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Abstract 

In the analysis of single-cell RNA-sequencing (scRNA-seq) data, how to effectively and accurately identify cell clusters 
from a large number of cell mixtures is still a challenge. Low-rank representation (LRR) method has achieved excel-
lent results in subspace clustering. But in previous studies, most LRR-based methods usually choose the original data 
matrix as the dictionary. In addition, the methods based on LRR usually use spectral clustering algorithm to com-
plete cell clustering. Therefore, there is a matching problem between the spectral clustering method and the affinity 
matrix, which is difficult to ensure the optimal effect of clustering. Considering the above two points, we propose 
the DLNLRR method to better identify the cell type. First, DLNLRR can update the dictionary during the optimization 
process instead of using the predefined fixed dictionary, so it can realize dictionary learning and LRR learning at the 
same time. Second, DLNLRR can realize subspace clustering without relying on spectral clustering algorithm, that is, 
we can perform clustering directly based on the low-rank matrix. Finally, we carry out a large number of experiments 
on real single-cell datasets and experimental results show that DLNLRR is superior to other scRNA-seq data analysis 
algorithms in cell type identification.

Keywords:  Dictionary learning, Low-rank representation, scRNA-seq data analysis, Subspace clustering, Cell type 
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Introduction
The single-cell RNA-sequencing (scRNA-seq) technology 
is now a powerful tool that demonstrates unprecedented 
precision in exploring biological processes and disease 
mechanisms [1–3]. The scRNA-seq technology helps to 
reveal the heterogeneity and diversity between cells. In 
addition, it can discover new subtypes and rare cell spe-
cies by effectively dissecting complex and heterogeneous 
cell clusters [4–6]. Analyzing scRNA-seq data can help 
researchers better understand complex biological prob-
lems. In the scRNA-seq data analysis, one of the relatively 
significant research is unsupervised cluster analysis, 

which aims to identify cell types by clustering cells using 
clustering algorithms [7]. The researchers have previously 
introduced several traditional clustering methods to ana-
lyze these single-cell data. For example, Hartigan et  al. 
proposed the K-means [8], which is based on Euclidean 
distance to minimize the distance between cells in the 
same class. Later, Luxburg et  al. proposed the famous 
spectral clustering (SC) algorithm [9]. Elhamifar et  al. 
developed the SC method based on the sparse represen-
tation sparse subspace clustering (SSC), which further 
improved the sparsity of subspace clustering and effec-
tively processed the noise in data [10]. Compared with 
the bulk RNA-seq data and microarray data, the major 
problem of clustering scRNA-seq data is that missing val-
ues often appear in scRNA-seq data. Because of the limi-
tation of current technology, scRNA-seq some-times fails 
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to capture the expression of genes, thus resulting in drop-
out events in the data. These dropout events cause data 
loss in the gene expression matrix. These problems may 
reduce the accuracy of the above traditional clustering 
methods for identifying cell subtypes on scRNA-seq data.

In recent years, a number of specific methods have 
been proposed to overcome the challenges posed by the 
inherent nature of scRNA-seq data. Xu and Su proposed 
a quasi-clique-based clustering algorithm called SNN-
Cliq [11], which constructs a distance matrix based on 
the concept of shared nearest-neighbor (SNN) to repre-
sent the similarity between cells. Wang et  al. proposed 
a similarity learning framework, SIMLR, which uses 
multi-kernel similarity learning to analyze the scRNA-
seq data [12]. SIMLR is essentially a spectral clustering 
method, which learns an appropriate distance matrix 
from the data for dimension reduction, clustering and 
visualization. SC3 [13] combines multiple sub-clustering 
results to construct the consistency matrix. Park et  al. 
proposed an improved multi-kernel spectral clustering 
method named MPSSC [14]. In the MPSSC method, they 
modified the spectral clustering framework by imposing 
sparse structure on the target matrix. Inspired by pre-
vious methods that use neighborhood information to 
measure cell-to-cell similarity, Jiang et al. proposed a new 
cell similarity measure called Corr [15]. Corr considers 
the expression patterns of surrounding cells from a global 
perspective based on the correlation of cell-pair differen-
tiability. Zheng et  al. proposed SinNLRR to learn more 
accurate similarity matrix by low-rank representation 
(LRR) model with nonnegative constraint [16]. SinN-
LRR can reduce the influence of noise on similarity and 
effectively obtain accurate and robust clustering results. 
However, most clustering methods divide subspace clus-
tering into two steps: first, learning an affinity matrix that 
encodes the subspace memberships of samples; then, the 
clustering algorithm such as Normalized cutting (NCuts) 
[9] is used to obtain the final clustering result based 
on the learned affinity matrix. Because the clustering 
method used to obtain the clustering results is not neces-
sarily suitable for the learned affinity matrix. Thus, these 
methods are not guaranteed to obtain the optimal clus-
tering results. In addition, although LRR-based methods 
have achieved good results in scRNA-seq data analysis, 
they usually choose the original data as the dictionary. 
Due to the large number of missing values and high noise 
of scRNA-seq data, using the original data as a dictionary 
to represent the low dimensional subspace is not condu-
cive to obtaining accurate LRR matrix.

