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Abstract 

Background  Red-tail catfish (Hemibagrus wyckioides) is an important commercially farmed catfish in southern China. 
Males of red-tail catfish grow faster than females, suggesting that all-male catfish will produce more significant eco‑
nomic benefits in aquaculture practice. However, little research has been reported on sex determination and gonadal 
development in red-tail catfish.

Results  In this study, we performed the first transcriptomic analysis of male and female gonads at four develop‑
mental stages at 10, 18, 30, and 48 days post hatching (dph) using RNA-seq technology. A total of 23,588 genes 
were screened in 24 sequenced samples, of which 28, 213, 636, and 1381 differentially expressed genes (DEGs) were 
detected at four developmental stages, respectively. Seven candidate genes of sex determination and differentiation 
were further identified. Real-time quantitative PCR (RT-qPCR) further confirmed that anti-Mullerian hormone (amh), 
growth differentiation factor 6a (gdf6a), testis-specific gene antigen 10 (tsga10), and cytochrome P450 family 17 
subfamily A (cyp17a) were highly expressed mainly in the male, while cytochrome P450 family 19 subfamily A poly‑
peptide 1b (cyp19a1b), forkhead box L2 (foxl2), and hydroxysteroid 17-beta dehydrogenase 1 (hsd17b1) were highly 
expressed in the female. The KEGG pathway enrichment data showed that these identified DEGs were mainly involved 
in steroid hormone biosynthesis and TGF-β signaling pathways.

Conclusions  Based on RNA-seq data of gonads at the early developmental stages, seven DEGs shared by the four 
developmental stages were identified, among which amh and gdf6a may be the male-biased expression genes, while 
foxl2, cyp19a1b and hsd17b1 may be the female-biased expression genes in red-tail catfish. Our study will provide 
crucial genetic information for the research on sex control in red-tail catfish, as well as for exploring the evolutionary 
processes of sex determination mechanisms in fish.
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Background
Red-tail catfish (Hemibagrus wyckioides), a freshwater 
species of the family Hemibagrus, Bagridae, Siluriformes, 
is mainly distributed in multiple Southeast Asian coun-
tries and the Lancang River of the Yunnan Province, 
China [1, 2]. Owing to its high protein content, excel-
lent production, strong disease resistance, and absence 
of intermuscular bones, red-tail catfish has shown a sus-
tained increase in its culture in southern China and has 
become a momentous economic aquaculture species in 
China in recent years [3, 4]. Like other catfish species, 
such as yellow catfish (Pelteobagrus fulvidraco) [5, 6], 
channel catfish (Ictalurus punctatus) [7], Lanzhou cat-
fish (Silurus lanzhouensis) [8], and Ussuri catfish (Pseu-
dobagrus ussuriensis) [9, 10], red-tail catfish shows sexual 
dimorphism in growth and sex-specific markers has been 
identified for gender identification [11]. Sexual dimor-
phism in growth refers to the difference between males 
and females of the same species, which is very com-
mon in fish, such as Nile tilapia (Oreochromis niloticus) 
[12], half-smooth tongue sole (Cynoglossus semilaevis) 
[13], and blotched snakehead (Channa maculate) [14]. 
In aquaculture practice, it is of great economic signifi-
cance to breed monosexual fish populations based on 
the regulation mechanism of sex determination and dif-
ferentiation of fish [15–18]. Therefore, the identification 
of sex-specific markers or sex-related genes is necessary 
to reveal the mechanism of sex determination and differ-
entiation in addition to the identification of physiological 
sex [19, 20].

Fish exhibit all known forms of vertebrate sex deter-
mination to adapt to the variable habitats own to its 
extreme diversity, that is, fish sex determination pat-
terns can be classified as genotypic sex determination 
(GSD), environmental sex determination (ESD), and 
genotypic sex determination with environmental effect 
(GSD + ESD) [19–23]. The expression of sex determina-
tion genes regulates the signal pathways of sex determi-
nation and sex differentiation, inducing the development 
of primordial gonads into ovaries or testes [24]. There-
fore, whether genes involved in sex determination are 
conserved throughout evolution has raised great research 
interest. Several genes have been confirmed as master 
genes of sex determination in some fish species, such as 
cyp19a1a in the Nile tilapia (Oreochromis niloticus) [25], 
dmy and gsdfY gene in the medaka fish [26, 27], amhr2 
in fugu (Takifugu rubripes) [28], sdy in rainbow trout 
(Oncorhynchus mykiss) [29], pfpdz1 in yellow catfish 
(Pelteobagrus fulvidraco) [30], and bcar1 in channel cat-
fish (Ictalurus punctatus) [31]. These results indicate that 
genes involved in sex determination and differentiation 
in fish vary significantly among genus, which has brought 
great difficulties to the deep revealing of the mechanism 

of fish sex determination and differentiation. Moreover, 
the sex chromosomes are generally poorly differenti-
ated in Siluriformes [32], which makes it more difficult 
to screen the sex determining genes of red-tail catfish. 
However, no genes related to sex determination and dif-
ferentiation have yet been identified in red-tail catfish, 
suggesting that more or novel sex-related genes should 
be identified to adequately explain the complex mecha-
nism of sex determination.

