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Abstract 

Background:  The implementation of whole genome sequencing (WGS) by PulseNet, the molecular subtyping net-
work for foodborne diseases, has transformed surveillance, outbreak detection, and public health laboratory practices 
in the United States. In 2017, the New Hampshire Public Health Laboratories, a member of PulseNet, commenced the 
use of WGS in tracking foodborne pathogens across the state. We present some of the initial results of New Hamp-
shire’s initiative to transition to WGS in tracking Salmonella enterica, a bacterial pathogen that is responsible for non-
typhoidal foodborne infections and enteric fever. We characterize the population structure and evolutionary history of 
394 genomes of isolates recovered from human clinical cases in New Hampshire from 2017 to 2020.

Results:  The New Hampshire S. enterica population is phylogenetically diverse, consisting of 78 sequence types (ST) 
and 67 serotypes. Six lineages dominate the population: ST 11 serotype Enteritidis, ST 19 Typhimurium, ST 32 Infantis, 
ST 118 Newport, ST 22 Braenderup, and ST 26 Thompson. Each lineage is derived from long ancestral branches in the 
phylogeny, suggesting their extended presence in the region and recent clonal expansion. We detected 61 genes 
associated with resistance to 14 antimicrobial classes. Of these, unique genes of five antimicrobial classes (aminocou-
marins, aminoglycosides, fluoroquinolones, nitroimidazoles, and peptides) were detected in all genomes. Rather than 
a single clone carrying multiple resistance genes expanding in the state, we found multiple lineages carrying different 
combinations of independently acquired resistance determinants. We estimate the time to the most recent common 
ancestor of the predominant lineage ST 11 serotype Enteritidis (126 genomes) to be 1965 (95% highest posterior 
density intervals: 1927–1982). Its population size expanded until 1978, followed by a population decline until 1990. 
This lineage has been expanding since then. Comparison with genomes from other states reveal lack of geographical 
clustering indicative of long-distance dissemination.

Conclusions:  WGS studies of standing pathogen diversity provide critical insights into the population and evolution-
ary dynamics of lineages and antimicrobial resistance, which can be translated to effective public health action and 
decision-making. We highlight the need to strengthen efforts to implement WGS-based surveillance and genomic 
data analyses in state public health laboratories.
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Background
The implementation of whole genome sequencing 
(WGS) by public health laboratories is a transformative 
and significant advance in epidemiology, food safety and 
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public health. Established in 1996, PulseNet (National 
Molecular Subtyping Network for Foodborne Disease 
Surveillance) is a collaborative effort among state, local, 
and food regulatory public health laboratories across the 
United States to quickly detect clusters of disease cases 
and link potential food and/or environmental sources [1]. 
PulseNet has transitioned to implementing standardized 
methods in WGS workflows, from DNA extraction, DNA 
library preparation and sequencing to data processing 
and storage across member laboratories. WGS provides 
superior discriminatory power to characterize genetic 
variants over the previous method of pulse-field gel elec-
trophoresis (PFGE), and is therefore certainly valuable 
for disease surveillance, source attribution, and outbreak 
detection. Genome sequences are publicly shared in real 
time; hence, data from PulseNet also benefit researchers 
and scientists who carry out further analyses to under-
stand the biology of foodborne pathogens. In particular, 
WGS studies of standing pathogen diversity will provide 
critical insights into the population and evolutionary 
dynamics that explain the co-circulation of distinct line-
ages, thus providing a more nuanced picture of the bur-
den of foodborne infections at the local level.

