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Abstract 

Background:  So far, a lot of binning approaches have been intensively developed for untangling metagenome-
assembled genomes (MAGs) and evaluated by two main strategies. The strategy by comparison to known genomes 
prevails over the other strategy by using single-copy genes. However, there is still no dataset with all known genomes 
for a real (not simulated) bacterial consortium yet.

Results:  Here, we continue investigating the real bacterial consortium F1RT enriched and sequenced by us previ-
ously, considering the high possibility to unearth all MAGs, due to its low complexity. The improved F1RT metagen-
ome reassembled by metaSPAdes here utilizes about 98.62% of reads, and a series of analyses for the remaining reads 
suggests that the possibility of containing other low-abundance organisms in F1RT is greatly low, demonstrating that 
almost all MAGs are successfully assembled. Then, 4 isolates are obtained and individually sequenced. Based on the 4 
isolate genomes and the entire metagenome, an elaborate pipeline is then in-house developed to construct all F1RT 
MAGs. A series of assessments extensively prove the high reliability of the herein reconstruction. Next, our findings 
further show that this dataset harbors several properties challenging for binning and thus is suitable to compare 
advanced binning tools available now or benchmark novel binners. Using this dataset, 8 advanced binning algorithms 
are assessed, giving useful insights for developing novel approaches. In addition, compared with our previous study, 
two novel MAGs termed FC8 and FC9 are discovered here, and 7 MAGs are solidly unearthed for species without any 
available genomes.

Conclusion:  To our knowledge, it is the first time to construct a dataset with almost all known MAGs for a not 
simulated consortium. We hope that this dataset will be used as a routine toolkit to complement mock datasets for 
evaluating binning methods to further facilitate binning and metagenomic studies in the future.
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Background
Thanks to technological advancements, the shift from 
gene-centric [1, 2] to genome-centric studies [3–7] was 
possible, and this has facilitated deepening the under-
standing of the functional capacity, evolution trend, 
ecological role, and composition structure of the micro-
bial communities. However, assembling individual 
genomes directly from metagenomes is extremely chal-
lenging, possibly due to (but not limited to) the coex-
istence of intragenomic or intergenomic repeats. To 
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address this problem, binning, the process to aggregate 
unassembled reads or assemblies into individual or 
population genomes, has been proposed and exempli-
fied by several documented studies [3–9]. Meanwhile, 
an increasing number of binning tools have been inten-
sively developed [10].

For assessing binning performance regarding com-
pleteness and purity, two types of datasets are generally 
used. One is a mock dataset with all known genomes, 
which can be established through in silico simulation of 
sequencing reads [11–14], in silico combination of ran-
domly-selected reads sequenced from isolate genomes 
[15], or ab  initio sequencing of synthetic consortiums 
comprising genome-sequenced strains [16, 17]. The 
other is a dataset sequenced from a real (not simulated) 
consortium with a negligible fraction or even no known 
genomes. Correspondingly, there are two main strategies 
for evaluating binning performance, the former relying 
on reference to known genomes and the latter with reli-
ance on the conserved or lineage-specific essential single-
copy genes (SCGs), such as CheckM [18]. In general, the 
latter is less than ideal, compared with the former, due to 
both the uneven distribution of SCGs across a genome 
and their low number, typically accounting for < 10% of 
all genes [19]. Accordingly, the former is preferred for 
mock datasets, while the latter is indispensably used for 
the dataset of real consortiums. For example, Alneberg 
et al. assessed binning performance by using the former 
for mock datasets and the latter for real datasets [20]. If 
the dataset for a real consortium has all known genomes, 
the former can be leveraged to achieve a complete and 
accurate assessment of binning tools. However, to our 
knowledge, no datasets with all known genomes for all 
components in not simulated consortiums have been 
established so far.

F1RT, a real (not simulated) bacterial consortium 
enriched in the laboratory and in-depth described pre-
viously by us, is dramatically simple [only 7 components 
(species) found in the previous study including both 
high- and low-abundance ones] [21], providing an oppor-
tunity to uncover all its metagenome-assemble genomes 
(MAGs) to construct the first dataset with all known 
genomes for a real consortium. If so, F1RT can function 
as a thoroughly independent, and in-depth benchmark of 
binning tools. In this context, F1RT becomes the focal in 
this study.

Here, we isolated 4 components from F1RT and found 
that these isolates, fortunately, separated the remaining 
except for FC8-9 based on sequencing coverage. There-
fore, an elaborate in-house pipeline was developed to 
obtain almost all its MAGs. A series of assessments fur-
ther confirmed that these MAGs are outstandingly reli-
able. Subsequently, we found that F1RT is suitable to 

function as a benchmark, due to several properties suit-
able for assessing the mainstream binning tools available. 
Finally, as a test, we used these MAGs to benchmark 8 
advanced stand-alone binning tools and found that 
almost all of them poorly bin a simple metagenome even 
like F1RT, indicating that there is room to improve bin-
ning. We envisage that this dataset will become a useful 
benchmark in complementing mock datasets for evalu-
ating binning methods and further facilitate binning and 
metagenomic studies in the future.

Results
Reassembling the F1RT metagenome for almost all 
components
The herein research object F1RT had been deeply 
sequenced by Illumina technology with a size of 12.8 Gb 
raw metagenomic reads. Such deep sequencing yielded a 
broad range of sequencing depth from ~ 1015× for FC1 
to ~ 16× for FC7 (see Table 1 in [21]). As previous stud-
ies showed that metaSPAdes is the best among the well-
known assemblers [22–24], metaSPAdes was utilized to 
de novo reassemble the F1RT metagenome. A total of 
31.65  Mb was de novo reassembled into 3,852 scaffolds 
(≥ 500  bp) by using the assembler metaSPAdes (version 
v3.15.4; default parameters) [25], accounting for about 
98.62% of reads, which was calculated via mapping 
against all edge connections in the output file “assem-
bly_graph.fastg” of metaSPAdes. Further tracking found 
that all edges are included in the final 3,852 scaffolds, 
demonstrating that all 98.62% of mapped reads originate 
from the components assembled here rather than others 
unassembled.

