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Equus roundworms (Parascaris univalens) 
are undergoing rapid divergence while genes 
involved in metabolic as well as anthelminic 
resistance are under positive selection
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Abstract 

Background:  The evolution of parasites is often directly affected by the host’s environment. Studies on the evolu-
tion of the same parasites in different hosts are of great interest and are highly relevant to our understanding of 
divergence.

Methods:  Here we performed whole-genome sequencing of Parascaris univalens from different Equus hosts (horses, 
zebras and donkeys). Phylogenetic and selection analyses were performed to study the divergence and adaptability 
of P. univalens.

Results:  At the genetic level, multiple lines of evidence indicate that P. univalens is mainly separated into two clades 
(horse-derived and zebra & donkey-derived). This divergence began 300–1000 years ago, and we found that most of 
the key enzymes related to glycolysis were under strong positive selection in zebra & donkey-derived roundworms, 
whereas the lipid-related metabolic system was under positive selection in horse-derived roundworms, indicating 
that the adaptive evolution of metabolism has occurred over the past few centuries. In addition, we found that some 
drug-related genes showed a significantly higher degree of selection in diverse populations.

Conclusions:  This work reports the adaptive evolution and divergence trend of P. univalens in different hosts for the 
first time. Its results indicate that the divergence of P. univalens is a continuous, dynamic process. Furthermore, the 
continuous monitoring of the effects of differences in nutritional and drug histories on the rapid evolution of round-
worms is conducive to further understanding host-parasite interactions.
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Introduction
Parascaris univalens is a large parasitic nematode that 
predominantly infects foals and weanlings. P. univalens 
has a direct lifecycle in which infective eggs ingested 
from the environment hatch in the horse’s stomach. The 
larvae then penetrate the intestinal wall and moult by 
migrating to the liver and lungs and eventually return to 
the small intestine to develop into adults. Understanding 
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the genetic characteristics of Parascaris worms in dif-
ferent regions or environments is essential for monitor-
ing the development of new variants [1]. Studies on the 
population genetic structure of P. univalens have been 
conducted in several areas [2, 3]. The Equus species, such 
as horse (Equus caballus), zebra (Equus zebra) and don-
key (Equus asinus), are the reservoir hosts of P. univalens. 
Despite the close relationships of these hosts, the extent 
of their habitats, food composition, digestion levels, and 
history of human intervention are very different, and the 
impact of these factors on large parasites living in these 
hosts remains unknown. Studying selection and evolu-
tionary processes in different living environments pro-
vides insight into the adaptation of P. univalens.

Nematodes have evolved to exploit highly diverse eco-
logical niches. Parasitic nematodes have adapted to a 
wide range of threats, including climatic and nutritional 
threats, and the immune responses of hosts [4]. These 
factors represent significant selective pressures imposed 
on nematodes by the environment throughout their evo-
lutionary history. The hosts of P. univalens include a vari-
ety of equine species, and the geographical distributions, 
dietary structures and immune abilities of these hosts 
are also different. Donkeys have much lower energy and 
protein requirements than other equids [5], and even the 
metabolic response during exercise differs depending 
on the amount of food given to a horse [6], which may 
also represent a challenge to parasites. Extensive genetic 
diversity provides the genetic basis for the adaptive evo-
lution of nematodes, but successful evolution will also 
come at a cost to the host [7]. The genetic diversity of 
roundworms contributes to their evolutionary adapta-
tion. Understanding these processes is crucial to compre-
hending the specific evolutionary trends of parasites [8]. 
The genetic differences between populations can reveal 
much about the basic evolutionary process driven by 
changes in the environment [9]. Studying the adaptation 
of parasites along with different hosts is of great signifi-
cance for understanding parasitic preferences.