Salmonella enterica is a ubiquitous human and animal 
pathogen that causes substantial economic losses and 
major public health concerns worldwide [2]. It contains 
over 2600 recognized serotypes that can be divided into 
typhoidal and non-typhoidal serotypes, each charac-
terized by unique epidemiological and ecological char-
acteristics [3]. Non-typhoidal Salmonella is frequently 
associated with diarrheal illness or self-limiting gastro-
enteritis in humans around the world [3, 4]. Most peo-
ple recover without specific treatment. However, in some 
cases, particularly in children, elderly and immunocom-
promised individuals, the associated dehydration can 
become severe and life-threatening [2]. Global estimates 
suggest 197 million cases of infection and 84,799 deaths 
annually from non-typhoidal S. enterica in 2016 [5]. Non-
typhoidal S. enterica can also cause invasive diseases that 
have higher case fatality than is seen with non-invasive 
infections [6]. S. enterica that cause typhoid and paraty-
phoid fevers is reported to cause 135,900 deaths globally 
in 2017 [7].

Antimicrobial resistance remains a serious challenge 
in the treatment and control of S. enterica infections. 
Multidrug-resistant strains are linked to more severe dis-
ease outcomes [8] and can be passed on along the food 
chain, from production to consumption [9]. In their 2019 
Antimicrobial Resistance Report, the Centers for Dis-
ease Control and Prevention (CDC) classified antimicro-
bial resistant typhoidal and non-typhoidal S. enterica as 
serious threats that require systematic surveillance and 
prompt and sustained action [10].

Here, we aim to characterize the population structure 
and evolutionary history of 394 S. enterica genomes from 
isolates recovered from human clinical cases in New 
Hampshire, USA from 2017 to 2020. These genomes were 
sequenced by the New Hampshire Public Health Labora-
tories, a member of the PulseNet network. Results show 
that the local S. enterica population is genetically diverse, 
consisting of multiple co-circulating lineages that have 
been persisting for years within the state. This study pre-
sents some of the initial results of the state’s initiative to 
implement WGS in public health surveillance of S. enter-
ica and the spread of antimicrobial resistance. We high-
light some of the major challenges to implementing WGS 
in state public health laboratories as well as the value of 
strengthening collaborations between public health offi-
cials and genomic scientists.

Results
Genomic characteristics and population structure
We compiled a total of 394 S. enterica isolates from 
human clinical cases in New Hampshire, USA (Supple-
mentary Table 1). Of these, 44 isolates were collected in 
2017, 158 isolates in 2018, 156 isolates in 2019 and 36 
isolates in 2020. The county with the highest number of 
cases was Hillsborough County, located in the south-
ern part of the state, and which accounted for 26.4% 
(104/394) of the total isolates.

Across the entire dataset, we identified a total of 
21,142 genes that comprise the pan-genome (Sup-
plementary Figure 1 and Supplementary Table 2). Of 
these, the core genes (present in > = 99% strains) con-
sisted of 3265 genes which represents approximately 
15.4% of the entire pan-genome. Together, the core 
genes and soft-core genes (n = 247 genes; present in 
95% ≤ strains < 99%) constitutes 16.6% of the pan-
genome. The accessory genome is made up of the 
shell genes (n = 1482 genes; present in 15% ≤ strains 
< 95%) and cloud genes (n = 16,148 genes; present in 
< 15% of strains), which together constitutes 83.4% of 
the pan-genome. Average nucleotide identity values 
(ANI) for all pairs of genomes ranged from 94.83 to 
100% (Supplementary Table 3).

Determining the serotypes and sequence types (ST) of 
isolates are critical to surveillance and source tracking of 
S. enterica because different variants often demonstrate 
unique phenotypic characteristics [11, 12]. Using in silico 
analysis of the genome sequences, we classified isolates 
into 78 STs and 67 serotypes (Supplementary Table  1). 
Throughout the 4 years of sample collection, the most 
frequently detected were ST 11 (serotype Enteritidis) and 
ST 19 (serotype Typhimurium) (Fig.  1AB). Other com-
monly found serotypes were Braenderup, Infantis, Javi-
ana, Newport, and Thompson, while other commonly 
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found STs were STs 22, 26, 32, and 118. The agglutina-
tion method also identified two Typhi and six Paratyphi. 
Although the number of genomes differed dramatically 
per county, we found different STs and serotypes that 
are widely distributed across the 10 counties of the state 
(Fig. 1CD).