For the remaining reads, we performed the additional 
analyses as follows. First, our analysis by using the kmer-
freq software [26] showed that approximately 97.11% of 
the unmapped reads were possibly sequencing errors, 
due to harboring 15-mers with ≤ 2 frequencies under 
such deep sequencing, leaving only 23,992 (~ 0.04% of 
total reads) unmapped reads with relatively high quality. 
Second, we assembled all unmapped reads to see whether 
there were other low-abundance organisms and found 
that only a total of 46,736 bp for 62 scaffolds (≥ 500 bp) 
was assembled, with a low N50 and maximum scaf-
fold size of 731 bp and 2,015 bp respectively. It is worth 
pointing out that the complexity is greatly reduced from 
the total reads to the unmapped reads considering the 
complex nature of metagenomes with the coexistence of 
intragenomic or intergenomic repeats, which may gener-
ate some additional assemblies, some of which may be 
artificial due to excluding other reads. However, even 
under this simplified condition, the total size of assem-
blies is still greatly small, possibly indicating there are no 
low-abundance organisms in F1RT. Third, we mapped 
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all the initially unmapped reads against the 62 scaffolds 
and found that 17,966 read pairs can be concordantly 
mapped back to their scaffolds. Further checking found 
that the 62 scaffolds used 8111 of the 23,992 high-qual-
ity (> 2 frequencies) reads as well as 9855 of the 806,187 
low-quality (≤ 2 frequencies) reads, showing that the 
high-quality reads were used more significantly than the 
low-quality reads (P < 2.2e-16, the chi-squared test) for 
assembly, possibly indicating that the majority of low-
quality initially unmapped reads are prone to sequencing 
errors and thereby cannot be successfully assembled even 
under this simplified condition. Fourth, although the 62 
scaffolds may be with low credibility, we still performed 
alignment to explore their possible origins and found 
that 55 of them were successfully mapped to the F1RT 
metagenome reassembled here (Additional file  1), sup-
porting that these scaffolds may originate from the com-
ponents assembled here. For the remaining 7 scaffolds, 
we additionally BLASTed them against the nucleotide 
sequence database in the National Center for Biotechnol-
ogy Information (NCBI) and found only 2 scaffolds were 
credibly (≥ 0.9 alignment fraction, AF) aligned, both of 
which are from the phylum Firmicutes. Further analysis 
showed that the mapping ratios of the initially unmapped 
reads against the references are only about 0.0272% and 
0.0059% respectively (Additional file  2: Table  S1), indi-
cating that the 2 scaffolds are possibly not from the two 
references. For the remaining 5 unaligned scaffolds, they 
total only 3059 bp, possibly indicating there are not from 
the other low-abundance bacteria, as it is greatly impos-
sible to assemble a such draft genome with a small size 
under so deep sequencing. Also, these 5 unaligned scaf-
folds may be greatly impossible from phages, as phages 
may have multiple copies in one cell and thereby should 
have high sequencing coverage. Therefore, all these 
results indicate that the possibility of containing other 

low-abundance organisms in F1RT is dramatically low, 
although we cannot completely exclude this possibil-
ity. However, all these results at least responsibly dem-
onstrated that almost all F1RT MAGs were successfully 
assembled. As most of the binners use assemblies instead 
of reads for binning, directly using the entire F1RT 
metagenome reassembled here, without considering 
whether no low-abundance organisms exist, does not 
affect binning benchmarking below. Besides, all reads 
instead of just the mapped reads can be directly used to 
calculate sequencing coverage for all scaffolds via map-
ping them against the entire F1RT metagenome. How-
ever, we also deposited only all mapped reads at https://​
github.​com/​Yizhu​angzh​ou/​F1RT  for users to accelerate 
mapping for convenience.

Using MetaGeneMark (version 3.38) [27], 31,775 genes 
(≥ 100  bp) had been totally predicted. All high-quality 
reads and original assemblies reused in this study were 
downloaded from the GigaScience database (http://​
gigadb.​org/​datas​et/​100049 ). For more details, please 
refer to our published study [21].

Isolating, sequencing, and assembling 4 components
For the application of the binning assessment by refer-
ence to known genome assignments, almost all MAGs of 
F1RT should be constructed. So, we used serial dilution, 
plating, and repetitive subculturing to isolate its compo-
nents and then determined colonies as axenic cultures 
by 16 S rRNA amplification and sequencing. Fortunately, 
we isolated 4 components in this study. Results from 16 S 
rRNA sequencing confirmed that these isolates are FC2-
3, FC5 and FC7 respectively. Then, we performed genome 
sequencing at a sequencing depth of > 32 for them (Addi-
tional file 2: Table S2), ensuring de novo assembling them 
into draft genomes with high completeness ( > ~ 99.36%). 

Table 1  Species delineation for all components. FC2 and FC3 were delineated as Clostridium straminisolvens and Brevibacillus 
borstelensis respectively. Thus, these two genomes were used as references for the two components for reconstruction validation by 
TETRA, while the closest relatives were used as references for other components for reconstruction validation by TETRA​

a  genomes sieved by FRAGTE; ANI average nucleotide identity, AF Alignment fraction, Sp. species, NA not applicable

Sp. # genomesa Most closely related species ANI (%) AF (%)

FC1 7 Clostridium clariflavum 4-2a (GCA_000519985.1) 89.24 1.77

FC2 21 Clostridium straminisolvens JCM 21531 (GCA_000521465.1) 95.47 96.77

FC3 8 Brevibacillus borstelensis 3096-7 (GCA_000612185.1) 99.40 95.80

FC4 15 Sedimentibacter sp. B4 (GCA_000309315.1) 86.25 0.06

FC5 298 Clostridium sp. L74 (GCA_001276215.1) 91.88 74.93

FC6 0 NA NA NA

FC7 313 Clostridium colicanis DSM 13634 (GCA_001593985.1) 84.56 0.16

FC8 2 uncultured Blautia sp. (GCA_900066235.1) 71.04 0.16

FC9 4  Atribacteria bacterium SCGC AAA255-E04 (GCA_000398465.1)  0.00 0.00

https://github.com/Yizhuangzhou/F1RT
https://github.com/Yizhuangzhou/F1RT
http://gigadb.org/dataset/100049
http://gigadb.org/dataset/100049
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All basic information about the assembled isolate 
genomes is tabulated in Additional file 2: Table S2.

Reconstructing MAGs for all components
The general workflow is presented in Additional file  2: 
Fig. S1. It is noteworthy that all 4 isolates have > ~ 99.36% 
of assembly completeness (Additional file  2: Table  S2), 
indicating that we could obtain their MAGs through 
individual genome alignment against the entire metage-
nome. By using the NUCmer tool (step 1, Additional 
file 2: Fig. S1) [28], we obtained alignment for each iso-
late (Additional files 3, 4, 5 and 6). It was observed that 
the vast majority of AFs are ≥ 90% (Additional file 2: Fig. 
S2), suggesting high credibility for their deduced rela-
tionships. Thus, scaffolds with AFs of ≥ 90% were pref-
erentially untangled (step 2, Additional file 2: Fig. S1). All 
scaffolds were found to be individually mapped to one 
isolate genome and thus unambiguously deconvoluted, 
comprising the primary MAGs for the 4 isolates. Based 
on the primary MAGs, their sequencing coverage ranges 
at the whole-genome level were determined (Fig. 1 A and 
B). It is worth pointing out that one scaffold (indicated 
in red) harbors extremely high sequencing coverage (see 
Additional file 2: Fig. S10D below) possibly due to plas-
mid sequence (see Additional file 2: Table S5 below) and 
was thus excluded to determine the sequencing coverage 
upper bound for FC7.