Xu et al. proposed Concept Factorization (CF), which 
attempts to find the data representation by using the 
linear combination of original data points to represent 
the cluster center [17]. Inspired by the idea of CF, we 

reformulated the dictionary in the LRR model with a lin-
ear combination of the original data and propose a new 
LRR-based method called Non-negative Low-rank Rep-
resentation based on Dictionary Learning (DLNLRR). In 
this method, instead of using a fixed dictionary, the dic-
tionary is modeled as the linear combination of the origi-
nal data. In the optimization process, with the update 
of linear combination coefficient, the dictionary will be 
updated accordingly. Therefore, DLNLRR can realize 
dictionary learning and acquisition of LRR at the same 
time. Importantly, updating the dictionary can reduce the 
impact of data noise on the mapping benchmark, which 
will help to accurately extract the low-dimensional sub-
space structure of high-dimensional data. Secondly, we 
try to accurately find the corresponding subspaces of 
high-dimensional data through factor decomposition. 
Specifically, we determine the number of clusters by rea-
sonably selecting the dimension of dictionary matrix. 
If the number of learned subspaces is the same as the 
actual number of clusters, we can directly gather the 
sample points into the corresponding subspace accord-
ing to the projection of high-dimensional data on the 
low-dimensional subspace. In other words, the clustering 
results can be obtained without the help of the spectral 
clustering algorithm. Unlike previous single-cell clus-
ter analysis methods that use NCuts to obtain clustering 
results, DLNLRR can avoid the influence of clustering 
algorithms on the final results. In addition, we add the 
manifold graph regularization to DLNLRR. When high-
dimensional spatial data are mapped to low-dimensional 
space, manifold graph regularization can preserve the 
local geometric structure of high-dimensional data, so as 
to ensure the smoothness of manifold structure embed-
ded in the high-dimensional data. Finally, to validate 
the effectiveness of the proposed method, we carry out 
a large number of experiments on real scRNA-seq data-
sets. Through comparative experiments, it is found that 
DLNLRR has higher clustering ability than the state-of-
the-art scRNA-seq data clustering algorithms.

Related work
Before introducing the proposed model, we will review 
some related methods in this section, including LRR, 
manifold graph regularization and CF.

Low‑rank representation
Because of the good ability to grasp the global data struc-
ture and explore the low-dimensional subspace struc-
ture, LRR has attracted the attention of a large number 
researchers and achieved good results in the application 
of bioinformatics [18]. In the LRR method, each sam-
ple can be represented as a linear combination of the 
bases in a given dictionary, and LRR seeks the lowest 



Page 3 of 14Wang et al. BMC Genomics          (2022) 23:851 	

rank representation in a given data sample set [19]. So, 
LRR can realize the low-dimensional representation of 
high-dimensional data and reduce the difficulty of high-
dimensional data processing. Given the observed data 
matrix X ∈ Rm×n is a combination of unknown inde-
pendent subspaces S = [S1, S2,..., Sb] . The LRR is formu-
lated as the following rank minimization problem:

Here, � is a parameter and A is a basis matrix, called a 
dictionary. H is the LRR matrix with respect to the dic-
tionary A, and the column vector hj denotes the mapping 
of sample point j in the subspace. The matrix E denotes 
the noise in the original data. �·�l indicates a certain reg-
ularization strategy. Because of the discreteness of the 
rank operator, the above optimization problem (1) is dif-
ficult to solve. Previous studies [20] proposed the convex 
relaxation form of the optimization problem:

where �·�∗ represents the nuclear norm, which is the sum 
of all singular values of a matrix. Obviously, an appropri-
ate the dictionary A enables the LRR matrix H to reveal 
the true subspace structure of the data.

Graph regularization based on manifold
In high-dimensional data processing, graph regulariza-
tion constraint based on manifold learning offers a prac-
ticable choice for capturing the local geometry in data. 
The regularization of graph is based on local invariance 
assumption that if two data points xi , xj are close in the 
original data geometric distribution, then their map-
pings hi and hj in the new space also remains close [21, 
22]. Therefore, the graph regularization can reveal the 
underlying local manifold structure in the original data. 
For the sake of restoring the local geometric relationship 
between data points, a simple method is to construct a 
connected graph to approximate the manifold. We use 
data points in matrix X as vertices of the connected 
graph. Then, the symmetric weight matrix S is defined, sij 
is the weight of the edge that connects the vertex xi to the 
vertex xj . In this paper, Gaussian kernel is used to con-
struct symmetric weight matrix S as follows:

where Nk(xi) denotes the set of k nearest neighbors of 
xi . xi − xj  is the Euclidean distance between xi and xj , 
and t controls the width of the neighborhoods, which is 

(1)min
H ,E

rank(H)+ ��E�l , s.t.X = AH + E.