However, we found several inconsistencies in the 
serotyping results using the agglutination and in silico 

SeqSero2 methods, with 361/394 or 91.62% of the iso-
lates showing concordance between the two methods 
(Supplementary Table 1). In all, there were 58 serotypes 
and one undetermined serotype detected by serology 
(agglutination), while there were 67 serotypes detected 
using Seqsero2. There were 11 isolates in 2018 and 22 
isolates in 2019 that showed differences between the two 
serotyping methods.

Fig. 1  Distribution of serotypes and sequence types (STs) per year (A, B) and per county (C, D). Numbers above each bar indicate the total number 
of genomes. For visual clarity, only the most frequently detected serotypes and STs are shown. Serotype identity shown here is based on the 
agglutination serotyping method. Full list of serotypes and STs can be found in Supplementary Table 1
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Population structure analysis using Bayesian hierarchical 
clustering of the core genome alignment showed six dis-
tinct sequence clusters and one cluster encompassing all 
the sequences that could not be classified with confidence 
by RhierBAPS (Fig. 2). The six distinct clusters largely corre-
sponded to STs. The largest cluster consisted of isolates clas-
sified as ST 11 serotype Enteritidis (n = 126/394 or 31.5% 
of the isolates). Other clusters correspond to the com-
monly found STs were STs 19 (n = 38 genomes), 32 (n = 22 
genomes), 118 (n = 16 genomes), 22 (n = 13 genomes), and 
26 (n = 14 genomes). Each of the six sequence clusters were 
derived from long ancestral branches in the phylogeny, 
which suggest their extended presence in the region and 
recent clonal expansion. The remaining genomes (n = 165) 
made up rare genotypes that can potentially increase in 
the population with a change in ecological conditions (e.g., 
change in human demography or antibiotic consumption).

Multiple resistance genes in diverse genetic backgrounds
We used ABRicate to determine the presence of 
acquired antimicrobial resistance genes in our data-
set (Fig.  2 and Supplementary Table  4). We identified 

a total of 61 unique genes associated with resistance 
to 14 different antimicrobial classes (aminocoumarins, 
aminoglycosides, cephalosporins, cephamycins, diami-
nopyrimidines, fluoroquinolones, fosfomycins, mac-
rolides, nitroimidazoles, penams, peptides, phenicols, 
sulfonamides, tetracyclines). Of these, unique genes of 
five antimicrobials (aminocoumarins, aminoglycosides, 
fluoroquinolones, nitroimidazoles, and peptides) were 
detected in all genomes, with each genome carrying at 
least one resistance gene associated with each antimi-
crobial class. All genomes carried > 10 unique resist-
ance gene (Fig. 3 and Supplementary Figure 2). The 18 
most common resistance genes were cpxA, CRP, acrA, 
H-NS, acrB, acrD, bacA, baeR, emrA, emrB, emrR, 
marA, mdtB, mdtC, mdtK, msbA, sdiA and tolC. Genes 
conferring resistance to multiple antimicrobials were 
also prevalent and included acrA, acrB, baeR, cpxA, 
CRP, H-NS, marA, sdiA and tolC (Fig. 3, Supplementary 
Figure 2 and Supplementary Table 5).

Clonal origin and population dynamics
To provide a historical perspective on the New 
Hampshire S. enterica population, we constructed a 

Fig. 2  Midpoint-rooted maximum likelihood phylogenetic tree based on 3265 core genes. The scale bar represents the number of nucleotide 
substitutions per site. Serotype identity shown here is based on the agglutination serotyping method. The black stars on the tip of branches 
indicate the 33 isolates that had conflicting results from the agglutination test and SeqSero2. BAPS clusters (outermost ring) indicate the sequence 
clusters determined by RhierBAPS