The unaligned scaffolds are nearly pure for uncul-
tured components for the following two reasons. One is 
> ~ 99.36% of assembly completeness for the 4 isolates 
(Additional file  2: Table  S2). The other is that genome 
is more readily assembled for isolate than for metage-
nome, due to the complex nature of metagenome. We 
analyzed the sequencing coverage for all unaligned scaf-
folds reassembled by metaSPAdes and unfortunately 
found that there was no distinct separation (Additional 
file 2: Fig. S3). However, when using the unaligned scaf-
folds assembled by SOAPdenovo in the previous study 
[21], there are 4 distinct peaks (Fig. 1C), except for FC6 
and FC8-9 (as indicated by two components below) 
with a minute fraction of overlappings (range of 20–22). 
It was shown that the majority of unaligned scaffolds 
uniquely assembled by metaSPAdes have < 20 or > 760 
sequencing coverage (Additional file 7), and only need 
to extend the coverage range of FC1 to 12,858 without 
changing the coverage range for other components. By 
this means, 4 sequencing coverage ranges at the whole-
genome level were determined (Fig.  1C), although 
sequencing coverage variations within FC1 and FC4 
seem relatively large (~ 10×). As sequencing cover-
age follows a Poisson distribution [29], deep sequenc-
ing of 12.8 Gb reads for only 9 strains may result in 
larger intragenomic sequencing coverage variations for 

high-abundance FC1 and FC4 than for low-abundance 
FC5-9, demonstrated by the similar ~ 10× of intragen-
omic sequencing coverage variations for isolates FC2-
3. In summary, the sequencing coverage ranges for all 
components were determined (Fig. 1B).

Unaligned scaffolds within only one sequenc-
ing coverage range were unambiguously untangled 
(step 3, Additional file  2: Fig. S1), comprising the pri-
mary MAGs for uncultured components. Once MAGs 
had been primed, models of all components could be 
trained. Based on the trained primary MAGs of FC6 
and FC8-9, 2 scaffolds within the range of 20–22 were 
separated into FC6 by the Naïve Bayesian Classifier 
(4-nt motif ) [30, 31], as tetranucleotide difference is 
generally larger between genomes than that within 
genomes [32].

Next, the scaffolds with < 90% AFs were deconvoluted 
(step 4, Additional file  2: Fig. S1). Scaffolds within only 
one sequencing coverage range were explicitly recov-
ered into their MAGs, including 1 for FC4 and 3 for FC6, 
while the others were further untangled by using the 
naïve Bayesian classifier (4-nt motif ) based on primary 
MAGs determined above [30]. A scaffold was flagged for 
a certain isolate if this isolate possessed the highest pos-
terior probability, and meanwhile contained an alignment 
against this scaffold. Otherwise, scaffolds were deter-
mined to be from uncultivated species with a maximal 
posterior probability.

Our further SCG analysis showed that FC8-9 have 
two components, indicated by 54 SCGs with 2 copies 
and 2 SCGs with 3 copies (Additional file 8). FC8-9 have 
overlapping sequencing coverage and thus cannot be 
separated based on sequencing coverage. However, we, 
fortunately, found that the scaffolds harboring SCGs with 
> 1 copies are separated by using the posterior probabil-
ity cutoff of -1350 determined by using the Naïve Bayes-
ian Classifier with trained FC2 MAG (Additional file  2: 
Fig. S4). Similar patterns were found by using the trained 
FC3, FC5, or FC7 MAG (data not shown). Then, the 
primed SCG scaffolds were used as models to separate all 
scaffolds of FC8-9 (step 5, Additional file 2: Fig. S1).

Taken together, in this way (Additional file 2: Fig. S1), 
we reconstructed MAGs for almost all components. 
Statistics in terms of total numbers and total base pairs 
of untangled scaffolds in steps 1–4 are shown for both 
isolates (Additional file  2: Fig. S5) and uncultured com-
ponents (Additional file  2: Fig. S6). Besides, it is worth 
stressing that two additional MAGs (hereafter termed 
FC8 and FC9) were strikingly discovered in this study, 
compared with the original study [21]. This finding 
explains the high redundancy of the original FC7 [21], 
as the original FC7 substantially contains three species 
(herein termed FC7, FC8, and FC9).
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Reconstruction validation based on SCGs
The vast majority of metagenomic scaffolds for 4 iso-
lates were reliably untangled by comparison to isolate 

genomes with high credibility of ≥ 90% AFs (Additional 
file 2: Fig. S5), indeed requiring no additional validation. 
However, for comprehensive and solid validation on all 

Fig. 1  Sequencing coverage ranges determined for all F1RT components. A Distribution of scaffold-level sequencing coverage for each isolate. 
Red, scaffold with abnormally high sequencing coverage; scaffolds shown here are assembled by metaSPAdes. B Determined sequencing coverage 
ranges for all components. C Histogram showing the distribution of scaffold-level sequencing coverage for unaligned scaffolds assembled by 
SOAPdenovo. top, for all unaligned scaffolds; bottom, enlarged for unaligned scaffolds with average sequencing coverage < 100. Shown here is the 
average sequencing coverage across a whole scaffold
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uncultured MAGs even under the more complicated 
condition with isolates than without isolates, all MAGs 
were chosen to validate together.

We first validated reconstruction based on the 107 
SCGs [33], which were previously applied to assess bin-
ning completeness and purity [34, 35]. A total of 907 
SCGs were identified in the entire metagenome and then 
aggregated into scaffold level to identify 300 SCG-bear-
ing scaffolds. By using these scaffolds, reconstruction was 
validated from the three following aspects independently.

First, validation based on sequencing coverage showed 
that SCG-bearing scaffolds of the isolates separate all 
counterparts of uncultured organisms (Fig. 2), supporting 
that the above deduction of sequencing coverage ranges 
is reliable (Fig. 1C). Besides, the sequencing coverages for 
these scaffolds are gradually decreased from FC1 to FC9, 
indicating the high authenticity of our reconstruction.

Second, taxonomic analysis was used based on the logic 
that SCGs originating from the same genome should be 
taxonomically concordant [36]. A total of 21,124 selected 
references (for details, see Methods) were used to search 
for their closest relatives. The reference with the highest 
SCG-based average amino acid identity (AAI) (termed 
SCG AAI) was determined as the closest relative (Addi-
tional file 2: Table S3). Then, we performed alignment of 
SCGs between each MAG and all closest relatives and 
found that for almost all components except for FC1, the 
SCG AAI distance between the closest relative and the 
reference with the second highest SCG AAI is very large 
(> 10.98) (Additional file 2: Fig. S7), while the SCG AAI 
distance for FC1 is only 1.12. It was reported that FC1 is 
a strain possibly from Clostridium sp. FG4 (16  S rRNA 
identity 99.3%) or Clostridium thermosuccinogenes (16 S 
rRNA identity 99.1%) [21]. However, genomes for these 
two strains are unavailable yet. Therefore, both closest 
relatives for FC1 (Clostridium josui JCM 17,888) and FC2 
(Clostridium sp. Bc-iso-3) (Additional file  2: Table  S3) 
were jointly employed to count the number of best hits 
for FC1. We found that almost all (> 95.18%) SCGs are 
taxonomically concordant (Fig.  3A), manifested by the 
fact that almost all best hits are concurrently from one 
close relative for FC2-9 or the combination of C. josui 
JCM 17,888 and C. sp. Bc-iso-3 for FC1 (Additional file 2: 
Fig. S8). Further analysis showed that 100% of FC2 SCGs 
are concurrently and significantly more similar to SCGs 
of C. sp. Bc-iso-3 than those for FC1 SCGs (Fig.  3B), 
implying low or even no contamination for FC1 and FC2.