The control of parasitic nematodes feeding on animals 
relies almost exclusively on anthelmintics, which have 
proven to be effective in the short-term management, 
but their long-term effectiveness has been questioned 
due to the widespread emergence of drug resistance [10]. 
There is widespread concern about the risk associated 
with relying on anthelmintics with hundreds of millions 
of doses of these drugs being donated and used every 
year [11]. Due to the inconsistency of drug histories in 
different regions or on different farms, roundworms face 
varying degrees of selection pressure. Timely monitoring 
of drug use in relation to the evolution of roundworms 
is of great significance. In recent years, genome scanning 
has become an effective means of revealing the genetic 

determinants of adaptive evolution in different habitats 
in some organisms. Selected loci exhibit lower polymor-
phism than other regions of the genome, which enables 
the formation of highly divergent regions that serve as the 
genetic foundation for divergence [12, 13]. Here we ana-
lysed the genome characteristics of P. univalens popula-
tions found in three main hosts: horse (E. caballus), zebra 
(E. zebra) and donkey (E. asinus) in northeastern China. 
We present the first report on the recent divergence of 
P. univalens populations, and speculate that it might be 
linked to host digestion and metabolic preferences. In 
addition, the role of selection pressure in the population 
was evaluated at the genomic level. This work provides 
insight into P. univalens differentiation and metabolism 
and drug selection pressure.

Results
Genome resequencing and genetic variations
A total of 42 individuals from three P. univalens popu-
lations of Equus (PEc, n = 19), zebra (PEz, n = 18), and 
donkey (PEa, n = 5) hosts from Inner Mongolia and 
Heilongjiang, China, were performed whole-genome 
sequencing (Fig.  1, Table S1). We identified 4,398,519 
SNPs with a genome-wide distribution of 1 SNP per 
57  bp on average (Fig. S1). Genome sequencing was 
accomplished with an average depth of ~ 20X (Fig. S2) 
and the average mapping rate was 98.17%. In addition, 
the genomic coverages were higher than 90% in all indi-
viduals (Table S2). Currently, there may be two types of 
Equus roundworms due to different chromosome num-
bers (P. equorum n = 4; or P. univalens n = 2). We ran-
domly selected 1–4 samples from each sampling site for 
karyotype identification and found that all samples had 
two chromosomes (see Methods; Fig. S3). The results 
indicated that the collected samples were all P. univalens. 
In addition, we calculated the observed heterozygosity 
and the expected heterozygosity, which indicated that the 
inbreeding coefficient between individuals was very low 
(average F < 0.1), and the relationships were distant and 
could represent the whole population (Table S3).

Genetic differentiation in the P. univalens
Principal component analysis (PCA) supported the clear 
separation among P. univalens populations (Fig. 2a), with 
PC1 and PC2 separating the PEc and PEz&PEa popula-
tions (P < 0.05). All PCs showed that PEz and PEa were in 
the same cluster. In addition, the phylogenetic relation-
ships among the three populations inferred based on the 
ML tree highlighted a similar division to that indicated 
by PCA (Fig. 2b). The tree showed two distinct clusters, 
where the PEc population seemed to be a separate clade, 
while the other two formed a distinct clade. Although 
the sampling sites of PEc and PEz partially overlapped, 
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the divergence between them was still clear. Population 
admixture analysis further confirmed the two distinct 
clusters presented by PCA and ML tree, where PEz and 
PEa shared more ancestral components in common 
(Fig.  2c). We scanned the paired identity-by-descent 
(IBD) regions at the genome-wide level in all individu-
als and found that PEz and PEa shared more IBD regions 
(98.5% of PEa shared with PEz), while PEc and the other 
two populations presented almost no shared large IBD 
fragments (Fig. S4, Fig. S5). In addition, lower inter-
population Fst values were identified in the PEz and PEa 
populations, also indicating a closer relationship between 
them (Fig. S5).