Page 5 of 11Turcotte et al. BMC Genomics          (2022) 23:537 	

time-calibrated phylogeny using the core genome align-
ment. Here, we focused only on the largest sequence 
cluster (Enteritidis ST 11) which enabled us to obtain suf-
ficient amount of genetic variation to estimate a molec-
ular clock. We observed a slight but significant positive 
correlation between the dates of isolation and root-to-tip 
distances (R2 = 0.03 and p = 2.11− 02) (Supplementary Fig-
ures 3 and 4), indicating the presence of a clock-like sig-
nal. We estimated the time to the most recent common 
ancestor (tMRCA) of this sequence cluster to be 1965 
(95% highest posterior density intervals: 1927–1982) 
(Fig. 4A). For this sequence cluster, we also estimated the 
change in the effective population size (Fig. 4B), which is 
a measure of the rate of change in population composi-
tion due to genetic drift [46]. Results indicate that its 
population size expanded until 1978 after its initial emer-
gence, followed by a population decline until 1990. This 
sequence cluster has been expanding since then.

Relationship of New Hampshire isolates with the broader 
United States population
We next sought to place the genetic diversity of the 
New Hampshire S. enterica isolates within the broader 
United States population. We used a genome data set 
consisting of 960 clinical S. enterica isolates from the 
Pathogen Detection database of the National Center 
for Biotechnology Information (NCBI) (Supplementary 
Table  6). These genomes represented 17 other states 
in the country. In all, this larger dataset consisted of 
1354 genomes. We generated a maximum likelihood 
tree using the alignment of 225,784 single nucleotide 
polymorphisms (SNPs) from core genes of the entire 
dataset (Fig.  5). Results showed that the New Hamp-
shire genomes were intermingled with those from other 
states across the phylogeny, even among very closely 
related strains. The lack of clustering of isolates accord-
ing to their state of origin reflects close relationship 

Fig. 3  Distribution of antimicrobial resistance genes. Gene presence-absence matrix showing the distribution of antimicrobial resistance genes 
across the phylogeny (tree is identical to that in Fig. 2). Black blocks indicate presence of gene listed to the right of the panel. The colored columns 
represent the STs. Names of the antimicrobial classes are indicated on the right of the resistance genes
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and widespread mobility of geographically disparate 
isolates.

Discussion
WGS technology is critical to public health surveillance 
efforts and responsive food safety measures at the state 
and local levels. The state of New Hampshire has recently 
transitioned to WGS and our study presents the initial 
results of sequencing S. enterica from clinical cases sam-
pled from 2017 to 2020. Here, we also wanted to show 
that beyond the standard strain-level characterization, 
we can also infer relevant information about the antimi-
crobial resistance, population and evolutionary dynamics 
of the pathogen that will be valuable to understanding 
foodborne diseases in local communities.

Our study shows that S. enterica isolates harboring 
multiple resistance genes did not originate from the geo-
graphical expansion of a single clone; instead, a variety 
of resistance determinants in different combinations 
are carried by multiple phylogenetically distinct line-
ages. One of these predominant lineages (ST 11 sero-
type Enteritidis) has been circulating in New Hampshire 
for more than five decades, with evidence of sustained 
increase in the population. Hence, the evolution of S. 
enterica in New Hampshire is shaped mainly by both the 
long-term co-circulation of the six dominant lineages 
and the multiple independent acquisitions of resistance 
genes. These processes can lead to new, emerging line-
ages that can rapidly spread across the state and beyond 