(2)min
H ,E

�H�∗ + ��E�l , s.t.X = AH + E,

(3)sij =
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1 by default. Based on the local invariance assumption, 
the definition of graph regularization in low dimensional 
space is as follows:

Here, hi and hj denote the mappings of xi and xj under 
some transformation [23]. D is a diagonal matrix, 
dii =

∑

i,j

sij is its diagonal element. It is obvious that dii is 

the sum of similarities of data point xi . L is the graph 
Laplacian matrix [24].

Concept factorization
Concept Factorization (CF) was first proposed by Xu 
et al. [17], which has attracted great attention in dimen-
sionality reduction and data clustering. CF is a variation 
of Nonnegative Matrix Factorization (NMF) [25]. The 
goal of NMF is to decompose the data matrix X ∈ Rm×n 
into two matrix factors U ∈ Rm×k and V ∈ Rn×k , so that 
UVT  can provide a good approximation to X.

Each column of U can be regarded as the basis vector, and 
each column of VT is the k-dimensional representation of 
the original inputs relative to the new basis. NMF mainly 
analyze the data matrices whose elements are nonnega-
tive. And NMF imposes the nonnegative constraint on U 
and VT . In the CF model, each base uj is represented by a 
linear combination of data points.

where wij ≥ 0 . Let W =
[

wij

]

∈ Rn×k . The idea of CF is to 
represent each concept (base) as a linear combination of 
all data points, and approximate each data point by a lin-
ear combination of these concepts. That is, given a data 
matrix X, the goal of CF is to find two nonnegative coef-
ficient matrices W ∈ Rn×k and V ∈ Rn×k . The coefficient 
matrices meet the following condition:

Equation (7) actually factorizes the data matrix X into 
X, W, and V. W is referred to as the association matrix 
recording the concepts, while V represents the projection 
corresponding to the concept and is referred to as the 
representation matrix.

(4)

min
H

∑

i,j

sij
∥

∥hi − hj
∥

∥

2

=min
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tr
(

H(D − S)HT
)

=min
H
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)

(5)X ≈ UVT

(6)uj =
∑

i

wijxi,

(7)X ≈ XWVT
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Materials and methods
In this section, we will introduce the proposed DLNLRR 
method in detail, which uses the linear combination of 
original data as a dictionary to seek the lowest rank rep-
resentation of data points.

DLNLRR method
Given a high-dimensional data X ∈ Rm×n with n data 
points, the main goal of LRR is to find the lowest rank 
representation of data points based on a given dictionary. 
LRR-based method usually directly uses the original data 

matrix X as the dictionary to grasp the similarity matrix 
or LRR. However, scRNA-seq data usually contain a lot 
of noise and missing values. In view of the characteris-
tics of scRNA-seq data, directly using the original data as 
the dictionary can not accurately represent the basis of 
low-dimensional projection. Inspired by the idea that CF 
represents concepts through a linear combination of all 
data points, we attempt to model the dictionary A as a 
linear combination of original data points, i.e., A = XW  . 
We can update and reconstruct the dictionary by updat-
ing the coefficient matrix W, so that the dictionary can 
better represent the low dimensional subspace through 
continuous learning. Compared with using the original 
data as a dictionary, the dictionary with learning ability is 
helpful to further identify the potential low dimensional 
subspace structure. In addition, to improve the interpret-
ability of the model, we impose the non-negative con-
straint on H. So, we have

where W ∈ Rn×r is the coefficient matrix, the orthogonal 
constraint WWT = I is to ensure that the model is sta-
ble. r denotes the number of subspaces. XW is referred 
to as concept matrix in the CF model. If we regard a con-
cept as a subspace, XW can be regarded as the dictionary 
A in the LRR model. Therefore, the dictionary A can be 
continuously updated with the iteration of W during the 
optimization process. H ∈ Rr×n is the LRR of the original 
data X with respect to dictionary A. Each column of H 

(8)min
W ,H

�H�∗, s.t.X = XWH ,WWT = I ,H ≥ 0,

represents the mapping of a sample point in a low dimen-
sional subspace. So H can intuitively reflect the non-neg-
ative similarity of different type of cells. When the data 
is projected from high-dimensional space to low-dimen-
sional space, manifold graph regularization can maintain 
the inherent local geometry of the data. Therefore, we 
introduce the regularization of manifold graph into prob-
lem (8) to constrain the low-rank matrix H. The intro-
duction of manifold graph regularization can ensure the 
smoothness of the nonlinear manifold structure embed-
ded in the high-dimensional data. In addition, we relax 
the constraint X = XWH to minimize X − XWH . The 
mathematical model of our method is as follows:

Here, �·�F denotes the Frobenius norm, which is the 
square root of the sum of squares of all elements in a 
matrix. � , β are the penalty parameters. We refer to 
model (9) as Non-negative Low-rank Representation 
based on Dictionary Learning (DLNLRR). By optimally 
solving the DLNLRR model, we can obtain an LRR 
matrix H with r rows and n columns. We expect the LRR 
matrix H ∈ Rr×n to have a clear clustering structure, i.e., 
the r low-dimensional subspaces found correspond to r 
clusters. Thus, the element hij represents the projection 
of sample j on subspace i, and we can directly cluster the 
samples based on the maximum of each column vector 
in the LRR matrix. For example, if hij is the maximum 
value in the j-th column, sample j will be clustered into 
cluster i. So, we can obtain the clustering labels directly 
without resorting to other clustering algorithms, which 
avoids the influence of clustering methods on the cluster-
ing results and then improves the clustering performance 
of our method. Through the above analysis, we can see 
that the correct selection of the value of r is the key to the 
direct clustering of sample points. In Section ‘Selection 
of Dimension r’, we will discuss how to select the appro-
priate r value.

Optimization
The objective function of DLNLRR is a convex optimiza-
tion problem with multiple constraints. In this subsec-
tion, we use the penalty term adaptive linear alternating 
direction (LADMAP) method [26] to settle the matter 
defined by problem (9). Firstly, we introduce two auxil-
iary variables J and Z, problem (9) is rewritten as

(9)min
W ,H

1

2
�X − XWH�2F + ��H�∗ + βtr

(

HLHT
)

, s.t.WWT = I ,H ≥ 0.

(10)min
J ,Z,W ,H

1

2
�X − XZ�2F + ��J�∗ + βtr

(

HLHT
)

, s.t.Z = WH , J = H ,WWT = I ,H ≥ 0.
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Secondly, we introduce the augmented Lagrangian func-
tion to eliminate the linear constraints in problem (10). 
Therefore, problem (10) can be expressed as following:

where µ is a penalty parameter, Y1 and Y2 , are the 
Lagrange multipliers. Finally, we update J, Z, W and H 
sequentially using the alternating minimization strategy, 
that is, when you update one variable, keep the other var-
iables unchanged.

 Updating J
To update the variable J, according to problem (11), the 
subproblem with respect to J is converted to

It can be solved by soft-thresholding.

where sof t�,1/µ(·) represents the soft-thresholding 
operator [19]. And sof t�,1/µ(X) = UD�,1/µ(�)VT , 
X = U�VT . The element on the diagonal of matrix � is 
σii , D�,1/µ(�) = diag(max (σii − �/µ, 0)).

Updating Z
To update the variable Z, according to problem (11), the 
subproblem with respect to Z is as follows.

We differentiate our objective function with respect to Z, 
and then we set it to zero. We get

(11)
L
�
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2
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(15)Z =

(

2XTX + µI
)−1(

2XTX + µWH − Y1

)

.

 Updating W
Similarly, the subproblem with respect to W is as follows.

Problem (16) can be rewritten as

In order to solve W, let Q = Z +
Y1
µ

 , so the objective 
function of (17) is equivalent to the following formula:

Derivation of formula (18):

For (19), the Lagrangian function L is constructed using 
symmetric matrix multipliers of �.

Then,

T h u s , 
�T� = �TWTW� = HQTQHT = V�UTU�VT   , 
since � = �T , � = V�VT . From (21), the optimal W is 
given by the singular vectors:

where (U ,�,V ) is the SVD decomposition of QHT .

 Updating H
We update H by solving the following problems

By taking the derivative of the function with respect to H 
and setting it to zero, we find that the optimal solution H 
should satisfy

(16)min
W

⟨Y1,Z −WH⟩ +
�
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F
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T
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Problem (24) is looks like

where A ∈ Rm×m , B ∈ Rn×n and Q ∈ Rm×n are three 
given matrices, and X is a matrix to be solved. This is a 
standard Sylvester equation that has a unique solution for 
X if and only if no eigenvalue of A is the negative of an 
eigenvalue of B [27]. Thus, we directly use the lyap func-
tion in matlab to solve for H according to problem (24). 
After all variables are updated, these Lagrange multipli-
ers are updated by

The parameter µ is updated by µ = min (ρµ,µmax) , after 
all variables and multipliers have been updated [18]. The 
main procedure of DLNLRR is described in Algorithm 1.

Algorithm 1 The main procedure of DLNLRR.Framework 
for DLNLRR
In this subsection, we will describe the framework of 
DLNLRR. DLNLRR consists of two basic steps, includ-
ing low-rank matrix learning, downstream analysis. The 
framework of the DLNLRR algorithm is shown in Fig. 1. 
Given a scRNA-seq expression matrix, to reduce the tech-
nical noise in each scRNA-seq dataset, we first pre-process 
the data by gene filtering and median normalization. In the 
gene filtering, we remove bad genes expressed in less than 
or equal to two cells. In the median normalization, the raw 
read count is normalized by the size factor, followed by a 
log transformation log10(x + 1) . Then, the preprocessed 
data are input to the DLNLRR model. After continuous 
iterative solving, we obtain the LRR matrix H of the origi-
nal data matrix relative to the dictionary. As mentioned 
earlier, if the appropriate r value is selected, we can cluster 
the samples according to the maximum value of each col-
umn vector in the LRR matrix H to obtain the final cluster-
ing result. Finally, the t-SNE algorithm is used to visualize 
the LRR matrix H to validate the effectiveness of DLNLRR 
in learning cell-to-cell similarity from scRNA-seq data.