Transcriptome sequencing is a cost-effective and time-
effective method to screen sex determination-related 
genes and other causal genes [33–35]. Identification of 
pathways involved in gonadal development could further 
illuminate the gene regulatory network controlling sex 
determination and subsequent maintenance of pheno-
typic sex [36, 37]. Sex-biased genes are expressed either 
in one sex or at significantly different levels between two 
sexes and give rise to different phenotypic sexes, which 
has provided a mechanism for organisms to produce dif-
ferent adaptive phenotypes on the same genetic back-
ground [38, 39]. Therefore, in this study, we performed 
RNA-seq using testes and ovaries at undifferentiated and 
differentiated four stages in red-tail catfish. Furthermore, 
the expression patterns of sex-biased DEGs shared by the 
four developmental stages were analyzed to investigate 
the mechanism of sex determination and differentiation, 
which will help us to better reveal the evolution of sex 
chromosomes and the mechanism of sex determination 
in higher vertebrates.

Results
Sample collection according to the gonadal differentiation 
time
The time of gonadal differentiation was determined by 
histological analysis and it showed that there was no 
significant difference between female and male gonads 
before 10dph. At 18dph, female gonads gradually began 
to form ovarian cavities, but cavity structures did not 
appear in male gonads. From 30 to 48dph, the ovarian 
cavity gradually closed in the female gonads, whereas 
the male gonads still never developed a cavity structure 
(Fig. 1). It indicated that the gonads of two sexes began 
to show significantly morphological differences at 18dph 
or so, suggesting that the initial time of gonadal differ-
entiation is around 18dph in red-tail catfish. Therefore, 
we sampled testis and ovary tissues at four stages before 
and after gonadal differentiation, namely, before differen-
tiation (10dph), the initial time of gonadal differentiation 
(18dph), ovarian cavity fully formed (30dph), after differ-
entiation (48dph). Therefore, a total of 24 cDNA libraries 
derived from male and female gonads at 10, 18, 30, and 
48dph were constructed for transcriptome sequencing.
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Summary statistics of RNA‑seq data
The raw data of RNA-seq was deposited in the NCBI 
database Sequence Read Archive (PRJNA898908). A 
total of 1,959.69  M raw sequencing reads were gener-
ated with 48.49% GC content and Q30 bases distributed 
between 91.77 and 94.26%. After removing ambiguous 
nucleotides, 1922.16  M clean reads totaling 284.16 G 
bases were obtained for the following analysis. Then all 
the clean reads of each sample were mapped to the ref-
erence genome of red-tail catfish with an average total 
mapping ratio of 94.12 ± 1.23%, ranging from 91.69 to 
95.77% (Table  1). In total, 23,588 genes were screened 
from the 24 sequencing samples for the following DEGs 
identification.

Identification and functional annotation of DEGs
At four developmental stages, 28, 213, 636, and 1381 
DEGs were obtained, respectively (Fig. 2). The number of 
DEGs continued to increase with gonadal development. 
In M10dph-vs-F10dph, there were a total of 28 DEGs, of 
which 20 were up-regulated and 8 were down-regulated. 
In M18dph-vs-F18dph, there were 213 DEGs in total, 
of which 84 were up-regulated and 129 were down-reg-
ulated. In M30dph-vs-F30dph, there was a total of 636 
DEGs, of which 284 were up-regulated and 352 were 
down-regulated. In M48dph-vs-F48dph, there was a total 
of 1381 DEGs, of which 544 were up-regulated and 837 
were down-regulated. The list of DEGs at four develop-
mental stages was shown in Tables S1-S4.

The GO annotations of the DEGs were classified as 
molecular function, cellular component and biologi-
cal process. The DEGs identified from four stages were 
enriched to 37, 195, 326, and 502 GO terms, respectively. 

The top 30 enriched GO terms in each period were illus-
trated in Fig. 3.

The DEGs identified from M10dph-vs-F10dph, 
M18dph-vs-F18dph, M30dph-vs-F30dph, and M48dph-
vs-F48dph were further annotated to 13, 51, 92, and 116 
KEGG pathways, respectively. As shown in the top 20 
KEGG enrichments, only steroid hormone biosynthe-
sis KEGG pathway was enriched at 10dph (Fig. 4a). The 
top 3 of 11 significantly enriched pathways were neuro-
active ligand-receptor interaction, steroid hormone bio-
synthesis and cell adhesion molecules (CAMs) at 18dph 
(Fig.  4b). The top 5 significantly enriched pathways for 
the DEGs were neuroactive ligand-receptor interac-
tion, steroid biosynthesis, steroid hormone biosynthesis, 
TGF-β signaling pathway and glycosaminoglycan biosyn-
thesis-heparan sulfate/heparin at 30dph (Fig. 4c). The top 
5 significantly enriched pathways for the DEGs at 48dph 
were essentially identical to those at 18dph except that 
cell adhesion molecules (CAMs) replaced glycosamino-
glycan biosynthesis-heparan sulfate/heparin (Fig.  4d). 
Among the top 20 KEGG pathways at four developmen-
tal stages, steroid hormone biosynthesis pathway was 
commonly enriched. The DEGs at four developmental 
stages involved in the steroid hormone biosynthesis path-
way were shown in Figs. S1, S2, S3 and S4. In addition, 
well-known sex-related pathways, such as TGF-β signal-
ing pathway besides steroid hormone biosynthesis, were 
also identified.