Third, validation based on the single-copy charac-
teristic showed that MAGs were reconstructed to the 
theoretical limit of contamination, as almost all SCGs 
with > 1 copy except for PF00162.12 and PF01025.12 for 
FC8-9 are true duplication rather than contamination 
(Fig.  3C and Additional file  9). As all components are 

from the phylum Firmicutes (Additional file 2: Table S3), 
we further analyzed all 27,565 Firmicutes genomes and 
showed that almost all SCGs with > 1 copies except 
for TIGR00442 are veritably frequent with > 1 copies 
(median 0.52 for the percentage of genomes with > 1 
copies) (Additional file 2: Fig. S9A). However, it is worth 
pointing out that only 4.73% of analyzed Firmicutes 
genomes are complete (Additional file  2: Fig. S9B) and 
about half of them harbor < 107 SCGs (Additional file 2: 
Fig. S9C), meaning that the possibility to be multiple may 
be underestimated here. Taken together, an assessment 
based on SCGs strongly indicated that our reconstruc-
tion is very reliable.

Reconstruction validation based on the whole‑genome 
sequencing coverage
As conserved essential SCGs are located in a restricted 
part of a genome, validation based on SCG scaffolds esti-
mates the reconstruction roughly. For elaborate valida-
tion, we extended SCG-bearing scaffolds to the whole 
MAGs. Next, we verified the MAG reconstruction based 
on sequencing coverage at the whole genome level. To 
alleviate scaffold size-induced unevenness, the cover-
age used here was calculated by using a fixed window 
of 500  bp with 250  bp overlap, while the above analy-
ses (Figs.  1 and 2) were based on the average coverage 
across a whole scaffold. Our logic was that an idealized 
MAG should have only one main peak for sequencing 
coverage and MAG failing this condition probably indi-
cates somehow contamination. Our results showed that 
both isolates (Additional file 2: Fig. S10) and uncultivated 
components (Additional file 2: Fig. S11) individually have 
only one main peak, providing evidence that our recon-
struction is very confident.

Reconstruction validation based on the whole‑genome 
nucleotide composition
It has been extensively reported that intragenomic oligo-
nucleotide composition is generally more homogenous 
than intergenomic one [32, 37, 38]. Consequently, oli-
gonucleotide composition was applied for reconstruc-
tion validation. Here, tetranucleotide frequencies were 
used as oligonucleotide composition considering its 
great balance between distinguishing ability and com-
puting cost [39]. Besides, we previously found that the 
TETRA method could represent other statistic meth-
ods for tetranucleotide frequency [39] and thus TETRA 
was employed in this study. Reconstruction reliability is 
assessed by classification accuracy by TETRA. We found 
that ~ 86.79% for FC1 to ~ 98.90% for FC8 were cor-
rectly classified back into their MAGs with a total high 
93.72% of classification accuracy (Fig.  4), proving that a 
vast fraction of scaffolds was correctly reconstructed. For 
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comparison, we further performed an identical analysis 
for their references (Additional file 2: Table S4), including 
two species-level references for FC2 and FC3 (Table  1, 
see below) and six close relatives based on SCG AAI for 
FC1 and FC4-9 without species-level references (Addi-
tional file 2: Table S3). We found that classification accu-
racies for MAGs are even larger than those for references 
for all except for two isolates FC2 and FC6 (Fig. 4), yield-
ing a larger total classification accuracy for MAGs than 

that for references. These results demonstrated that our 
reconstruction is pretty authentic. Besides, it has been 
reported that the oligonucleotide composition of closely 
related organisms is more similar than that of distantly 
related organisms [40], namely that a larger portion 
of fragments may be inherently misclassified between 
closely related organisms than between distantly related 
species. Expectedly, detailed tracking showed that a large 
fraction of fragments is substantially misclassified into 

Fig. 2  Reconstruction validation based on sequencing coverage of SCGs. A Sequencing coverage distribution for F1RT components FC1-4. 
B Sequencing coverage distribution for F1RT components FC5-9. Shown here is the average sequencing coverage across a whole scaffold
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closely related organisms. For example, ~ 9.79% of FC1 
fragments were incorrectly classified into FC2 (Addi-
tional file 2: Fig. S12A), which is most closely related to 
FC1 (Additional file  2: Fig. S13A). Similar results were 
obtained for corresponding references (Additional 
file 2: Fig. S12B and Fig. S13B). These results imply that 

reconstruction reliability may be underestimated here. In 
addition, it is worth pointing out that the classification 
accuracy for FC2 MAG is slightly lower than that for its 
reference, while although the classification accuracy for 
FC6 MAG is relatively lower than that for its reference, 
its accuracy is still high (~ 93.36%) (Fig. 4).

Fig. 3  Reconstruction validation based on taxonomic annotation and single-copy feature of SCGs. A Percentage of SCGs which are best hits 
to close relatives. Red, the genome of Clostridium sp. Bc-iso-3 (GCA_001717745.1) used both for FC1 and FC2. B FC2 SCGs are more similar to 
counterparts of the close relative Clostridium sp. Bc-iso-3 than FC1 ones. The black line represents a straight-line y = x plot; P-value, paired Wilcoxon 
signed rank test. For reference genomes, see Additional file 2: Table S3. C Validation based on the single-copy feature. The number in the cell is the 
amount of a certain SCG and is used as a basis for color intensity. Red, for isolate
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Properties suitable for benchmarking binning
Genome completeness, which was roughly assessed as 
the number of SCGs divided by 107 owing to about half 
of Firmicutes having 107 SCGs (Additional file  2: Fig. 
S9C), ranges from 60.75 to 100% (Fig. 5A), supplying an 
opportunity to assess binning performance for samples 
with a broad range of assembly completeness. It is worth 
stressing that a binned genome with low completeness 
may result from relatively low abundance rather than 
bad binning, such as FC8-9 here. In this context, for bin-
ning evaluation, the strategy by comparison to known 
genomes outperforms the strategy with reliance on 
SCGs. Besides, the relative abundances vary substantially, 
including ~ 45.96% for dominant taxa FC1 and even < 1% 
for rare components FC7-9 (Fig. 5B), providing a possi-
bility to benchmark binners for both high- and low-abun-
dance organisms.

Collectively, three main discriminative characteristics 
underlie the binning tools, including reference (known) 
genomes, sequencing coverage (abundance), and sequence 
composition. The relatively outdated binners leverage one 
of them alone [32, 41–44], while the state-of-the-art binners 
at present leverage two or more characteristics together 
[12, 20, 45–52]. Here, we independently investigated them 

to see whether this dataset can be well binned by using one 
of them alone.

For known genomes, our results showed that only 
FC2 and FC3 possess species-level references (Table  1), 
according to the ~ 95% average nucleotide identity (ANI) 
threshold for species delineation [53]. As a result, it is 
impossible to deconvolute the whole metagenome by 
merely using reference genomes, in line with the condi-
tion for most metagenomic studies with a paucity of ref-
erence genomes.

For sequencing coverage, we found that it was impos-
sible to separate any MAGs (Fig.  5C), if not using any 
other information such as isolates in this study. In addi-
tion, we observed that there is a small portion of scaffolds 
with abnormally high sequencing coverage (Fig.  5C), 
greatly challenging for binners (For reasons, see Discus-
sion below). In contrast, datasets generated through in 
silico simulating sequencing reads possibly have no such 
characteristics.