(25)AX + XB+ Q = 0,

(26)Y1 = Y1 + µ(Z −WH),

(27)Y2 = Y2 + µ(J −H).

Running time and memory usage
The DLNLRR method runs on PC with i5-10210U 
CPU @ 1.60GHz and 16.0G RAM. We tested the run-
ning time of the algorithm developed by the MATLAB 
on eight single cell datasets with different cell numbers. 
The actual running time of the algorithm is all the run-
ning steps of each method, including data preprocessing. 
Table 1 shows the actual computation time. We find that 
the running time of most algorithms increases with the 
increase of the number of samples. DLNLRR and sinN-
LRR are both LRR based methods, which run faster on 
single cell data and take less than 2 minutes on all eight 
data sets. Since the sinNLRR method does not carry out 
dictionary learning, its running time is faster. However, 
from clustering experiments, it is found that our method 
can obtain more accurate results. In addition, MPSSC is 
a multiple kernel based method that requires more run-
ning memory.

Results and discussion
scRNA‑seq datasets
We tested the DLNLRR method across eight scRNA-seq 
datasets generated by different platforms. We down-
loaded these data sets from databases provided by the 
National Biotechnology Information Retrieval Data-
base (NCBI) and the European Institute for Bioinfor-
matics (EMBL-EBI). Specifically, these datasets include 
Treutlein [28], Ting [29], Deng [30], Pollen [31], Goolam 
[32], Engel [33], Kolod [34], Darmanis [35]. The brief 
description of the eight scRNA-seq datasets is listed in 
Table 2. They are observed to vary in sample size from 80 
(Treutlein) to 704 (Kolod), and the number of cell clus-
ters ranges from 3 (Kolod) to 11 (Pollen).

Evaluation measurements
In this experiment, we used Normalized Mutual Informa-
tion (NMI) [36] and Adjusted Rand Index (ARI) [37, 38] 
to validate the performance of the proposed method. Both 
NMI and ARI can be used to compare the agreement of 
data distribution between clustering algorithm and real 
clustering labels. NMI is an evaluation standard to detect 
the degree of difference between two types of cluster-
ing results according to the relationship between joint 
entropy and individual entropy. NMI measures the mutual 
information between the obtained clustering labels and 
the truth labels, followed by a normalization operation to 
assure NMI ranges from 0 to 1.

Let M = {M1,M2, · · ·,MK } and N = {N1,N2, · · ·,NK } 
represent the known real cluster and the inferred cluster 
by some clustering method respectively. Mathematically, 
NMI is defined as:
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where H(·) represents the entropy of the cluster and 
MI(·, ·) represents the mutual information among cluster 
[39]. ARI is a kind of evaluation criterion to measure the 
consistency between real clusters M and inferred clusters 
N. Mathematically, it is defined as:

(28)NMI(M,N ) =
2MI(M,N )

H(M)+H(N )
,

(29)

ARI(M,N ) =

(

n

2

)

(

amn + a
)

−
[(

amn + am

)(

amn + an

)

+
(

an + a
)(

am + a
)]

(

n

2

)

−
[(

amn + am

)(

amn + an

)

+
(

an + a
)(

am + a
)]

,

whereamn represents the number of a pair of objects 
placed in the same group in M and N, am represents the 
number of pairs in the same group M but in the differ-
ent groups in N, an represents the number of pairs in the 
same group in N but in the different groups in M, a rep-
resents the number of objects in a pair that are placed in 
the different groups in M and N. The value range of NMI 
and ARI are [0,1]. In general, if the values of NMI and 
ARI are close to 1, it indicates that the clustering results 
are close to the real situation.

Selection of Dimension r
According to section ‘DLNLRR Method’, each column 
vector of the LRR matrix H ∈ Rr×n is a new representa-
tion of the original data set in the low-dimensional sub-
space. Each subspace found by DLNLRR corresponds to 
an actual cluster. Therefore, the selection of dimension r 
of LRR matrix H becomes the key of this method, which 
will affect the accuracy of clustering results. We choose 
the Ting dataset as an example to further verify the influ-
ence of different dimensions r on the learning low-rank 
matrix. To more intuitively demonstrate the learning 
ability of low rank matrix to subspace structure, we show 
the heatmap of 

∣

∣HTH
∣

∣ under different dimensions r in 
Fig.  2. In ideal state, 

∣

∣HTH
∣

∣ should have the clear block 
diagonal structure. The block structure presented by 