Identification of sex‑biased expression genes
In order to identify male- and female-biased expression 
genes, the above screened DEGs at four developmental 
stages were further compared and the DEGs shared by 
them were considered as sex-biased expression genes. 

Fig. 1  Histological analysis of gonads at four developmental stages. The gonads are highlighted in the black box
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Table 1  Summary statistics of sequencing data

M_dph: male gonad samples at _ days post hatching; F_dph: female gonad samples at _ days post hatching. The numbers “1”, “2” and “3″ after M_dph” and “F_dph” 
represent three biological replicates. The “Uniquely Mapping ratio” is the statistic of the number of sequenced reads that mapped to only one position on the 
reference genome

Sample Raw Reads/M Clean Reads/M Clean Bases/G Q30/% Total
Mapping 
Ratio/%

Uniquely 
Mapping 
Ratio/%

M10dph1 79.53 78.05 11.54 93.38 92.21 87.41

M10dph2 84.30 82.27 12.16 92.88 91.69 87.95

M10dph3 85.47 83.80 12.39 93.14 92.35 87.97

M18dph1 81.29 79.43 11.73 93.19 94.68 90.76

M18dph2 83.19 81.27 12.00 93.35 94.32 90.47

M18dph3 79.12 77.35 11.42 93.35 94.20 90.90

M30dph1 75.89 76.95 11.38 93.72 94.83 91.20

M30dph2 85.07 83.51 12.33 92.38 94.11 90.32

M30dph3 83.62 82.05 12.14 93.98 93.86 89.02

M48dph1 79.09 77.64 11.49 93.82 95.27 91.76

M48dph2 81.44 79.90 11.83 94.21 95.30 91.69

M48dph3 83.62 82.13 12.17 94.26 95.77 92.12

F10dph1 79.17 77.65 11.47 91.77 92.40 87.94

F10dph2 79.38 77.91 11.52 93.22 92.42 86.54

F10dph3 80.63 79.05 11.69 93.48 92.13 88.36

F18dph1 82.47 80.83 11.96 93.41 94.19 90.61

F18dph2 81.96 80.49 11.91 93.81 94.57 91.23

F18dph3 80.28 78.51 11.59 92.62 94.63 91.10

F30dph1 78.69 76.63 11.31 92.83 94.69 91.24

F30dph2 82.47 80.65 11.90 93.37 94.78 91.32

F30dph3 85.27 83.26 12.29 93.31 94.49 90.84

F48dph1 79.87 78.32 11.59 93.75 95.29 91.75

F48dph2 82.44 80.91 11.98 93.89 95.34 91.41

F48dph3 85.43 83.60 12.37 93.88 95.37 91.86

Fig. 2  The number of DEGs at four developmental stages. Histogram (a) and Venn diagram(b)
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For example, amh and tsga10 were up-regulated at four 
developmental stages, whereas cyp19a1b, foxl2, and 
hsd17b1 were down-regulated at four developmental 
stages, suggesting that these genes may be sex-biased 
expression genes and involved in gonadal differentiation.

To reveal main biological functions and identify bio-
logical pathways of the eight shared DEGs of four devel-
opmental stages, GO annotation and KEEG enrichment 
analysis were summarized in Table  2. As mucin-22-like 
was not annotated to the exact sex-related gene, no fur-
ther analysis of this gene was performed. These seven 
genes were annotated to eighteen  GO terms, such as 
gonad development, estrogen biosynthetic process, estra-
diol 17-beta-dehydrogenase activity and spermatogene-
sis. These genes were enriched in three KEGG pathways, 
including steroid hormone biosynthesis, TGF-β signaling 
pathway and cytokine-cytokine receptor interaction.

Verification of the expression patterns of sex‑biased genes 
by RT‑qPCR
In total, seven candidate sex-biased expression genes, 
namely amh, gdf6a, tsga10, cyp19a1b, foxl2, hsd17b1, 
and cyp17a were identified from the DEGs for RT-qPCR 
to verify the expression patterns in red-tail catfish. The 

expression levels of the selected seven genes were signifi-
cantly different between two sexes at each developmental 
stage. Among these, amh and tsga10 were up-regulated 
at four developmental stages. The cyp19a1b, foxl2, and 
hsd17b1 were down-regulated at four developmental 
stages. The expressions of gdf6a and cyp17a were down-
regulated in M10dph-vs-F10dph, but up-regulated in 
the other three developmental stages (Fig.  5). The gene 
expression patterns revealed by RT-qPCR results were 
consistent with the RNA-sequencing data, which indi-
cated that the transcriptome data were reliable and useful 
for differential expression analysis.