For sequence composition, binning accuracy is low 
for short scaffolds (< 10  kb) [32, 54]. It is worth point-
ing out that short scaffolds are differently defined from 
other studies. For example, CONCOCT and MetaBAT2 
defined < 1-2.5  kb sequences as short scaffolds [20, 47], 

Fig. 4  Reconstruction validation based on the whole MAG composition by TETRA. For references, please refer to Additional file 2: Table S4
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as < 1 kb sequences are unable to accurately capture spe-
cies-specific composition and coverage patterns. This 
difference is possibly because these binners use sequenc-
ing coverage together with composition to improve bin-
ning. We discovered that the vast majority of scaffolds are 
< 10 kb for FC8-9 (Fig. 5D), posing a substantial challenge 
to binners solely based on composition. Furthermore, we 
found that still a fraction of long scaffolds (≥ 10  kb) are 

misclassified (Fig. 5E), even under the condition using the 
whole above-reconstructed MAGs (for details, see Meth-
ods), which yield higher classification accuracy than under 
the condition by using individual scaffolds during the bin-
ning period when their whole MAGs are indeed unknown 
[54]. Besides, it was reported that the naïve Bayesian 
classifier is suitable to classify short scaffolds with even 
< 1000  bp [30], although it has not been successfully 

Fig. 5  Properties with suitability as a benchmark. A Genome completeness. Genome completeness is the number of kinds of SCGs divided by 
107. B Abundance for each component. C Sequencing coverage distribution for each component. boxed, abnormally high sequencing coverage. 
D Length distribution for scaffolds. E Classification accuracy for long scaffolds. The classification was run by comparing the TETRA values based on 
the whole reconstructed MAGs. F Classification accuracy for short scaffolds. The classification was run by using the naïve Bayesian classifier with 
training the whole reconstructed MAGs
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integrated into binning methods yet. Here, we explored 
whether short scaffolds can be correctly classified with 
the naïve Bayesian classifier based on the trained whole 
MAGs (for details, see Methods) and found that the bin-
ning accuracies for short scaffolds are only ~ 25.20-92.98% 
(Fig. 5F), also showing challenging for binning.

Together, these findings indicated that F1RT albeit sim-
ple is amazingly challenging for binners based on one 
characteristic alone, requiring state-of-the-art binners 
which leverage several characteristics [12, 20, 45–52]. 
Thus, the dataset constructed here is a pretty good bench-
mark to compare all binners including mainstream bin-
ners available now or assess new binners leveraging several 
characteristics.

Evaluating metagenomic binners with the constructed 
dataset
Ensemble binning tools can be separated into two 
classes: (1) the stand-alone binners such as MaxBin [12] 
and CONCOCT [20]; (2) the binners refining results of 
other binners, such as GraphBin [55], GraphBin2 [56], 
METAMVGL [57] and MetaWRAP [58]. Here, we used 

this constructed dataset to assess the 8 aforementioned 
first-class stand-alone binners (for details, see Meth-
ods). MetaBAT2 achieved the highest overall precision 
(99.63%), followed by MaxBin and MaxBin2 with compa-
rably good precision (Fig.  6A). Nonetheless, MetaBAT2 
showed relatively low sensitivity of 79.55% (Fig.  6B), 
while MaxBin and MaxBin2 produced a higher sensi-
tivity of 96.51% and 92.86% respectively. Accordingly, 
MaxBin, followed by MaxBin2 and MyCC, generated 
the best aggregate binning performance, as indicated 
by F-scores (Fig.  6C). In addition, MaxBin, MaxBin2 
and CONCOCT recovered almost all (> 99%) scaffolds 
(≥ 500 bp) (Fig. 6D), while MetaBAT2 recovered a rela-
tively lower fraction (92.88%), implying that MetaBAT2 
may only bin scaffolds with high accuracies to generate 
the highest precision (Fig.  6A), as MetaBAT2 does not 
bin < 2.5  kb scaffolds [47, 59]. It is worth pointing out 
that CONCOCT yielded the lowest precision to achieve 
the minimal F-score. However, it may be a fair compari-
son for CONCOCT if multiple (usually > 50) samples are 
used [20]. It is also worth noting that the performance 
of MetaBAT2 was severely impaired without multiple 

Fig. 6  Binning performance of 8 binners on F1RT dataset. A Overall precision; B, overall sensitivity; C overall F-score; D overall percentage of 
recovered base pairs. Dashed line, gold standard
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samples [47]. Also, BinSanity, SolidBin, and COCACOLA 
met the obstacle to yield an F-score of > 90%, although 
they were developed later than MaxBin. Besides, we 
found that only MaxBin and MyCC recovered the correct 
number of 9 bins (Fig.  7), while SolidBin only correctly 
yielded 7 bins with one additional incorrect bin. Other 
methods split MAGs into multiple bins to yield large bin 
numbers. Together, MaxBin performed best on the F1RT 
dataset constructed here.

Discussion
Possible reasons for abnormally high sequencing coverage
Our results showed that some scaffolds harbor abnor-
mally higher sequencing coverage than other scaffolds 
in their MAGs (Figs. 1 and 5C, and Additional file 2: Fig. 
S10 and S11). For explanation, we performed the follow-
ing additional analysis and obtained some clues. First, 
we found no significant difference in mapping qualities 
for scaffolds with abnormally high sequencing coverage 
compared to scaffolds with normal sequencing cover-
age (Additional file 2: Fig. S14), indicating that mapping 
quality is not the main reason for F1RT. The decreased 
mapping quality may result from randomly low-quality 
sequencing, which may be nonselective for any scaf-
folds in the same MAG, explaining the above observa-
tion. As duplicated reads generated by PCR amplification 
before sequencing or during the period of next-genera-
tion sequencing like Illumina sequencing used here may 

generate high sequencing coverage, we next explored 
this possibility and expectedly found that some scaffolds 
with high sequencing coverage indeed have relatively 
higher duplication than normal ones (Additional file  2: 
Fig. S15), possibly accounting for their higher sequencing 
coverage. As plasmids may have multiple copies in cells 
to generate higher sequencing coverage than chromo-
some sequences, we then performed alignments between 
plasmid sequences and scaffolds with high sequencing 
coverage and found that some are possibly from plas-
mids (Additional file  2: Table  S5). Finally, our results 
showed that some scaffolds with high sequencing cover-
age are shorter than normal ones (Additional file 2: Fig. 
S16), indicating that they may localize at intragenomic or 
intergenomic regions, as repeats are difficult to be assem-
bled. However, the exact reasons underlying abnormally 
high sequencing coverage for some scaffolds remain 
unknown yet, and whether existing other reasons awaits 
further research.

Implication for future investigation on microflora
Despite great progress in culture technologies [60], 
uncultivability for the overwhelming majority of bacteria 
remains a major challenge yet. However, some compo-
nent species could be isolated elaborately in pure cul-
ture. Sequencing the obtained monospecific colony will 
provide a fraction of isolate genomes, which in return 
efficiently reduces the complexity of the original target 

Fig. 7  The number of bins for 8 binners on the F1RT dataset. Correct bins, clusters satisfying max
i
(max

j
Rij) (see Methods for details); other bins, 

clusters not satisfying max
i
(max

j
Rij) ; dashed line, gold standard of 9 components
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metagenome. Here, we demonstrate an effective strat-
egy, namely that subtracting isolate genomes from the 
entire genome could untangle genomes for uncultured 
organisms. However, although pure cultures maybe not 
be easily obtained in some conditions, simplified mixed 
cultures may be roughly obtained. Miniature microflora 
will provide mini-metagenome, which in return similarly 
reduces the complexity of the original target metagen-
ome to facilitate binning [61]. Therefore, it is evident that 
a combination of culturing regardless of pure culture or 
simplified mixed culture and classical metagenomics will 
increase the quality and quantity of genomes recovered.