Inference of the demographic history and divergence time 
of P. univalens populations
To examine genome-wide divergence times among 
P. univalens populations, we constructed a molecu-
lar clock phylogenetic tree based on the calibrated 
mutation rate using all SNP sites. The tree topology 
showed that the divergence time of PEc and PEz&PEa 
was approximately 900–1500  years ago when the pos-
terior probability was > 95% (Fig. 3). The PSMC results 

showed similar effective population sizes (Ne) of three 
populations (Fig.  4a). Further Ne estimation inferred 
by MSMC2 also supported the PSMC result, showing 
a similar trend before 1000  years ago, indicating the 
existence of a possible common ancestor (Fig.  4a, b). 
However, the Ne values of the three populations began 
to diverge in the last ~ 800 years (Fig. 4b). We found that 
the PEc population genetically separated from PEz and 
PEa (Fig. 4b) ~ 300 years ago with the relative cross coa-
lescence rate (RCCR) of less than 0.5. However, there 
was no obvious sign of separation between PEz and PEa 
(RCCR > 0.5). The separations among these three pop-
ulations were further supported and validated by the 
results inferred by SMC +  + , which were independent 
of phased genotypes (Fig.  4c). We carefully compared 
the relationship between the observed separations and 
the topology of the phylogenetic tree and found similar 
results. Both results showed that PEc vs. PEz, and PEc 
vs. PEa presented obvious divergence, but PEz vs. PEa 
did not show complete differentiation. Although the 
divergence times estimated based on the above meth-
ods were not entirely consistent, they all indicated that 
the observed differentiation occurred recently. Taken 
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together, we inferred from the results that P. univalens 
was mainly divided into two clades, one was horse-
derived (PEc), and the other was zebra & donkey-
derived (PEz&PEa). The conservative divergence time 
was estimated to be within the last 300  years. Finally, 
we used fastsimcoal2 to evaluate the population size 
after divergence based on the observed joint site fre-
quency spectrum (SFS; Fig. S6) and found that the PEc 
population size was significantly larger than PEz&PEa 
population size after this divergence event (Fig.  4d). 
The best coalescent simulation model inferred by fast-
simcoal2 also indicated early bidirectional gene flow 
between PEc and PEz&PEa.

The most possible demographic model in P. univalens 
populations
To better understand the recent divergence of P. uni-
valens, we used δaδi to further explore the demo-
graphic history of the divergence. Following Portik’s 
[14] method, we employed a four-round optimiza-
tion technique to ensure that all final optimizations 
resulted in a similar log-likelihood score (Table S4). 
In order to better validate the possible divergence pat-
terns between populations, we first constructed ten 
3D models for three independent populations (Fig. 
S7). The model with the lowest-scoring log-likelihoods 
was the “Adjacent ancient migration, shorter isolation” 

Fig. 2  Population structure and relationships of P. univalens from horse, zebra and donkey. a PCA plots of the first three components. The fraction 
of the variance explained was 12.75% for PC1, 7.09% for PC2 and 0.06% for PC3; (b) Phylogenetic tree (ML tree with 1000 bootstraps) of all samples 
inferred from whole-genome tag SNPs, with B. schroederi as an outgroup; (c) Population structure plots with K = 2–4. The y axis quantifies the 
proportion of the individual’s genome from inferred ancestral populations, and x axis shows the different populations
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model (Fig. 5a, Table S5). This ancient migration model 
involving early gene flow with symmetric migration 
was supported as the best fit for the three populations. 
Next, in our eight 2D simulations (Fig. S8), the ancient 
migration or secondary contact plus instantaneous size 
change model involving divergence with ancient con-
tinuous symmetrical migration, isolation with instanta-
neous size change provided the best fit for the PEc and 
PEz&PEa lineages (Fig. 5b, Table S5). By comparing the 
best 2D and 3D models, it was found that the best 2D 
models showed larger log values and lower residuals, 
which coincided with the results of our phylogenetic 
tree analysis. Furthermore, the best model revealed a 
possible divergence of roundworm populations, that 
is, there was bidirectional gene flow in early ancient 

periods, but in the middle and current stages, gene flow 
between the populations almost ceased.