Discussion
The red-tail catfish shows the characteristics of sex 
dimorphism in growth, and males show obvious growth 
advantages. Although sex-specific markers have been 
developed for genotypic sex identification [11], less 
research has been focused on the sex determination and 
differentiation in red-tail catfish. Studies on the mecha-
nism of sex determination provide paramount theoreti-
cal value for promoting the development of sex-control 
breeding. The identification of DEGs at different devel-
opmental stages by the gonadal transcriptome is an 

Fig. 3  Histogram of top 30 GO terms enriched by DEGs at four developmental stages. M10dph-vs-F10dph (a), M18dph-vs-F18dph (b), 
M30dph-vs-F30dph (c), and M48dph-vs-F48dph (d). The x-axis shows the GO terms and the y-axis indicates negative log of the p value of 
significance. M_dph: male gonad samples at _ days post hatching; F_dph: female gonad samples at _ days post hatching
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important way to investigate the molecular differences 
that regulate sex determination and sexual dimorphism 
[40]. A total of 28, 213, 636 and 1381 DEGs were identi-
fied between two sexes at the four developmental stages 
through the gonadal transcriptome of the red-tail cat-
fish. There was an increase in the number of DEGs 
from 10 to 48dph, suggesting that there were more sex-
related genes in the later stages of gonadal development 
compared to the early stages. This trend was similar to 
that revealed in the closely related fish, such as yellow 
catfish (Pelteobagrus fulvidraco) and channel catfish 
(Ictalurus punctatus) [40, 41].

As genes differentially expressed between two sexes at 
different developmental stages were involved in gonadal 
differentiation and development, these sex-related genes 
can be used to further identify sex determination and dif-
ferentiation genes [40]. In red-tail catfish, seven candidate 
genes (amh, gdf6a, tsga10, cyp17a, foxl2, cyp19a1b and 
hsd17b1) were obtained by taking intersections of DEGs 
at four developmental stages. Two genes (cyp17a and 

cyp19a1b) shared during gonadal development in yellow 
catfish (Pelteobagrus fulvidraco) and two genes (amh and 
foxl2) at someone stage in half-smooth tongue sole (Cyno-
glossus semilaevis) were the same with those in red-tail cat-
fish [40, 42]. Besides, the expression of these seven genes 
also showed different patterns before and after gonadal 
differentiation (18dph). For example, the expression of 
hsd17b1 in the female was higher after gonadal differentia-
tion (48dph) than before gonadal differentiation (10dph), 
and the expression level was the highest at the initial time 
of gonadal differentiation (18dph). However, the expres-
sion of gdf6a in the male was higher after gonadal dif-
ferentiation (48dph) than before gonadal differentiation 
(10dph), and its expression level increased with gonadal 
differentiation and development (from 10 to 48dph).

Most of the identified sex-determining genes and can-
didate genes are from the TGF-β signaling pathway [43]. 
In this study, two genes belonging to the TGF-β signal-
ing pathway, amh and gdf6a were identified. In zebrafish, 
amh mutants showed a female-biased sex ratio, and the 
proliferation and differentiation of male germ cells were 

Fig. 4  The top 20 KEGG pathways enriched by DEGs at four developmental stages. M10dph-vs-F10dph (a), M18dph-vs-F18dph (b), 
M30dph-vs-F30dph (c), and M48dph-vs-F48dph (d). The x-axis indicates the enrichment score of each pathway and the y-axis shows the pathway. 
The color and size of dots indicate the p-value and number of differentially expressed genes (N ≥ 3) assigned to the corresponding pathway, 
respectively
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disordered [44]. It was revealed that overexpression of 
amh in undifferentiated orange grouper (Epinephelus 
coioides) induced testis development [45]. In Japanese eel 
(Anguilla japonica), amh mainly expressed in the testis, 
and the expression level increased significantly with the 
differentiation of the testis [46]. Male-biased expression 
of amh was associated with the differentiation of the male 
gonads in yellow catfish (Pelteobagrus fulvidraco) [30]. 