Fig. 1  The DLNLRR algorithm framework

Table 1  Running time

Methods Treutlein Ting Deng Pollen Goolam Engel4 Kolod Darmanis

SSC 4.64s 6.79s 6.25s 25.34s 21.83s 42.23s 174.33s 93.44s

SNN-Cliq 12.33s 22.67s 27.59s 42.34s 39.79s 82.47s 192.66s 78.26s

Corr 11.51s 289.67s 358.01s 1931.77s 976.91s 1023.76s 5733.45s 3352.41s

MPSSC 4.72s 4.51s 5.69s 7.12s 4.59s 4.75s 31.28s 11.94s

SinNLRR 0.63s 0.83s 0.89s 1.77s 0.79s 1.61s 25.02s 35.97s

DLNLRR 1.03s 2.04s 2.64s 7.42s 3.62s 7.09s 77.98s 32.58s

Table 2  The scRNA-seq datasets

Datasets Number 
of cells

Number of genes Cell types Species

Treutlein 80 959 5 Mus musculus

Ting 114 14405 5 Mus musculus

Deng 135 12548 7 Mus musculus

Pollen 249 14805 11 Homo sapiens

Goolam 124 40315 5 Mus musculus

Engel 203 23337 4 Homo sapiens

Kolod 704 10685 3 Mus musculus

Darmanis 420 22085 8 Homo sapiens
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the heat map of 
∣

∣HTH
∣

∣ reflects the clustering structure, 
i.e., the clearer the block diagonal structure is, the more 
desirable the clustering result is. If r is chosen appropri-
ately, the number of presented blocks should be consist-
ent with the number of the cell types. It can be seen from 
Fig.  2 that when r = 2 and r = 3 , 

∣

∣HTH
∣

∣ is divided into 
several blocks, but non-diagonal areas are also bright, 
even brighter than the diagonal area. This indicates that 
the value of r is not appropriate, and its value is lower 
than the real number of clusters, resulting in consider-
able similarity between different types of cells. Obvi-
ously, it is inappropriate to set r = 2 and r = 3 . When 
r = 4 , 

∣

∣HTH
∣

∣ has the clear block diagonal structure and 
is divided into five modules. However, the number of 
modules does not match the value of r. According to the 
previous discussion, subspace clustering can be realized 
directly based on H only when the value of r is consist-
ent with the number of clustering clusters. We note that 
when r = 5 , there is no significant difference compared 
with r = 4 , and the number of blocks does not increase. 
When r = 6 and r = 7 , the number of diagonal blocks is 
still 5. This indicates that the number of blocks does not 
increase with the increase of r. So, we can infer that the 
number of clusters is 5. In order to achieve direct clus-
tering, we choose the r value consistent with the number 
of diagonal blocks, that is, r = 5 . Therefore, in the Ting 
dataset, r is set to 5.

Parameter selection
This subsection analyzes the impact of parameters in 
DLNLRR on the clustering performance. According 
to formula (9), there are two parameters � and β in the 
DLNLRR model. We use grid search to find the most 
appropriate parameters on each dataset. We let the two 
parameters vary in the interval [ 10−5 , 102 ] and show the 
NMI on eight datasets in Fig. 3. From Fig. 3, it is found 
that except Pollen dataset, the other seven datasets with 
� in [ 10−1 ∼ 101 ] and β in [1 ∼ 10] can obtain satisfactory 
results. For Pollen dataset, we can obtain the best results 
when �= 100 , β = 10−3 . Then, through further search, 
we list the optimal parameters of each dataset in Table 3.

Clustering performance of DLNLRR
Cell clustering is one of the important tasks in the min-
ing and analysis of scRNA-seq data, and its main purpose 
is to distinguish cell types. In this subsection, to validate 
the clustering performance of DLNLRR, DLNLRR and 
several most advanced single-cell data clustering meth-
ods are applied to cluster cells on eight real scRNA-seq 
datasets described in Table 2. Specifically, the compared 
methods include SSC [10],SIMLR [12], SC3 [13], SNN-
Cliq [11], Corr [15], MPSSC [14], SinNLRR [16], ScLCA 
[40], Seurat [41], CIDR [42], RaceID [43], Spectrum [44], 
and SHARP [45],respectively. The procedures for the 
above comparison methods can be found in the scRNA 

Fig. 2  The heatmaps of 
∣

∣H
T
H
∣

∣ on Ting dataset
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Fig. 3  Influence of parameters � and β on NMI
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tool database [46, 47]. We used NMI and ARI introduced 
in Section ‘Evaluation measurements’ to evaluate the per-
formance of the clustering method. Table  4 shows the 
specific ARI values of the above methods.To reflect the 
overall clustering performance of each clustering method 
on all data sets, we show the experimental results of SSC, 
SIMLR, SC3, SNN-Cliq, Corr, MPSSC, SinNLRR and 
DLNLRR in the form of Box-plot in Fig. 4.

Firstly, it can be seen from Table  4 that although our 
method does not achieve the best results on all data sets, 
DLNLRR has achieved ARI values greater than 50% on 
all data sets and the highest average value, indicating its 
robustness. In addition, no other method can obtain the 
highest ARI value on more than two datasets.