over relatively short timeframes. A large suite of rarer 
genotypes is equally problematic as their population 
dynamics can change due to alterations in antimicrobial 
use, food safety practices, land use patterns (e.g., agri-
cultural intensification, changes in animal husbandry), 
trade, and interactions at the wildlife–livestock–human 
interface. These rare genotypes also act as an important 
reservoir of new variants of resistance genes that the 
more dominant lineages can acquire through horizon-
tal gene transfer [13, 14]. Monitoring of both common 
and rare genotypes over the long-term and compari-
son between states can help inform public health and 
regulatory decision-making actions. As we have shown 
in this study, additional analyses beyond strain char-
acterization (e.g., time-calibrated phylogeny, effective 
population size) are important to understand the his-
torical local context of foodborne pathogens and to infer 
the underlying causes of either persistence or replace-
ment of STs and serotypes over time. Moreover, across 
the United States, antimicrobial use varies consider-
ably between and within states [15]. Such variation will 
inevitably influence the selection for certain S. enterica 
lineages and the prevalence of specific resistance genes. 
Additionally, the intermingled phylogenetic relationship 
of genomes from different states means that long-dis-
tance dissemination of genotypes with clinically relevant 
characteristics such as multidrug resistance can rapidly 
spread beyond state borders. Such WGS analyses are 
essential in state public health laboratories to provide 

Fig. 4  Bayesian phylogeny and population dynamics of sequence cluster 1 (Enteritidis ST 11; n = 126 genomes). A Bayesian maximum clade 
credibility time-calibrated phylogeny based on non-recombining regions of the core genome. Blue bars indicate 95% confidence intervals. B 
Bayesian skygrowth plot that depicts changes in effective population size over time. Median is represented by a black line and 95% confidence 
intervals are in blue
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historical and geographical contexts to understand the 
origins of locally spreading genotypes.

Our study highlights major challenges to the full imple-
mentation of WGS for foodborne outbreak response 
and surveillance at the New Hampshire Public Health 
Laboratories, which is likely true for any state public 
health agency across the country. Foremost is the need 
for creating an information technology infrastructure 
for genome data analyses and developing bioinformatics 
expertise at the state level. Bioinformatics analyses can be 
carried out using in-house pipelines, web and/or cloud-
based computational tools, and outsourcing to collabo-
rators or other laboratories [16]. The use of the first two 
options is limited by strict institutional requirements and 
availability of appropriate operating systems. Intersecto-
ral collaboration between public health and food safety 
authorities (e.g., GenomeTrackr) will also strengthen 
bioinformatics analyses and investigations of outbreaks 
and surveillance activities of foodborne pathogens [17]. 
Here, we show that collaborations with universities and 

academic research laboratories can also be an effective 
approach to supporting state public health laboratories 
by providing computing power, bioinformatics expertise, 
and software. To ensure that WGS results are interpret-
able and actionable within a useful timeframe, there must 
be clear and continued communication between the state 
public health laboratory and university researchers. If 
WGS surveillance is to have a real-world impact on dis-
ease outbreak detection and management that is rapid 
and timely, it is imperative that WGS data analyses must 
be closely incorporated into state public health laborato-
ries. Long-term support and investment in appropriately 
trained staff (e.g., bioinformaticians) and computational 
resources for WGS data analyses in state public health 
laboratories are critical.

Second, procurement of pertinent epidemiological 
information and other kinds of descriptive data asso-
ciated with sequenced isolates presents another chal-
lenge. At present, the New Hampshire Public Health 
Laboratories rely on the receipt of bacterial isolates 