Using F1RT as a benchmark of single metagenome
Combining multiple samples for binning increases the 
dimensionality of sequencing coverage to improve bin-
ning [35, 62]. However, it also possesses several limita-
tions. First, components, which are unique to one sample 
[63], will not necessitate multiple-sample sequencing. 
Second, it incurs high sequencing costs. Third, it requires 
elevated computational resources to co-assemble reads 
from multiple samples. Forth, the co-assembly required 
for multi-sample algorithms diminishes the strain-level 
microdiversity [35], which may be indispensable for 
functional investigation [64]. Therefore, in these circum-
stances, single metagenomes necessitate maximizing 
usable information. As F1RT is a single metagenome, it 
can serve as a particularly helpful toolkit for the realis-
tic assessment of performance on single-sample metage-
nomes for binning methods and exploring whether 
available methods make full use of leveraging informa-
tion without requiring additional samples. Besides, we 
should point out that if a tool works well on F1RT, it 
could potentially work well on complex metagenomes 
(because this cannot be guaranteed every time, especially 
if the metagenome has closely related strains with simi-
lar abundance). However, a tool, which yields low perfor-
mance on F1RT, is surely not good enough and requires 
further improvement.

Insights from the benchmarking of 8 binning tools
Almost all mainstream binners available now use an 
ensemble of sequence composition and sequencing cov-
erage (including both single and multiple samples) for 
binning. MaxBin2, albeit using the multiple-sample 
abundances, performed slightly less accuracy than Max-
Bin (Figs. 6C and 7), implying that MaxBin2 makes poor 
use of single sequencing coverage. Therefore, we reason 
those tools using multiple-sample abundances should 
primarily make full use of single-sample abundance. 
Besides, some tools developed recently apply some addi-
tional information. For example, COCACOLA uses pair-
end read linkage [50]; SolidBin applies co-alignment 

information including must-link and cannot-link con-
straints [51]. However, our findings showed that SolidBin 
and COCACOLA obtained lower F-scores than MaxBin 
(Fig. 6C) and yielded incorrect bin numbers (Fig. 7), indi-
cating that they make poor use of sequence composition 
and sequencing coverage or poorly combine additional 
information with the basis of sequence composition and 
sequencing coverage. Therefore, novel tools should first 
make full use of sequence composition and sequencing 
coverage as a base and then integrate other information 
such as co-alignment information, pair-end read linkage, 
SCGs, assembly graphs [65], and DNA methylation [66] 
to further improve binning, or assembly graphs [55, 56] 
and a combination of assembly and paired-end graphs 
[57] to further refine binning of initial binners such as 
MaxBin2 [56, 57].

The significance of the application of F1RT MAGs
When developing a novel algorithm, reiterative assess-
ment regarding the strengths and limitations and accord-
ingly improvement/optimization is required. Hence, 
a simple dataset with < 10 species is greatly beneficial 
and convenient, as it can reduce the runtime for each 
test. Thus, F1RT is an ideal investigative model, due to 
its embracing only 9 components. In addition, the data-
set constructed here is the first dataset with all known 
genomes for a real consortium. Compared with simu-
lated datasets, this dataset provides some distinct char-
acteristics challenging for binning. For example, a minute 
fraction of scaffolds with abnormally high sequencing 
coverage and low completeness for some components 
like FC8-9 here were found in F1RT. Therefore, a dataset 
like F1RT is indispensable.

Lots of advanced algorithms incorporate SCG infor-
mation to improve binning, albeit with a slight usage dif-
ference. For example, COCACOLA [50], MaxBin [12], 
and SolidBin [51] use SCGs to estimate the initialized 
bin number; MyCC [48] and MetaWatt [41] use SCGs 
to determine which clusters should be merged or split 
after a round of clustering; Autometa uses SCGs to guide 
clustering [67]; MetaBinner uses SCGs for k-means ini-
tialization [68]. In this scenario, using SCGs for binning 
assessment may be unreasonable and unfair. As an alter-
native, F1RT could be used to evaluate these methods 
owing to known genomes for all components. Accord-
ingly, F1RT can complement simulated datasets like 
CAMI datasets [13, 14] to complete a full assessment for 
all binning tools.

According to the above discussion, F1RT can be 
used as a benchmark for binning tools like MaxBin 
based on a single metagenome. As tools based on mul-
tiple metagenomes have evolved from the tools based 
on single metagenome [35] and single sequencing 
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coverage is the base for developing multiple-metage-
nome-based tools, F1RT can be used as a benchmark 
to assess whether they make full use of single metage-
nome. In all, as a thoroughly independent and in-depth 
benchmark, we envisage that this dataset will become 
a standard dataset for comparison and improvement of 
binning methods in the future.

Conclusion
Here, through isolating 4 components and then using 
the in-house developed pipeline to construct almost all 
genomes with 4 isolates and the whole metagenome, 
we present the first dataset with known genomes for 
almost all components in a real bacterial consortium 
F1RT. Besides, compared with the original study, two 
novel components termed FC8 and FC9 in this study 
are discovered and 7 reliable genomes for species with-
out available genomes are obtained. This dataset has 
several features suitable for binning benchmarking and 
has wide applications including (i) benchmarking each 
round of improvement when developing novel tools 
owing to its low complexity; (ii) comparing state-of-
the-art tools available as an independent benchmark; 
(iii) as a base for exploring whether tools make full 
use of single-sample sequencing coverage to develop 
robust tools and (iv) assessing tools with the integra-
tion of SCGs for binning. Besides, this study demon-
strates an effective strategy via combining culturing 
and classical metagenomics for uncovering uncultured 
genomes. Finally, this study provides useful insights for 
developing more promising tools. In all, this dataset 
will become a standard dataset for binning assessment 
on a real consortium and facilitate metagenomics in 
the future.

Methods
Isolation, growth conditions of F1RT isolates
Pure cultures were obtained from single colonies by 
iterative subcultivation on the plates and identified by 
analyzing 16  S rRNA gene sequences. FC2 was puta-
tively determined to be Clostridium straminisolvens 
(16 S rRNA identity 99.6%) according to the 16 S rRNA 
identity threshold of 98.65% [69]. Thus, FC2 was isolated 
and cultured at 50 ℃ in DMSZ medium 122 in anaerobic 
conditions according to the previous study [70]. Besides, 
FC3 was isolated and cultivated in DMSZ medium 1 for 
DSM 6347 at 37 ℃ in aerobic conditions; FC5 and FC7 
were isolated and cultivated in DMSZ medium 122 and 
DMSZ medium 1 for DSM 6347 respectively at 37 ℃ in 
anaerobic conditions.