Secondly,we can see from Fig.  4 that the position of 
the box generated by our method is relatively high com-
pared with other methods. In addition, we can find that 
the median line of DLNLRR is the highest of all methods. 
This indicates that our method has the best overall per-
formance on all datasets. And, the compactness of the 

box in Box-plot shows the stability of the performance of 
the method. As can be seen from Fig. 4A, the boxes for 
SC3, Corr, SinNLRR and DLNLRR are relatively compact. 
This shows that the performance of these four methods 
is relatively stable. Similar results can be found for ARI 
in Fig. 4B. Summarizing the above analysis, we can con-
clude that DLNLRR is stable and efficient in scRNA-seq 
data clustering. In addition, we further compare our 
method with SinNLRR. Because our method and SinN-
LRR are both based on LRR model. The main difference 
between the two methods is that the SinNLRR method 
directly uses the original data as a fixed dictionary, while 
DLNLRR uses the linear combination of the original 
data as the dictionary to update the dictionary in itera-
tions. As can be seen from Fig.  4, our method is supe-
rior to SinNLRR in NMI and ARI value. Compared with 
the average performance of SinNLRR, the average NMI 
and ARI of our method are increased by 0.119 and 0.061, 
respectively. We can infer that updating the dictionary in 
the optimization process instead of using the predefined 
fixed dictionary can more accurately learn the structural 
information in the data and improve the clustering per-
formance of single-cell data.

Visualization and gene markers
Visualization analysis
Visualizing scRNA-seq data in low-dimensional space is 
a powerful way to pre-identify cell subpopulations. Pre-
vious studies proposed an improved t-distributed Sto-
chastic Neighbor Embedding (t-SNE) for dimensionality 
reduction and visualization of data to verify the perfor-
mance of the learned similarity matrix [48]. In this sub-
section, to investigate the performance of DLNLRR in 

Table 3  The optimal parameters on each dataset

Datasets parameter � parameter β

Treutlein 100.6 7

Ting 10−1 1

Deng 101 7

Pollen 100 10−3

Goolam 100 8

Engel 100.8 7

Kolod 100.8 6

Darmanis 100.8 7

Table 4  The percentage of specific ARI values of clustering methods

methods Treutlein Ting Deng Pollen Goolam Engel Kolod Darmanis Average

SSC 52.42 97.84 38.04 92.92 44.41 52.02 49.30 52.02 59.87

SIMLR 51.14 98.03 45.65 94.15 29.91 66.82 89.60 39.82 64.39

SC3 70.56 100.00 42.21 90.45 68.74 75.70 93.06 74.46 76.89

SNN-Cliq 26.13 55.37 54.26 35.24 20.46 13.52 3.12 1.53 26.20

Corr 59.19 63.02 47.53 75.53 30.46 43.77 69.2 61.83 56.32

MPSSC 61.17 97.84 47.83 93.28 40.20 48.21 83.06 45.93 64.69

SinNLRR 64.19 89.43 47.06 90.51 90.97 65.33 72.91 60.57 72.62

ScLCA 71.57 44.95 36.27 87.29 49.14 26.38 83.40 81.76 60.09

Seurat 62.50 75.63 54.96 82.32 58.21 70.87 72.32 88.30 70.63

CIDR 93.29 - 43.01 81.39 - 18.52 - 89.77 65.19

RaceID 69.62 - 52.09 83.83 - 49.66 - 50.78 61.19

Spectrum 42.23 56.78 31.34 89.24 52.00 09.10 43.27 36.46 45.05

SHARP 71.39 82.08 64.42 42.12 93.87 69.99 84.42 94.88 75.39

DLNLRR 84.20 100.00 51.84 93.52 98.08 79.01 97.62 72.14 84.55
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Fig. 4  Various methods on eight datasets of NMI and ARI

Fig. 5  Visualization results for t-SNE, MPSSC, SinNLRR, and DLNLRR
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learning intercellular similarity from original scRNA-seq 
data, we input the low-rank matrix learned by DLNLRR 
into t-SNE to visualize scRNA-seq data. We shown the 
visualization results of t-SNE, MPSSC, SinNLRR and 
DLNLRR on Ting dataset and Pollen dataset in Fig. 5. In 
Fig.  5, dots with the same color indicate that they have 
the same cell type. Among the four methods, t-SNE visu-
alizes the data directly based on the original single-cell 
expression data, while for MPSSC, SinNLRR and DLN-
LRR method, the data is visualized based on the obtained 
similarity matrix. Therefore, we first compare t-SNE with 
MPSSC, SinNLRR and DLNLRR. As can be seen from 
Fig.  5, in the visualization of t-SNE, the cells of vari-
ous cell types are mixed and cannot be well separated, 
whether on Ting or Pollen. Compared with t-SNE, the 
cells of different cell types can be clearly separated in the 
visualization of MPSSC, SinNLRR and DLNLRR. This 
indicates that the similarity matrix learned by MPSSC, 
SinNLRR and DLNLRR can better reflect the structural 
information of data points in low-dimensional subspace. 
Secondly, we compare DLNLRR with MPSSC and SinN-
LRR. From Fig.  5A, we can find that, compared with 
SinNLRR and MPSSC, the visualization of DLNLRR can 
better reflect the distribution law in the data. Specifically, 
in the visualization of DLNLRR on Ting dataset, the cells 
of the same type are highly aggregated, while the cells of 
different types are clearly distinguishable. This shows that 
the learning dictionary in DLNLRR is conducive to grasp 
the subspace structure of high-dimensional data. Finally, 
we would like to further explain the visualization of DLN-
LRR on Pollen dataset. As shown in Fig. 5B, for the Pollen 
dataset of 11 clusters, no method can completely sepa-
rate the clusters. Compared with t-SNE and MPSSC, the 
DLNLRR method shows less overlap and compact-ness. 
Compared with SinNLRR, the DLNLRR method shows 
better distinguish ability between different types of data.