Fig. 5  Midpoint-rooted maximum likelihood phylogenetic tree of 1354 S. enterica genomes from the United States based on the alignment of 
225,784 core SNPs. The scale bar represents the number of nucleotide substitutions per site. The black dots indicate the New Hampshire genomes. 
Full list of strain names, accession numbers and associated metadata can be found in Supplementary Table 6. The colors in the outer ring of the tree 
represent the 18 states from where the genomes came from, which also correspond to the colors on the map
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or samples from clinical laboratories. Hence, certain 
regions within the state may be over-represented while 
others remain invisible to current surveillance strate-
gies. For example, in our study, there were many more 
isolates received from certain counties (Hillsborough, 
Rockingham, Grafton) than from others, which may lead 
to misinterpretation of results. Sequence data must also 
be carefully interpreted alongside epidemiological and 
laboratory data associated with each isolate, while main-
taining patient privacy. If information from these food-
borne pathogens is not included (e.g., food consumption 
activities, clinical symptoms, treatment outcomes, travel 
history), the sensitivity of disease cluster detection, 
transmission patterns and source attribution is reduced. 
Unfortunately, these data were not available to us. Inte-
grating comprehensive and standardized epidemiologi-
cal information for each isolate, as well as contact tracing 
and human demographic data, with genomic sequencing 
will enable a variety of investigations relevant to pub-
lic health: tracking and reconstructing spatial scales of 
transmission, identification and isolation of superspread-
ing events, distinguishing repeated introductions versus 
continuing local spread, differentiating outbreaks due 
to clonal expansion versus multiple co-circulating inde-
pendent transmission chains, temporal and spatial scales 
at which interventions are most impactful, forecasting 
the likely spread of a pathogen from within households 
and hospitals to regional and global scales, and predict-
ing the severity of disease outcomes and populations at 
risk. Coupling genomic and non-genomic information 
will have a formidable positive impact on effectively 
deploying rapid, responsive, and real-time actions by 
public health laboratories.

Third, we found some inconsistencies between the 
agglutination and in silico methods of serotyping, with 
33/394 (or 8.38%) of the isolates having varying results 
from the two methods. Similar conflicting results have 
been reported in previous studies comparing tradi-
tional serotyping methods and WGS. For example, out 
of 1041 S. enterica isolates analyzed by the US Food and 
Drug Administration, SeqSero assignments differed from 
traditional serological testing in 80 isolates (7.7% of the 
total) and no serotype prediction was determined from 
62 isolates (5.9%) [18]. This is lower than that reported 
in another study of 520 clinical isolates, whereby SeqSero 
exhibited 98% concordance with traditional serotyp-
ing, but monophasic variants were often misindentified 
[19]. SeqSero is also known to be unable to predict the 
O-7 antigen [19]. Fine-tuning of genome-based anti-
genic determination is therefore necessary for reliable 
detection of specific and rarer serotypes. Another pos-
sible source of discrepancy is that traditional serotyping 
methods may potentially lead to false positive results 

due to weak or non-specific agglutination [20], particu-
larly when distinguishing closely related serovars and 
polyphyletic serovars [21, 22]. Moreover, unidentified 
serotypes can result from autoagglutination and loss 
of antigen expression [21, 22]. These ambiguous cases 
therefore require additional serological testing and more 
specific antisera.

Conclusions
Strengthening efforts to fully implement WGS-based 
surveillance and data analyses in state public health lab-
oratories is critical. WGS studies of standing pathogen 
diversity will provide critical insights into the population 
and evolutionary dynamics of distinct pathogen lineages 
and antimicrobial resistance, which can be translated to 
effective public health action and decision-making.