In red-tail catfish, amh showed significantly different 
expression at four developmental stages. Furthermore, as 
in the southern catfish (Silurus meridionalis) [47], amh 
showed significantly higher expression in the male than 
in the female in red-tail catfish. As for gdf6a, most of 
studies have shown that it is related to the photoreceptor 
phylogeny of zebrafish (Danio rerio) [48–50]. It has been 
also reported that gdf6 on the Y chromosome is a master 

Table 2  GO annotation and KEGG enrichment of eight shared DEGs of four developmental stages

DEGs GO terms KEGG pathways

amh a. gonad development
b. growth factor activity

a. TGF-β signaling pathway
b. cytokine-cytokine receptor interaction

gdf6a a. growth factor activity a. TGF-β signaling pathway

cyp17a a. heme binding
b. iron ion binding
c. sex differentiation
d. steroid biosynthetic process
e. oxidation–reduction process
f. steroid 17-α-monooxygenase activity
g. 17-α-hydroxyprogesterone aldolase activity
h. oxidoreductase activity, acting on paired donors, with incorpora‑
tion or reduction of molecular oxygen

a. steroid hormone biosynthesis

cyp19a1b a. heme binding
b. iron ion binding
c. oxidation–reduction process
d. oxidoreductase activity, acting on paired donors, with incorpora‑
tion or reduction of molecular oxygen

a. steroid hormone biosynthesis

hsd17b1 a. estrogen biosynthetic process
b. estradiol 17-β-dehydrogenase activity
c. cytoplasm
d. oxidation–reduction process
e. oxidoreductase activity

a. steroid hormone biosynthesis

foxl2 a. sequence-specific DNA binding
b. DNA-binding transcription factor activity
c. regulation of transcription, DNA-templated

/

tsga10 a. spermatogenesis /

mucin-22-like / /

Fig. 5  Validation of sex-biased expression of seven DEGs by RT-qPCR. The y-axis indicates relative expression level. Error bars mean standard error. 
Asterisks represent the level of significant difference between sexes, * (p < 0.05), ** (p < 0.01), *** (p < 0.001). The real p-values were shown in Table S5
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sex-determining gene in the turquoise killifish (Notho-
branchius furzeri) [51]. In red-tail catfish, the expression 
of gdf6a was down-regulated at the undifferentiated stage 
(10dph), but up-regulated  at the initial time of gonadal 
differentiation stage (18dph). In conclusion, gdf6a and 
amh showed different expression patterns at the undif-
ferentiated stage (10dph), but showed similar expression 
patterns after gonadal differentiation (18dph) in red-tail 
catfish. Furthermore, both amh and gdf6a belong to the 
TGF-β signaling pathway genes [52]. These results sug-
gest that amh may be involved in the molecular sex dif-
ferentiation, however, gdf6a may play a main role in the 
morphological sex differentiation in red-tail catfish.

Besides TGF-β signaling pathway genes, DM domain 
containing genes and Sox family genes are also the main 
source genes of sex-determining genes or candidate 
genes [19, 43, 53], such as dmrt1 (a DM domain con-
taining gene) in medaka fish (Oryzias latipes) and half-
smooth tongue sole (Cynoglossus semilaevis) [26, 54, 55], 
sox3 (a sox family gene) in Indian ricefish (Oryzias dan-
cena) [56], and sox9 (a sox family gene) in medaka fish 
(Oryzias latipes) and orange-spotted grouper (Epinephe-
lus coioides) [57–59]. However, these genes were not 
differentially expressed in the critical period of gonadal 
differentiation in red-tail catfish. For example, dmrt1 was 
not differentially expressed between two sexes at 10dph 
and 18dph. Although the expression of dmrt1 were up-
regulated at 30dph and 48dph, its expression was kept 
at a very low level. Similarly, sox9 was not differentially 
expressed at a low level at the four stages. Therefore, it is 
inferred that dmrt1 and sox9 may not be sex-determin-
ing genes, but play a role in the maintenance of gonadal 
development in red-tail catfish.

Genes involved in steroid hormone biosynthesis also 
were key physiological factors in regulating sex differen-
tiation in fish [60]. Fortunately, cyp17a, cyp19a1b, and 
hsd17b1, belonging to the steroid hormone biosynthe-
sis pathway, were screened from the DEGs in red-tail 
catfish. Cyp17a controls the synthesis of 17β-estradiol, 
and cyp17a (-/-) XX leads to male sex reversal in Nile 
tilapia (Oreochromis niloticus) [61]. The expression of 
cyp17a in red-tail catfish was similar to that in rice field 
eels (Monopterus albus), but different from that in Nile 
tilapia (Oreochromis niloticus) and fathead minnows 
(Pimephales promelas) [62–64], suggesting that the role 
for cyp17a during gonadal differentiation and develop-
ment may vary with species or developmental stage. 
Cyp19 converts androgens to estrogens, and the expres-
sion of this gene determines the ratio of androgens to 
estrogens, which is vital for sex differentiation in most 
vertebrates [65]. During gonadal development and sex 
differentiation, treatment with the CYP19 inhibitor 
fadrozole resulted in gonad differentiation into testes 