Gene markers
Gene marker prioritization has attracted extensive atten-
tion since it was proposed. Gene markers have rich in 
biological information, which helps to distinguish cell 
subpopulations and reveals the complexity of cells. In 
this subsection, we identify the gene markers for each 
cell type in the Darmanis dataset based on the learned 
low-rank matrix. First, Bootstrap Laplacian scoring [12] 
is performed on the low-rank matrix to extract its gene 
markers. Then, the gene markers are arranged in de-
scending order according to their importance in iden-
tify-ing subsets of cells. The top 10 gene markers in the 
Damanis dataset are shown in Fig.  6. In Fig.  6, we use 
the depth of color to express their expression level. The 
darker the color is, the higher the expression level is. 
The size of the circle indicates the percentage of genes 
expressed in each cell. The Darmanis dataset contains 
420 brain cells from fetuses and adults. They included 16 
microglia, 18 oligodendrocyte progenitor cells (OPC), 20 
endothelial cells, 25 fetal replating neurons, 38 oligoden-
drocytes, 62 astrocytes, 110 fetal quiescent neurons, and 
131 neurons [35]. In Fig. 6, the MAP1B, TUBA1A genes 
get trapped in the development of fetal quiescent neu-
rons and become important components of cell survival 
and differentiation [49, 50]. Furthermore, MAP1B gene 
over-expression is also connected with neuronal activa-
tion. The SLC1A2, SLC1A3, AQP4, GLUL and SPARCL1 
genes have been confirmed to be highly expressed in 
astrocytes, and their mutations or mutations are often 
closely related to various diseases [16, 51, 52]. PLP12, 
CLDND1 and TMEM144 genes are stably expressed in 
the myelin of oligodendrocytes [53]. The protein encoded 
by PLP12 may play important roles in myelin compac-
tion, stabilization and maintenance, and promote oligo-
dendrocyte development and axon survival. The protein 
encoded by AQP4 is the main aquaporin in the brain and 

Fig. 6  The top 10 gene markers in Darmanis datasets. Gene names are plotted on the X-axis and cell types on the Y-axis
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plays a key role in cerebral hydro homeostasis. Articles 
published confirm PLP12 and AQP4 were astrocytes and 
oligodendrocytes marker genes [54].

Conclusions
The development of scRNA-seq and high-throughput 
technologies has facilitated the exploration of single-cell 
function and brings computational challenges to reveal 
the relationship between cell lineages. Cell clustering and 
extraction of gene markers are important research com-
ponents of analyzing scRNA-seq data. In this paper, we 
propose the DLNLRR method for scRNA-seq data analy-
sis. Inspired by the idea of CF, DLNLRR uses the linear 
combination of original data to construct the diction-
ary. Instead of using the predefined dictionary, DLNLRR 
can update the dictionary in the iterative solution pro-
cess, which is helpful to obtain the mapping benchmark 
that can better represent the subspace, and then obtain 
the subspace structure of data accurately. In addition, in 
the DLNLRR model, we can cluster the samples directly 
based on the LRR matrix, which can avoid the influ-
ence of spectral clustering algorithms on the clustering 
results.A large number of experiments in this paper show 
that DLNLRR can capture local structures in the data, 
and can quickly and accurately obtain clustering results, 
which has advantages in cell type recognition.

However, our method still has some limitations. More 
comprehensive experiments and analysis are needed. Our 
method has only been tested on real single cell sequenc-
ing datasets, and has not verified whether it is effective 
on other datasets or large-scale datasets. In addition, our 
method requires preset parameters, which may affect the 
performance of the method. The scRNA-seq data analy-
sis still faces some challenges, such as the identification 
of cluster numbers, the inde-pendent selection of appro-
priate parameters, etc. In the next work, we will continue 
to explore adaptive parameter selection methods and 
the application of LRR on the scRNA-seq datasets, and 
pay attention to the development of ensemble clustering 
technology for scRNA-seq data analysis.
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