Selection of metabolism and resistance‑related genes 
in different populations
In-depth genome scanning and functional annota-
tion helped us to understand the observed population 
divergence. Genome-wide nucleotide diversity (π) was 
computed for each population based on all samples. 
Additionally, we identified genomic regions as candi-
date divergent regions (CDRs) among the PEc, PEz and 
PEa populations (Table S6, Fig. S9). We used iHS to 
detect genes under recent natural selection in the PEc 
and PEz&PEa populations. A total of 1,046 SNPs in PEc 
and 1,093 SNPs in PEz&PEa were identified within the 

1

0.3649

PEc2

PEz45

PEc35

PEa24

PEz2002

PEc41
PEc9

PEc37

PEc33

PEa34

PEz9

PEz22

PEc55
PEc54

PEz44

PEc51

PEc8

PEc15

PEz7

PEa33

PEz77

PEz67

PEz46

PEc18

PEz51

PEc16

PEz43

PEz1

PEc36

PEz41

PEa25

PEz21

PEc14

PEz31

PEz58

PEz49

PEc31

PEc19

PEa28

PEc1

PEz410

PEz

PEa

PEc

PEc40

Years before present
0333100011661500

posterior

Fig. 3  Chronogram of the P. univalens based on Bayesian coalescent analysis of SNP data using SNAPP. Nodes with high support (posterior 
probability = 1.00) are filled in red color. Error bars represent the 95% highest posterior densities (HPD). The colored circles represent different 
populations



Page 6 of 14Han et al. BMC Genomics          (2022) 23:489 

top 1% iHS scores (Fig. S10). These SNPs were anno-
tated to 290 and 254 functional genes, respectively. The 
GO functional enrichment showed that they were mainly 
enriched in GO terms such as metabolism and regula-
tion of gene expression (Table S7). The results of KEGG 
enrichment also showed that the two clades presented 
significant selection signals in metabolism-related sig-
nalling pathways (Fig. S11) [15, 16]. In addition, we used 
the XP-EHH method to screen genes that may have been 
positively selected under different environmental pres-
sures by comparing the PEc and PEz&PEa populations. 
The two-sided P value test was used to scan genome 
regions with selection sweep signals in the two clades. 
Interestingly, the differences in carbohydrate metabo-
lism and lipid metabolism were extremely significant in 

the two clades (Fig. S12, Fig. S13, Table S8). The PEz&PEa 
clade showed significant positive selection on almost 
all key enzymes involved in glycolysis and the tricarbo-
xylic acid cycle. These loci aroused our interest, and we 
re-examined the selection dynamics of their surround-
ing regions (Fig. 6). These regions included includes the 
kinases (E1:hexokinase and E2:6-phosphofructokinase-1) 
involved in the two most critical irreversible reactions in 
the first stage of converting glucose to pyruvate under 
pyruvate anaerobic conditions. The dehydrogenase (isoci-
trate dehydrogenase) involved in the irreversible reaction 
of isocitrate oxidative decarboxylation to α-ketoglutarate 
was also significantly positively selected (P < 0.05). The 
collective selection of enzymes in the glycolysis pro-
cess and tricarboxylic acid cycle showed that PEz&PEa 
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presented a greater demand for this process than PEc. In 
addition, members of the lipid synthase family, which are 
involved in the uptake of fatty acids, were significantly 
positively selected in PEc. Parasitic helminths contain 
appreciable quantities of lipids. However, most intesti-
nal helminths do not utilize significant amounts of lipids 
even during starvation and under aerobic conditions 
[17], mainly due to their anaerobic mode of life. The sig-
nificant selection signals detected among these enzymes, 
such as members of the fatty acid CoA synthetase family 
and long-chain fatty acid CoA ligase 5, suggest that they 

might be also involved in some other processes as well, 
not just lipid uptake or metabolism.