in all individuals of zebrafish (Danio rerio) and mascu-
linization in 97.1% of common carp (Cyprinus carpio), 
respectively [66, 67]. In the process of sex differentiation, 
cyp19a1 was highly expressed in the female gonad or 
specifically expressed in the early differentiated females 
[68, 69]. Similarly, the expression of cyp19a1b showed 
significant sexual dimorphism before and after gonadal 
differentiation in red-tail catfish. A role for cyp19a1b in 
gonadal differentiation has been revealed in north Afri-
can catfish [70]. As for hsd17b1, a key enzyme in ster-
oid hormone biosynthesis, may play an essential role 
in estrogen synthesis in the ovary [71–76]. The expres-
sion of cyp19a1 may be regulated by foxl2 [43, 77], and 
the expression pattern of hsd17b1 was similar to that of 
cyp19a1b in red-tail catfish. So foxl2 may regulate the 
expression of both hsd17b1 and cyp19a1b. Cyp19a1 and 
foxl2 were upregulated in sex-reversed females compared 
to wild-type males, suggesting that cyp19a1 and foxl2 
were associated with ovarian development in yellow cat-
fish (Pelteobagrus fulvidraco) [30]. Foxl2 was involved 
in gonadal differentiation and the maintenance of ovar-
ian function, and its expression was upregulated in the 
female in the early stage of ovarian differentiation [78, 
79]. The expression of foxl2 in red-tail catfish was con-
sistent with the above findings in other fish. Knockdown 
of foxl2 can lead to complete sexual reversal in zebrafish, 
gibel carp (Carassius gibelio) and Nile tilapia (Oreo-
chromis niloticus) [25, 80–82]. Therefore, we speculate 
that foxl2, cyp19a1b, and hsd17b1 may be female-biased 
genes and may be involved in the sex determination pro-
cess in red-tail catfish.

Besides above candidate sex determination genes, 
tsga10 was identified from DEGs. Originally isolated 
from adult testis, tsga10 is over 80 kb in length and con-
sists of 19 exons, and it may be involved in the mainte-
nance of normal sperm structure and spermatogenesis 
[10, 83–86]. The expression of tsga10 was up-regulated 
at four  developmental stages, but the overall expression 
level of the gene was very low in both sexes. This result 
was similar to that found in zebrafish (Danio rerio) [87]. 
What’s more, tsga10 knockout could cause infertility in 
male mice, resulting in disordered mitochondrial sheath 
formation and significantly reduced sperm motility [88]. 
There are no reports on tsga10 in relation to sex deter-
mination or differentiation in fish. Therefore, whether 
tsga10 is involved in sex determination or gonadal devel-
opment in red-tail catfish needs to be further explored in 
future.

Conclusions
RNA-seq was used to identify candidate genes involved 
in sex determination and to reveal their expression lev-
els at four different stages of gonadal development. Seven 
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DEGs shared by the four developmental stages were iden-
tified, of which amh and gdf6a may be the male-biased 
expression genes, while foxl2, cyp19a1b and hsd17b1 
may be the female-biased expression genes, which were 
involved in steroid hormone biosynthesis and TGF-β 
signaling pathways. Our results will provide insight into 
evolutionary processes of sex determination mechanisms 
in fish, as well as a useful genetic basis for sex-control 
breeding to produce monosexual populations.

Methods
Fish culture and ethics statement
Red-tail catfish were reared to be sexually mature in the 
Xishuangbanna Indigenous Fish Breeding Center and 
one full-sib family was established. After hatching there, 
fries were transferred to the National Aquatic Biological 
Resource Center (NABRC, Wuhan, China) and cultured 
in re-circulating aerated freshwater tanks at 26℃ prior to 
sample collection. Fries were fed three times daily with 
hatched artemia nauplii for the first two weeks, mix-
tures of artemia nauplii and frozen bloodworms for the 
next week, both frozen bloodworms and pellet feed for 
two weeks, then pellet feed for the following culture. 
All experiments and animal treatments were carried out 
according to the principles of Animal Care and Use Com-
mittee of Institute of Hydrobiology, Chinese Academy of 
Sciences.

Gonadal histology and sample collection
All sampled individuals were firstly euthanized using 
an overdose of MS222 before gonad sample collec-
tion at different developmental stages of red-tail catfish. 
Gonads were fixed with paraformaldehyde (PFA) for 
more than 24  h at 4℃, then dehydrated, embedded in 
paraffin for section. After the slices were deparaffinized 
and rehydrated, they were stained with hematoxylin 
and eosin solutions. Microphotography was performed 
using a microscope from Carl Zeiss (Axio Imager M2). 
Significant stages of the early gonad development were 
determined based on histological analysis of gonads at 
different developmental stages. Sexual phenotypes of all 
sampled individuals were determined based on the sex-
specific genetic markers of red-tail catfish [11], and the 
results of the sex identification were shown in Fig. S5 
(with the samples of 48dph as an example). In this study, 
four developmental stages (10dph, 18dph, 30dph, and 
48dph) were set up with a total of 24 samples. The first 
developmental stage (10dph) included the male gonadal 
tissue sample “M10dph” and the female gonadal tissue 
sample “F10dph”, and 27 gonads pooled into one sequenc-
ing sample for each sex. At the second developmental 
stage (18dph), the male gonadal tissue sample “M18dph” 
and the female gonadal tissue sample “F18dph” were 