Methods
Sample collection
Bacterial isolates were submitted to the Public Health 
Laboratories, New Hampshire Department of Health 
and Human Services (DHHS), Concord, New Hamp-
shire, USA from 2017 to 2020. When New Hampshire 
first implemented WGS in 2017, only those S. enterica 
isolates that were specifically requested by state epide-
miologists at the Bureau of Infectious Disease Control 
(BIDC) or the Centers for Disease Control and Preven-
tion (CDC) were sequenced. Beginning in 2018, all S. 
enterica isolates received by the Public Health Laborato-
ries were sequenced. Our dataset also included isolates 
received only during the first half of 2020. Isolates were 
received from health care providers across the state of 
New Hampshire and were collected from patients who 
were diagnosed with Salmonella infection. Isolates were 
recovered mostly from stool, with a few isolates from bile, 
blood, and urine samples. In the state of New Hampshire, 
Salmonella infections must be reported to the DHHS 
within 72 hours of a suspected or confirmed case. If there 
is a suspected case of typhoidal Salmonella infection, this 
must be reported within 24 hours. Isolate submission to 
DHHS is not mandatory but highly encouraged. There 
were 15 isolates that were obtained from patients who 
came from neighboring states, but who were diagnosed 
in New Hampshire. These were also included in our anal-
ysis as it was unknown whether they were infected while 
they were in New Hampshire. No identifiable informa-
tion is associated with the isolates. In total, our initial 
dataset included 458 S. enterica isolates. Serotype was 
determined at the New Hampshire Public Health Labo-
ratories by agglutination of the bacterium with specific 
antisera to identify variants of the two surface structures 
O and H antigens based on the White-Kauffmann-Le 
Minor (WKL) scheme [23].
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DNA extraction and whole genome sequencing
Sequencing of S. enterica isolates is part of the nationwide 
surveillance program PulseNet, a United States national 
laboratory network that connects foodborne illness 
cases to detect outbreaks and is sponsored by the Cent-
ers for Disease Control and Prevention (CDC) [1]. New 
Hampshire Public Health Laboratories is a PulseNet par-
ticipating laboratory. We used Pulsenet’s standard oper-
ating procedures (https://​www.​cdc.​gov/​pulse​net/​index.​
html) to carry out DNA extraction, library preparation 
and whole genome sequencing. Briefly, DNA extraction 
procedures were conducted using the DNeasy Blood & 
Tissue Kit (Qiagen, Valencia CA). DNA quality and con-
centration were measured using Qubit fluorometer and 
NanoDrop spectrophotometer. A total of 1 ng of genomic 
DNA from each isolate was used to construct sequencing 
libraries using the Nextera XT DNA Library Preparation 
Kit (Illumina, Inc. San Diego, CA) following the manu-
facturer’s instructions. Samples were sequenced as multi-
plexed libraries on the Illumina MiSeq platform operated 
per the manufacturer’s instructions for 500 cycles to pro-
duce paired end reads of 250 bp in length. Raw reads of all 
S. enterica genomic sequences generated under PulseNet 
USA surveillance [24] are uploaded in real-time to the 
sequence read archive (SRA) hosted by NCBI. Accession 
numbers are listed in Supplementary Table 1.

De novo genome assembly and annotation
We used the assembly pipeline program Shovill v.1.1.0 
(https://​github.​com/​tseem​ann/​shovi​ll) with the --trim 
option to yield high-quality genomes. Shovill imple-
ments a series of steps to improve assemblies, including 
read subsampling to a reasonable depth of 150x, read 
error correction, trimming adaptor sequences, detect-
ing and removing sequencing errors, and assembling 
using SPAdes [25]. Genome quality was assessed for all 
assemblies using QUAST v.5.0.2 [26] and CheckM v.1.1.3 
[27] with cutoff thresholds of > 200 contigs and < 40,000 
base N50 as exclusion criteria. We also excluded those 
genomes which are < 90% complete and have > 5% con-
tamination. Our final dataset used for all downstream 
analyses consisted of 394 genomes. Genomes were anno-
tated using Prokka v.1.14.5 [28]. We used fastANI v.1.32 
[29] with a 95% threshold to confirm species identity.

Pan‑genome, phylogenetic and clustering analyses
The entirety of genes present in the dataset or pan-
genome [30] was assessed using Roary v.3.11.2 with 
default settings [31]. Roary iteratively clusters pro-
tein sequences using CD-HIT [32], all-against-all 
BLASTP [33] and Markov clustering [34]. Nucleotide 
sequences were aligned using MAFFT v.7.477 [35]. The 
core genome determined by Roary was used as input 

in SNP-sites v.2.5.1 [36] to identify SNPs. The core 
genome SNP alignment was then used to build a maxi-
mum likelihood phylogenetic tree using the program 
RAxML v.8.2.12 [37] with the general time-reversible 
(GTR) model of nucleotide substitution and Gamma 
model of rate heterogeneity. The phylogenetic tree 
was then visualized using the Interactive Tree of Life 
[38]. We partitioned the strains into sequence clusters 
consisting of genetically similar individuals using the 
Bayesian hierarchical clustering algorithm RhierBAPS 
v.1.1.3 [39].