Current anthelmintics mainly present two modes of 
action, one mode is characterized by more rapid action 
on membrane ion channels, and the other is a relatively 
slow biochemical reaction. These common types of 
anthelmintics include benzimidazoles (BZs), macrolides 
(MLs), nicotinic acetylcholine receptor agonists [18], and 
aminoacetonitrile derivatives (AADs). We screened the 
main genes related to resistance to all of the abovemen-
tioned anthelmintics reported thus far (Table 1). We also 
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scanned iHS scores within 50 kb of all these gene regions 
and calculated the nucleotide diversity (π) and Tajima’s 
D value of the three populations with 10 kb sliding win-
dows. The results showed that multiple resistance-related 
genes were under strong positive selection among differ-
ent populations (Table 1). The genetic diversity of some 
drug-related gene regions was significantly low and con-
served. We identified three classic resistance loci (167/
Phe, 198/Glu, and 200/Phe) of the BZ resistance gene 
β-tubulin [19] and found that none of the individuals in 
the three populations showed resistance mutations based 
on sequence alignment (Fig. S15a). However, these gene 
regions were found to be under strong recent positive 
selection (Fig. S14c). Selection signals were also identified 
in other resistance-related genes in the population also 
discovered (Fig. S15—S17). For example, the multidrug 
resistance protein pgp-3 were found to be under strong 
positive selection in the PEc population. Glutamate-gated 
chloride channel alpha (glc-1), which is related to iver-
mectin resistance, showed strong positive selection in the 
PEa populations. Three gene of cytochrome P450 family 
(CYP_4C1, CYP_4V2, CYP_3A7) showed strong positive 
selection in the PEc populations. The positive selection 
of these gene regions differed in the three populations, 
which may be related to the drug history in different 

environments. Nevertheless, it was obvious that certain 
instances of genetic selection were highly conserved and 
significant in some populations. The results show that the 
selection of these resistance-related genes will be main-
tained in independent populations and will continue 
to be passed down to the next generation. It should be 
noted that these instances of selection were population 
specific and have the potential to promote population 
differentiation.

Discussion
The ecological environment inhabited by parasites dif-
fers from that encountered by ordinary animals, and the 
survival of parasites is more dependent on the intesti-
nal environment. The evolution of a single species is a 
long and complicated process. Numerous environmen-
tal changes and related factors affect this process. Our 
study used a combination of explicit genetic analysis and 
demographic models to determine the possibly diversi-
fied mechanisms that occur in different intestinal envi-
ronments. We estimated the population histories of three 
populations using the PSMC and SMC +  + methods, 
and their population histories showed exactly the same 
trend before 10,000  years ago, while differences were 
found in recent population history estimates. In addition, 
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we applied δaδi 2D/3D models to simulate the possible 
demographic history. The ancient migration or second-
ary contact model and the immediate size change model, 
were found to be effective in explaining the demographic 
differences and recent divergence of the P. univalens pop-
ulations. In addition, the demographic history showed 
that P. univalens is undergoing divergence. We sum-
marize the main findings regarding the diversification 
of P. univalens, and provide a perspective for the future 
monitoring of roundworm ecology in a timely manner to 
address possible unfavourable mutations.

The host’s influence on parasite evolution cannot be 
ignored. A change in the host’s diet represents both an 
opportunity and a challenge for parasites. From the 

perspective of glycolysis, we found that most of the key 
enzymes involved in glycolysis were subjected to a higher 
degree of recent positive selection in PEz and PEa than 
in domestic horses. Glycolysis and tricarboxylic acid 
cycle, which represent the most important route whereby 
roundworms obtain ATP, seem to have "degraded" in 
domestic horse roundworm populations. Experiments 
have shown that the contents of fatty acids such as pal-
mitic acid, palmitoleic acid, stearic acid, and oleic acid 
in a parasite are almost the same as those in its specific 
host and the changes in the ratio of fatty acids tend to be 
synchronized between these organisms [20]. Immuno-
logical evasion could be a major purpose. Our findings 
in Equus roundworms supported this notion, which as 