sampled, and 15 gonads were pooled into one sample 
for each sex. The male gonadal tissue sample “M30dph” 
and the female gonadal tissue sample “F30dph” consisted 
of 12 testes and ovaries at the third developmental stage 
(30dph), respectively. At the fourth developmental stage 
(48dph), 12 testes and ovaries were pooled into the male 
gonadal tissue sample “M48dph” and the female gonadal 
tissue sample “F48dph”, respectively. Each of  sequenc-
ing samples at different stages was performed with three 
replicates. Gonad samples were carefully collected and 
immediately placed in RNAprotect Tissue Reagent, kept 
at 4 ℃ overnight, and then store at  -20 ℃ until RNA 
extraction.

RNA extraction, library construction and sequencing
Total RNA was extracted using the mirVana miRNA 
Isolation Kit (Ambion, USA) following the manufac-
turer’s protocol. RNA purity and quantification were 
evaluated using the NanoDrop 2000 spectrophotometer 
(Thermo Scientific, USA). RNA integrity was evaluated 
using the Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, USA). The samples with RNA Integrity Number 
(RIN) ≥ 7 were subjected to the subsequent analysis. The 
cDNA libraries were constructed using TruSeq Stranded 
mRNA LTSample Prep Kit (Illumina, USA) according to 
the manufacturer’s instructions. In brief, after the total 
RNA was extracted and digested by DNase, the mRNA 
was enriched by magnetic beads with Oligo (dT). Add-
ing Fragmentation Buffer to break the mRNA into short 
fragments, which was used as template to synthesize 
first-strand cDNA with random hexamer primer. Then, 
a two-strand synthesis reaction system was prepared 
to synthesize second-strand cDNA, and second-strand 
cDNAs were purified by beads from kit.  The purified 
double-stranded cDNA was then subjected to terminal 
repair, poly(A) addition and sequencing splicing, frag-
ment size selection and PCR amplification. These RNA-
Seq libraries were sequenced on the BGI DNBSEQ-T7 
sequencing platform (Shanghai OE Biomedical Technol-
ogy Company Limited, China) and 150  bp paired-end 
reads were generated.

Gonad transcriptome assembly and annotation
Raw data (raw reads) of fastq format were firstly pro-
cessed using Trimmomatic (v 0.36) [89] and the 
reads containing ploy-N and the low quality reads 
were removed to obtain the clean reads (LEAD-
ING:3  TRAILING:3  ILLUMINACLIP:TruSeq3-PE-2.
fa:2:30:10:8:true  SLIDINGWINDOW:4:15  MINLEN:50). 
Then clean reads were mapped to the reference genome 
of red-tail catfish (PRJNA842523 and PRJNA841381) 
using Hisat2 (v 2.2.1.0) [90]. The reads with a perfect 
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match were further used for subsequent annotation anal-
ysis based on the reference genome.

Differential expression analysis and DEGs identification
Relative gene expression levels of each gene were char-
acterized by fragments per kilobase of transcript per 
million mapped reads (FPKM) [91]. FPKM of each gene 
was calculated and the read counts of each gene were 
obtained by HTSeq-count (v 0.9.1) [92]. Differential 
expression analysis between two sexes at four develop-
mental stages was performed using the DESeq2 (v 1.20.0) 
(DESeqDataSetFromMatrix(countData = countData, 
colData = colData, design =  ~ condition)) [93, 94]. Genes 
with p-value < 0.05 and fold change > 2 or fold change < 0.5 
were assigned as the threshold for DEGs. Gene ontology 
(GO) enrichment and Kyoto encyclopedia of genes and 
genomes (KEGG) pathway enrichment analysis of DEGs 
were performed to screen the significantly enriched term 
using R (v 3.2.0) based on the hypergeometric distribu-
tion [95–98]. In this study, the expression patterns of four 
developmental stages were revealed, and up-regulated/
down-regulated was determined by comparing the male 
with the female. Unless otherwise stated, up-regulated 
refers to the expression in the male was higher than in 
the female, while down-regulated refers to the expression 
in the male was lower than in the female.

RT‑qPCR verification of expression patterns
Seven candidate DEGs were selected from the four devel-
opmental stages to verify the reliability of RNA-seq data 

by RT-qPCR. The primers for these genes (Table 3) were 
designed using Primer Premier (v 5.0) [99]. The Prime-
Script™ RT reagent Kit with gDNA Eraser (TaKaRa) was 
used for cDNA synthesis following the manufacturer’s 
instructions. RT-qPCR was performed on a Step One 
real-time PCR System (Roche, USA) with iTaq Universal 
SYBR Green Supermix (BIO RAD). The β-actin gene was 
used as an endogenous reference gene and three biologi-
cal replicates were performed for each reaction. The rela-
tive expression level was measured in terms of threshold 
cycle value and normalized using the 2−∆∆Ct method 
[100]. For statistical analysis, SPSS (v 19.0) was used for 
significance test (p < 0.05).