To place the New Hampshire in the broader S. enterica 
population in the United States, we examined the 307,733 
clinical S. enterica genomes available in the Pathogen 
Detection database hosted by NCBI (https://​www.​ncbi.​
nlm.​nih.​gov/​patho​gens/) as of May 31, 2022. From these, 
we narrowed down the U.S. clinical isolates to include 
only those sequences from human samples and that had 
information about the state of origin. This yielded a total 
of 3019 genomes. Due to computational resource limi-
tations, we had to reduce the number of genomes for 
analyses and therefore randomly selected 966 genomes. 
These genomes were filtered further using CheckM [27] 
to remove any genomes that were > 5% contaminated 
or < 90% completed. We compared the 966 genomes to a 
S. enterica reference genome (RefSeq assembly accession 
ID: GCF_000006945.2) using fastANI [29] to ensure spe-
cies identity. Our final non-New Hampshire U.S. dataset 
consisted of 960 genomes representing 17 states. Using 
Snippy v4.6.0 (https://​github.​com/​tseem​ann/​snippy), 
a total of 225,784 core SNPs were identified, aligned, 
and mapped to the reference genome (RefSeq assembly 
accession ID: GCF_000006945.2). The core SNPs were 
extracted and used to build a phylogenetic tree using 
FastTree v2.1.10 [40] using the GTR model of nucleotide 
substitution.

In silico sequence typing, serotyping and antimicrobial 
resistance detection
ST of each strain was determined using MLST v.2.19.0 
(https://​github.​com/​tseem​ann/​mlst), a program which 
extracts seven single-copy housekeeping genes (aroC, 
dnaN, hemD, hisD, purE, sucA, thrA) and compares their 
sequence identity to previously deposited allele combina-
tions in the S. enterica PubMLST database (https://​pubml​
st.​org/​organ​isms/​salmo​nella-​spp) [41]. In addition to the 
conventional laboratory serotyping method described 
above, we also used the k-mer-based algorithm SeqSero2 
to predict the serotype based on the sequences of the 
O and H antigens [42]. To detect horizontally acquired 
antimicrobial resistance genes, we used ABRicate v.1.0.0 
(https://​github.​com/​tseem​ann/​abric​ate) using threshold 

https://www.cdc.gov/pulsenet/index.html
https://www.cdc.gov/pulsenet/index.html
https://github.com/tseemann/shovill
https://www.ncbi.nlm.nih.gov/pathogens/
https://www.ncbi.nlm.nih.gov/pathogens/
https://github.com/tseemann/snippy
https://github.com/tseemann/mlst
https://pubmlst.org/organisms/salmonella-spp
https://pubmlst.org/organisms/salmonella-spp
https://github.com/tseemann/abricate
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values of > 95% sequence identity and > 95% sequence cov-
erage to known resistance genes deposited in the Com-
prehensive Antibiotic Resistance Database [43].

Temporal structure and population demography
Using a recombination-free core genome phylogeny 
generated by Gubbins [44], we used BactDating v.1.1, a 
Bayesian method for estimating the molecular clock rate 
and coalescent rate [45]. We first determined whether 
there was sufficient genetic change between sampling 
times to reconstruct a statistical relationship between 
genetic divergence and time. We carried out a root-
to-tip linear regression analysis and calculation of the 
coefficient of determination (R2). When a significant 
positive correlation between the dates of isolation and 
root-to-tip divergence was observed, we inferred the 
dates when common ancestors are estimated to have 
existed [45]. We used a mixed clock model and 107 itera-
tions to conduct molecular dating of the nodes of the 
tree. We removed the first half of iterations as burn-in 
and subsequently sampled every 100 iterations. We used 
Skygrowth v.0.3.1 to estimate the changes in effective 
population size over time [46].
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