnt signaling pathway 
is an important pathway that regulates skeletal muscle 
development and differentiation. It is mainly reflected 
in myogenic regulatory factors (MRFs) gene family myo-
genic regulatory factor 5(Myf5) and myogenic determina-
tion gene (MyoD) in the early stage of myogenesis [40]. 
The PI3K–Akt signaling pathway is involved in the regu-
lation of important biological processes, such as mus-
cle growth and development, metabolic regulation and 
homeostasis maintenance. The aberrant expression of 
genes related to the PI3K–Akt signaling pathway or the 
abnormal phosphorylation of proteins can be detected in 
diseases, such as antimyotrophic protein-deficient mus-
cle and Duchenne muscular dystrophy [41]. Members 

Fig. 8  Experimental result. A Expression levels of methylation-related enzymes in QA and QN. B Methylase gene level was detected by MeRIP-qPCR. 
C Gene change levels based on RNA-Seq data.  D The mRNA relative expression level was detected by qRT-PCR. ** represents p < 0.01, * represents 
p < 0.05

Table 3  Sequencing results of candidate genes

Gene name Pattern Fold change

m6A level mRNA level

IGF1R Hyper-down 1.66 0.21

CCND2 Hyper-down 4.65 0.23

MYOD1 Hyper-down 1.49 0.27

FOS Hypo-up 0.45 18.88

PHKB Hypo-up 0.45 3.29

BIN1 Hypo-up 0.33 2.54

FUT2 Hypo-up 0.41 5.12
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of the Fox family, especially the FOXO1 gene, are closely 
associated with muscle growth and development, as they 
play a key role in myogenic cell fusion and myofiber type 
conversion [42]. PPAR is a member of the nuclear recep-
tor transcription factor family involved in growth and 
development, metabolism, inflammation, and many cel-
lular processes in different organs; three PPAR isoforms, 
namely, PPARα, -β/δ, and -γ, are expressed in skeletal 
muscle in different degrees, but all have a remarkable 
impact on muscle homeostasis, directly or indirectly [43].

Skeletal muscle development is a complex biological 
process that is regulated by multiple mechanisms. The 
study of the regulatory role of myogenic regulators and 
the regulation of skeletal muscle development through 
epigenetic modifications has provided a preliminary 
understanding of the regulatory network of skeletal mus-
cle development [44]. Based on previous studies on m6A 
methylation [35], m6A is hypothesized to be involved 
in the regulation of skeletal muscle development pro-
cess. m6A-related modifying enzymes are able to regu-
late muscle development by regulating the expression of 
genes related to muscle cell differentiation. METTL3 is 
a key regulatory factor of skeletal muscle differentiation, 
and participates in the process of skeletal muscle differ-
entiation of myogenic progenitor cells by regulating the 
mRNA expression level of myogenic transcription factors 
such as MYOD in myoblasts [45]. METTL14 is involved 
in the regulation of skeletal muscle differentiation, and 
METTL14 knockdown leads to the decreased expres-
sion of MYOD and MYOG in C2C12 cells, inhibiting 
cell differentiation and promoting cell proliferation [46]. 
FTO positively regulates the mTOR–PGC-1α pathway by 
affecting mTOR activity through m6A demethylase activ-
ity, participating in skeletal muscle differentiation [47]. 
In this study, m6A methylation was analyzed in LD mus-
cle tissue of Chinese native breed Queshan Black pig at 
both newborn and adult stages. The experimental results 
showed that the expressions of METTL3, METTL14, 
FTO, ALKBH5, YTHDF2 and YTHDF3 in QN were 
higher than those in QA, indicating that methylation 
may play a regulatory role in the early growth stage, thus 
mediating the growth and development process of mus-
cle. Subsequently, four DEGs (IGF1R, CCND2, MYOD1 
and FOS) and four DMGs (CCND2, PHKB, BIN1 and 
FUT2) were selected as candidate genes through a series 
of analysis, and were verified by experiments.

From the above analysis, it was found that some DEGs 
with methylation modification and DMGs were involved 
in the pathways related to muscle development, may 
play a regulatory role in the process of muscle growth 
and development. Some DEGs modified by m6A meth-
ylation were found to be involved in pathways related to 
muscle development, and they play a regulatory role in 

muscle growth and development. MYOD is a member 
of the MRF family; myogenic differentiation 1 (MYOD1) 
promotes muscle growth and development, enhances 
muscle cell metabolism, and plays an important role 
in lean muscle mass improvement and meat quality 
enhancement [48]. FOS is enriched in the MAPK sign-
aling pathway; is involved in cell growth and differen-
tiation and muscle production. It can regulate skeletal 
muscle cell proliferation, differentiation, and transforma-
tion [49]. Insulin-like growth factor 1 receptor (IGF1R) 
is an important component of the insulin-like growth 
factor (IGF) system that is widely expressed in animal 
muscles and is a key gene affecting growth and devel-
opment [50]. IGF1R can regulate the MYOD activation, 
promote muscle differentiation through Akt signaling, 
and induce MYOG expression to stimulate the terminal 
differentiation of myogenic cells [51]. As a cyclin, Cyclin 
D2 (CCND2) is involved in a number of pathways related 
to muscle growth and development. It has been reported 
that CCND2 can significantly enhance the myogenic dif-
ferentiation of muscle progenitor cells and is an effective 
regulator of muscle fiber generation [52]. Phosphorylase 
b kinase (PHKB) affects the disorder of skeletal muscle 
glycogen metabolism and is involved in the process of 
glycogen decomposition, which leads to the occurrence 
of related myopathy [53]. Lack of Fucosyltransferase 2 
(FUT2) increases energy expenditure and heat produc-
tion in brown adipose tissue [54]. Bridging Integrator 
1 (BIN1) is a key player in muscle development and its 
muscle-specific isoforms are required for skeletal muscle 
development and function at birth and muscle regenera-
tion in adulthood [55].

From the above analysis, it can be seen that the genes 
screened in this study participate in several pathways 
related to muscle growth and development, and all exist 
in the LD muscle tissue of Queshan Black pigs. Mean-
while, the regulation level of m6A is negatively correlated 
with the transcription level in muscle, indicating that 
m6A modification not only participates in the process of 
muscle growth and development, but also may regulate 
gene expression level. These results laid a foundation for 
further exploration of the role of m6A modification in 
muscle growth and development.

Conclusion
This study was the first to discover the transcriptome-
wide m6A methylation modification pattern affecting 
skeletal muscle development in Queshan Black pigs. 
The m6A map revealed the distribution characteristics 
of m6A modification in the transcriptome of Queshan 
Black pigs. A total of 1,874 DEGs and 613 DMPs were 
identified, including 176 up-regulated and 437 down-
regulated peaks. Through bioinformatics analysis, four 
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DEGs (IGF1R, CCND2, MYOD1 and FOS) and four 
DMGs (CCND2, PHKB, BIN1 and FUT2), which are 
closely related to skeletal muscle development, were 
selected as candidate genes for verification. The results 
of this study can lay a foundation for further determin-
ing the potential effect of m6A RNA modification on 
the regulation of muscle growth of Queshan Black pig, 
and provide a theoretical reference for the optimization 
of this breed.
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