Abbreviations
amh	� Anti-Mullerian hormone
cyp17a	� Cytochrome P450 family 17 subfamily A
cyp19a1b	� Cytochrome P450 family 19 subfamily A polypeptide 1b
CAMs	� Cell adhesion molecules
dph	� Days post hatching
DEGs	� Differentially expressed genes
ESD	� Environmental sex determination
F_dph	� Female gonad samples at _ days post hatching
foxl2	� Forkhead box L2
FPKM	� Fragments per kilobase of transcript per million mapped reads
gdf6a	� Growth differentiation factor 6a
GSD	� Genotypic sex determination
GO	� Gene ontology
hsd17b1	� Hydroxysteroid 17-beta dehydrogenase 1
KEGG	� Kyoto encyclopedia of genes and genomes
M_dph	� Male gonad samples at _ days post hatching
PFA	� Paraformaldehyde
RIN	� RNA integrity number
RT-qPCR	� Real-time quantitative PCR
tsga10	� Testis-specific gene antigen 10

Table 3  The sequences information of primers used for RT-qPCR

Gene ID DEGs Primer ID Primer sequences (5′-3′) Product 
size (bp)

Hw11G012730 amh F GGA​GAA​ATA​CCT​GCT​GGA​ACC​ 171

R ATG​TCG​TCA​TAC​GCT​ATG​GGC​

Hw15G016665 gdf6a F CCA​ACA​GAT​GCC​TGA​AAG​A 221

R TGA​CGA​TGA​TGA​CGA​CGA​T

Hw05G006197 cyp17a F CGT​GGA​GAT​CCT​GAG​TTT​GA 283

R TCC​TGG​GTG​CTT​GTA​TTG​TT

Hw12G014257 cyp19a1b F CCT​CCA​AAT​TCC​TAT​CAA​CG 175

R TGC​TCC​ACA​AGC​CTC​CCT​AT

Hw14G015812 hsd17b1 F CAT​CAG​ATC​CAT​CCA​AAA​CA 297

R TGC​GAA​TCG​TAC​CCA​GTA​AA

Hw21G022357 foxl2 F GAT​TTT​TAG​TTT​TCG​GCT​CGT​ 295

R AGG​TCT​GGT​CTG​GTG​ATT​TTT​

Hw20G021635 tsga10 F GAA​GGA​GTA​AAG​CAG​GGT​TTG​ 161

R GGG​ATG​ATT​TTG​GCA​GTA​TGG​

Hw25G026100 β-actin F AGA​GGT​ATC​CTG​ACC​CTG​AAG​TAC​ 328

R GAG​CAT​AAC​CTT​CAT​AGA​TGG​GCA​CAG​
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Additional file 5: Fig. S1. The DEGs involved in the steroid hormone bio‑
synthesis pathway in M10dph-vs-F10dph (ko00140, https://www.kegg.jp/
pathway/map00140). The pink box in the figure represents up-regulated 
genes and the blue box represents down-regulated genes.

Additional file 6: Fig. S2. The DEGs involved in the steroid hormone bio‑
synthesis pathway in M18dph-vs-F18dph (ko00140, https://www.kegg.jp/
pathway/map00140). The pink box in the figure represents up-regulated 
genes and the blue box represents down-regulated genes.

Additional file 7: Fig. S3. The DEGs involved in the steroid hormone 
biosynthesis pathway in M30dph-vs-F30dph (ko00140, https://www.
kegg.jp/pathway/map00140). The pink box in the figure represents 
up-regulated genes, the blue box represents down-regulated genes, 
and the olive box indicate that both up- and down-regulated genes are 
included.

Additional file 8: Fig. S4. The DEGs involved in the steroid hormone bio‑
synthesis pathway in M48dph-vs-F48dph (ko00140, https://www.kegg.jp/
pathway/map00140). The pink box in the figure represents up-regulated 
genes, the blue box represents down-regulated genes, and the olive box 
indicate that both up- and down-regulated genes are included.

Additional file 9: Table S5. The real p-values of RT-qPCR.

Additional file 10: Fig. S5. The electrophoretic pattern of the sex 
identification in 36 males and 36 females. (a): 351 bp Y‐specific fragment 
amplified by the Y‐specific primer pair 18‐Fy and 18‐Ry only in male 
individuals; (b): 727 bp Y‐specific fragment amplified by Y‐specific primer 
pair 20‐Fy and 20‐Ry only in male individuals. M1-M12: sample “M48dph1”, 
M13-M24: sample “M48dph2”, M25-M36: sample “M48dph3”. F1-F12: 
sample “F48dph1”, F13-F24: sample “F48dph2”, F25-F36: sample “F48dph3”. 
M: DL 2000 DNA marker.
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