Genome sequencing and assembly of F1RT isolates
DNA was extracted based on the CTAB method. Illu-
mina DNA PCR-free libraries with an insert size of 
~ 500  bp were constructed for all 4 isolates according 
to the manufacturer’s instructions. Besides, a library 
with an insert size of ~ 2000  bp was additionally pre-
pared for FC2. DNA manipulations, including the 
preparation of single-molecule arrays, cluster growth, 
and paired-end sequencing, were performed using an 
Illumina HiSeq 2000 sequencer according to standard 
protocols. The Illumina base-calling pipeline (version 
HCS1.4/RTA1.12) was used to process the raw fluo-
rescent images and call sequences. Raw reads of low 
quality (those with three consecutive bases with qual-
ity ≤ Q20) were discarded before assembly. High-qual-
ity reads were assembled using the genome assembler 
SOAPdenovo2 with default parameters [71].

Comparison of isolate genome and metagenome
The NUCmer tool (version 3.23) [72] was utilized to per-
form genomic alignment against the whole metagenome 
for each isolate genome (-maxmatch). Then, the utility 
delta-filter was employed to filter NUCmer output (-q –r 
–l 200), and the show-coords utility was used to generate 
the aligned coordinates (-c –l –r –T). Finally, a custom 
Perl script in-house was used to calculate AFs.

Sequencing coverage determination
High-quality reads retrieved from the original report 
(http://​gigadb.​org/​datas​et/​100049 ) were mapped back 
onto the F1RT metagenomic scaffolds to determine cov-
erage with SOAPaligner (v. 2.21) [73] by allowing at most 
two mismatches in the first 35-bp seed region and 90% 
of identity over the whole read. Subsequently, base cov-
erage was calculated by SOAPcoverage (v. 2.7.7). It was 
shown that the sequencing coverage at both ends of each 
scaffold is slightly lower than in other regions. To obviate 
the effect of scaffold ends, both ends of 100 bp were dis-
carded. Then the average coverage across the whole scaf-
fold was computed to represent the sequencing coverage 
of this scaffold. For drawing Fig. S10 and Fig. 11 in Addi-
tional file 2, the sequencing coverage was calculated from 
5’ to 3’ end with a window of 500 bp and sliding at 250 bp.

Determination of scaffolds by the naïve bayesian classifier
For scaffolds with multiple possible origins during the 
MAG reconstruction period (Additional file  2: Fig. 
S1), the naïve Bayesian classifier (4-nt motif ) [30] was 
applied. Briefly, the primed MAGs were trained. Then, 

http://gigadb.org/dataset/100049
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each scaffold was classified into MAG with the highest 
posterior probability.

Identification of essential SCGs
A set of 107 Hidden Markov Models for SCGs [33] 
deposited in either TIGRFAMs [74] or Pfam librar-
ies [75] were searched against the protein sequences of 
F1RT using HMMER3 with the default settings, except 
the trusted cutoff was used (-cut_tc). When one gene had 
multiple SCG annotations, only the one with a minimum 
e-value was assigned.

Collection of reference genomes for SCG taxonomic 
analysis
All 83,075 prokaryotic genomes were downloaded from 
the NCBI database. To filter out low-coverage genomes, 
37 draft genomes with a summed length < 0.5 megabase 
pairs were discarded. Then based on the List of Prokar-
yotic names with Standing in Nomenclature database, 
68,261 genomes were determined for 5680 named spe-
cies. The remaining 15,444 genomes were directly as ref-
erence genomes. For each named species, one type strain 
(if available) or the largest genome was selected as the 
reference. In total, 21,124 genomes were used as refer-
ences for SCG taxonomic analysis.

Reconstruction validation by taxonomic analysis of SCGs
SCGs were identified for the resulting 21,214 refer-
ences. SCGs in MAGs were then BLASTPed against the 
SCG database with a maximum e-value cutoff of 1e-5 
and the resulting identities were transferred into pro-
tein-length-weighted sequence identities. Then, SCG 
AAI was calculated for each MAG. To ensure high con-
fidence, > 95% SCGs should be mapped between the 
compared genomes. The close relatives with the highest 
SCG AAIs were thus found (Additional file 2: Table S3). 
Best hits from close relatives were counted to validate 
reconstruction.

Reconstruction validation by the single‑copy characteristic 
of SCGs
Our results showed that all components are from the 
phylum Firmicutes (Additional file  2: Table  S3). Thus, 
all 27,565 Firmicutes genomes downloaded from NCBI 
were subject to SCG identification. Then, the number of 
genomes with > 1 copy of each SCG was independently 
counted. Also, the assembly statuses and the number of 
SCGs across a genome were counted. All were tabulated 
in Additional file 2: Fig. S9.

Reconstruction validation by TETRA​
For each MAG, all its scaffolds were sorted decreas-
ingly according to their sequencing coverage and then 

concatenated directly. Subsequently, all MAGs were 
shredded into consecutive 10-kb fragments with 5-kb 
overlap. For each fragment, 9 TETRA values against all 
MAGs were calculated according to the previous stud-
ies [32, 39, 54] and the MAG with the highest TETRA 
value was assigned for this fragment. The percentage of 
fragments correctly classified back into their own MAGs 
was counted to indicate the reconstruction performance. 
Also, an identical analysis was performed for their refer-
ences listed in Additional file 2: Table S4.

Species delineation for F1RT MAGs
The FRAGTE method [54] was used to sieve closely 
related genome pairs from 9 × 21,124 pairs for species 
delineation. Then we calculated ANIs for all sieved pairs 
by using the NUCmer tool (version 3.23) according to the 
previous study [53]. MAG with an ANI of > ~ 95% was 
delineated at the species level, according to the ANI cut-
off determined previously [53].

Classification of short scaffolds by the naïve bayesian 
classifier
Short (< 10  kb) scaffolds were classified by the naïve 
Bayesian classifier (4-nt motif ) [30]. Briefly, the whole 
MAGs were trained. Then, each short scaffold was clas-
sified into MAG with the highest posterior probabil-
ity. The percentage of scaffolds classified back into their 
own MAGs was counted to indicate the classification 
accuracy.

Binning benchmarking on the herein constructed dataset
Hybrid methods, which at least jointly leverage both 
sequence composition and sequencing coverage, are the 
most advanced. F1RT has only 3,852 scaffolds, while 
Vamb requires > 50,000 sequences for binning [76]. 
Therefore, Vamb was not benchmarked in this study. 
Also considering that F1RT is a single metagenome, algo-
rithms such as GroopM [49] and MetaBMF [77] requir-
ing multiple samples were excluded. This rationale led 
us to focus on the 8 first-class stand-alone binning tools 
without human-augmented refining, including Max-
Bin (v.1.4.5) [12], MaxBin2 (v. 2.2.7) [46], MetaBAT2 (v. 
2.12.1) [47], CONCOCT (v.0.4.0) [20], MyCC (v.1.0) [48], 
Binsanity (v.0.5.4) [52], COCACOLA (v. 1.0) [50] and 
SolidBin (v.1.2) [51]. Here, Binsanity used the mode of 
Binsanity-lc comprising of binsanity and binsanity-refine, 
and SolidBin used the mode of SolidBin-naive. All used 
the default parameters except for the minimal length of 
500 if allowed.

Evaluation metrics
Assume there are N genomes in the dataset, which were 
assigned into M bins, and Sij indicates the total sequences 
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(in terms of base pairs) belonging to genome j appear in 
cluster i. If one bin has ≥ 2 assigned species, only the spe-
cies with the largest number of sequences are kept for 
this bin and denoted as maxSij

j

 ; if one genome is assigned 

into ≥ 2 bins, only the bin with the largest number of 
sequences is kept for this genome and denoted as maxSij

i

 . 