Table 1  Nucleotide diversity (π) and Tajima’s D values around the key resistance-related proteins’ region in PEc, PEz and PEa 
populations

a note: β tubulin, β tubulin; glc-1, glutamate-gated chloride channel alpha; pgp, multidrug resistance-associated protein family; mrp, multidrug resistance protein 
family; haf, half transporter family; cup-4, acetylcholine receptor-like protein; bre-4, beta-n-acetylgalactosaminyltransferase bre-4; unc, Acetylcholine receptor family; 
nrf-6, Nose resistant to fluoxetine protein 6; ced-7, ABC transporter ced-7; aex-3, MAP kinase-activating death domain protein; CYP, cytochrome P450 family
b PEc, P. univalens from Equus caballus
c PEz, P. univalens from Equus zebra
d PEa, P. univalens from Equus asinus

Scaffold ID Start End Descriptiona π Tajima’D Significantly 
selected 
populationsPEcb PEzc PEad PEcb PEzc PEad

PgR045 1,372,050 1,381,671 β tubulin 0.0017 0.0019 0.0005 1.4698 2.5324 1.268 PEc, PEz, PEa

PgR004 1,320,231 1,320,527 glc-1 0.0021 0.0017 0.0007 -0.4035 2.0857 -1.8797 PEa

PgB04 2,029,204 2,057,834 pgp-1 0.0099 0.0095 0.008 1.5276 1.3328 0.0662 -

PgR063X 121,395 124,033 pgp-3 0.0002 0.0007 0.0002 0.3278 -0.0274 -1.8733 PEa

PgB05 571,021 589,065 mrp-7 0.0119 0.0089 0.0097 -0.2053 1.2363 0.4773 -

PgR035X 1,170,116 1,202,939 mrp-6 0.0051 0.0021 0.0047 2.0705 0.7746 0.6784 -

PgB09 815,741 828,043 mrp-5 0.0053 0.0037 0.002 0.1012 0.6472 -0.6395 -

PgB10 552,422 565,520 mrp-4 0.0093 0.0099 0.0092 0.9641 1.3762 1.5909 -

PgB03 2,066,848 2,079,134 haf-2 0.0033 0.0036 0.0047 0.783 1.4183 0.811 -

PgR004 2,938,177 2,953,151 haf-5 0.0232 0.02 0.0173 0.7172 1.6294 -0.3418 -

PgR006 879,399 911,228 cup-4 0.0083 0.0079 0.0075 2.0797 2.1662 0.6134 -

PgR009X 834,742 840,950 bre-4 0.0064 0.002 0.0004 1.2283 1.3452 0.7223 -

PgR004 1,575,226 1,593,120 unc-29 0.0031 0.0046 0.0036 0.1117 1.9462 1.3307 -

PgB12X 400,372 407,591 unc-38 0.0003 0.0001 0.0004 -1.4946 0.0306 -0.2792 PEc

PgR024 1,427,386 1,436,555 Glycosyl hydrolase 18 0.0049 0.0074 0.002 -0.7514 0.6444 0.2132 -

PgR003 3,165,465 3,176,989 nrf-6 0.0052 0.0051 0.0034 2.4611 3.49 2.2507 -

PgR008 3,213,688 3,247,697 ced-7 0.0082 0.0067 0.0064 0.5927 0.2795 0.3853 -

PgR001X 1,705,437 1,736,423 aex-3 0.0018 0.0005 0.0011 0.2075 2.0238 -0.1421 -

PgB07 1,545,397 1,551,068 CYP_2B19 0.0013 0.0003 0.0018 1.0607 1.0553 0.9086 -

PgR002 512,210 524,078 CYP_13A8 0.0002 0.0014 0.0051 -0.1263 1.1847 0.6614 -

PgR010 2,986,365 2,996,675 CYP_3A31 0.0072 0.0086 0.0065 1.3057 2.4035 2.0071 -

PgR020 456,556 464,491 CYP_2C8 0.0068 0.0081 0.0091 0.7683 1.0655 0.6074 -

PgR027 284,432 291,992 CYP_2C25 0.0036 0.0043 0.0035 0.3752 1.6727 -0.4168 -

PgR033 836,482 846,733 CYP_4C1 0.0015 0.0107 0.0097 -2.6423 2.4022 1.5867 PEc

PgR049 713,990 725,852 CYP_4V2 0.0001 0.0005 0.0008 -1.4324 0.347 0.639 PEc

PgR012 2,339,498 2,343,997 CYP_3A7 0.0063 0.0125 0.0094 -1.2345 1.6788 0.0835 PEc