Furthermore, if ≥ 2 bins are assigned to one common 
species, the bin with the largest number of sequences for 
this species is denoted as max

i
(max

j
Rij) . Then only bins 

satisfying max
i

(max
j

Rij) are considered correct bins, while 

others are considered incorrect bins. The overall preci-
sion and sensitivity, as in the previous studies [12, 48], 
were calculated as follows:

F-score, which indicates the overall binning perfor-
mance via weighting both overall precision and sensitiv-
ity, was calculated as follows:
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MAG: Metagenome-assembled genome; SCG: Single-copy gene; AAI: Average 
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Additional file 1.   Coordinates for nucleotide-based alignments 
between scaffolds assembled by unmapped reads and F1RT metagen-
ome scaffolds (F1RT) reassembled by metaSPAdes.

Additional file 2.  Figure S1. A schematic flow chart for untangling 
MAGs for almost all F1RT components. Steps including genome-wide 
alignment by NUCmer (step 1), determination of primary MAGs for isolates 
(step 2) and for uncultivated components (step 3), assignment of contigs 
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with <90% AF to obtain final MAGs for all components except for FC8-9 
(step 4) and separation of FC8-9 by using the Naïve Bayesian Classi-
fier (4-nt motif ) are shown. MAGs, metagenome-assembled genomes; 
AF, alignment fraction; PP, posteriori probability. Figure S2. Alignment 
fraction distribution of aligned scaffolds for each isolate. Dashed line, the 
alignment fraction threshold of 90% for scaffold assignment with high 
confidence. Figure S3. The distribution of scaffold-level sequencing 
coverage for all unaligned scaffolds assembled by metaSPAdes. Figure S4. 
The distribution of posteriori probabilities for FC8-9 SCG scaffolds based 
on FC2 MAG. Only the SCG scaffolds harboring SCGs with >1 copiesare 
shown here. Posteriori probability was calculated by using the Naïve 
Bayesian Classifier (4-nt motif ). Figure S5. Reconstruction statistics for 
isolates. A and B, for FC2 in terms of scaffold number and base pair (bp) 
respectively; C and D, for FC3 in terms of scaffold number and bp respec-
tively; E and F, for FC5 in terms of scaffold number and bp respectively; 
G and H, for FC7 in terms of scaffold number and bp respectively. Figure 
S6. Reconstruction statistics for uncultured components. A and B, for 
FC1 in terms of scaffold number and base pair (bp) respectively; C and D, 
for FC4 in terms of scaffold number and bp respectively; E and F, for FC6 
interms of scaffold number and bp respectively; G and H, for FC8 in terms 
of scaffold number and bp respectively; I and J, for FC9 in terms of scaffold 
number and bp respectively. Figure S7. The average amino-acid identity 
distance between the closest relative and the reference with the second 
highest SCG AAI for each component. The solid line indicates the distance. 
For the closest relatives, please refer to Additional file 2: Table S3. Figure 
S8. The heatmap showing the amino-acid identities for SCGs of all com-
ponents. The reference in red, the closest relative for all components or an 
additional second closest relative for FC1. For the closest relatives, please 
refer to Additional file 2: Table S3. Figure S9. Statistics of all Firmicutes 
SCGs. A, percentage of genomes with >1 copies; B, assembly status for 
all Firmicutes genomes; C, number distribution of SCGs for all Firmicutes 
genomes. The data were from all 27,565 Firmicutes genomes. Red, SCG 
with >1 copies in at least one F1RT MAG; dashed line, the median for 
percentage of genomes with >1 copies at 0.52. Figure S10. The sequenc-
ing coverage distribution for isolates. A, for FC2; B, for FC3; C, for FC5; D, for 
FC7. Sequencing coverage is calculated using a fixed window of 500 bp 
with 250 bp overlap. Figure S11. The sequencing coverage distribution 
for uncultivated components. A, for FC1; B, for FC4; C, for FC6; D, for FC8; 
E for FC9. Sequencing coverage is calculated using a fixed window of 
500 bp with 250 bp overlap. Figure 12. Classification statistics of 10-kb 
fragmentsfor all F1RT MAGs or their reference genomes. A, for F1RT MAGs; 
B for F1RT reference genomes. The number in a cell is the fraction (%) 
of fragments classified into their corresponding organism and used as a 
basis for color intensity. The 10-kb fragments are produced via dividing 
(pre-concatenated) MAGs or reference genomes. For references, please 
refer to Additional file 2: Table S4. Figure 13. Phylogenetic relationships 
for F1RT MAGs and their reference genomes. A, for F1RT MAGs; B, for refer-
ence genomes. Phylogenetic relationships were determined on the basis 
of the average amino acid identity for SCGs. For references, please refer to 
Additional file 2: Table S4. Figure 14. Mapping qualities for scaffolds with 
abnormally high or normal sequencing coverage. A, for FC1; B, for FC2; 
C, for FC3; D, for FC4; E, for FC5; F, for FC6; G, for FC7; H, for FC8; I, for FC9. 
MAPQ, mapping quality. Figure 15. Statistics of duplicated reads mapped 
to scaffolds with abnormally high or normal sequencing coverage. A, for 
FC1; B, for FC2; C, for FC3; D, for FC4; E, for FC5; F, for FC6; G, for FC7; H, for 
FC8; I, for FC9. Duplication is calculated as the total alignments divided by 
the alignments after removing duplication by using “samtools markdup 
-r”. Figure 16. Size statistics of scaffolds with abnormally high or normal 
sequencing coverage. A, for FC1; B, for FC2; C, for FC3; D, for FC4; E, for 
FC5; F, for FC6; G, for FC7; H, for FC8; I, for FC9. Table S1. Mapping sum-
mary and the read mapping ratios for the references of the two scaffolds. 
Table S2. The genomic statistics of F1RT isolates. Table S3. The close 
relatives of all F1RT components. Table S4. Reference genomes of all F1RT 
components for TETRA analysis. Table S5. Alignments between scaffolds 
with abnormally high sequencing coverage and plasmid sequences.

Additional file 3.  Coordinates for nucleotide-based alignments 
between scaffolds from the FC2 isolate genome and scaffolds from the 
F1RT metagenome assembled by metaSPAdes.

https://doi.org/10.1186/s12864-022-08967-x
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Additional file 4.  Coordinates for nucleotide-based alignments 
between scaffolds from the FC3 isolate genome and scaffolds from the 
F1RT metagenome assembled by metaSPAdes.

Additional file 5.  Coordinates for nucleotide-based alignments 
between scaffolds from the FC5 isolate genome and scaffolds from the 
F1RT metagenome assembled by metaSPAdes.

Additional file 6.  Coordinates for nucleotide-based alignments 
between scaffolds from the FC7 isolate genome and scaffolds from the 
F1RT metagenome assembled by metaSPAdes.

Additional file 7.  Sequencing coverage for scaffolds uniquely assem-
bled by metaSPAdes.

Additional file 8.  SCG scaffolds and their sequencing coverage for 
FC8-9.

Additional file 9.  SCG scaffolds, their origins and sequencing coverage. 
Number in brackets, sequencing coverage across a whole scaffold.
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