Page 10 of 14Han et al. BMC Genomics          (2022) 23:489 

they showed a strong selection of genes involved in lipid 
synthesis. In addition to nutrition and maintaining physi-
ological integrity, an obviously more important goal is 
the potential to maintain consistency with the host’s vari-
ous fatty acid patterns. The evolution of lipid composi-
tion regulation in parasites may influence host suitability 
[21]. However, we believed that in the case examined in 
the present study, this consistency is more likely related 
to intestinal and surrounding lipid deposition in the host, 
rather than the total lipid ratio.

The issue of drug resistance has been widely men-
tioned over the past two decades. Parasites show strong 
adaptability, and roundworms lay more than 200,000 
eggs per day [22], almost certainly providing a sufficient 
mutational basis for resisting environmental changes. 
The problem of drug resistance has led to significant 
economic losses in industries such as animal husbandry, 
and the control of parasites has become an important 
expenditure [23]. The negative Tajima’s D associated with 
most genes regarded as selected. Our results showed that 
some resistance-related genes regions, such as β-tubulin, 
glc-1, pgp-3, mrp-6, cup-4, nrf-6, and CYP family mem-
bers, have positive or negative Tajima’s D values, suggest-
ing that they may be selected in different populations. 
Previous studies have focused on the effects of specific 
mutation sites, such as the classic β-tubulin gene, on drug 
resistance. We screened the gene frequencies of these 
genes and their mutation sites in the population and sta-
tistically evaluated the conservation of resistance-related 
genes at the population level. These genes are related 
to multiple anthelmintics, which may be related to the 
deworming history. Over time, the frequency of these 
genes will increase significantly in the population, and 
attention should be paid to the impact of this selection on 
species evolution. In addition to anthelmintics, vaccines 
offer an attractive alternate control strategy for these 
parasites [24]. Despite the wealth of available control 
methods, the responses of these parasites are amazing. 
When we focus on the issue of drug resistance, we should 
worry more about the impact of such strong selection 
on species evolution. Compared with natural selection 
without human interference, the effect of anthelmintics 
is undoubtedly more direct and stronger, and the con-
sequences of this strategy are challenging to predict. 
This suggests that we should be cautious in dealing with 
the issue of drug resistance and adopt more scientific 
strategies. It should be noted that P. univalens is highly 
adaptable and evolves quickly. As the gene frequency of 
certain drug-related genes in specific populations further 
increases, it is likely that P. univalens will differentiate 
into new subpopulations with specific phenotypes.

This work provides a reference for monitoring the evo-
lution of parasites and elucidating evolution under the 

action of both natural selection and drugs. Due to the 
limitation of sample size, some accidental or other envi-
ronmental factors potentially related to natural selection 
in P. univalens cannot be fully considered. We only con-
sidered two types of highly significant factors (metabo-
lism and anthelmintics), and other selection effects still 
need to be verified in a broader range of P. univalens pop-
ulations in the future.

Methods
Sample collection
Seventeen roundworms were collected from six naturally 
infected horses (E. caballus) treated with anthelmintics 
on a farm located in the Ordos, Inner Mongolia, China. 
While two horse roundworm individuals were collected 
after anthelmintic treatment from a farm in Harbin, Hei-
longjiang, China. Five roundworms from three donkeys 
(E. asinus) were collected after anthelmintic treatment 
from a farm in Chifeng, Inner Mongolia, China. Eight-
een roundworms from ten zebra (E. zebra) were obtained 
after anthelmintics treated from Harbin Northern Forest 
Zoo, Heilongjiang, China. It is worth noting that at the 
Harbin Zoo, zebras and domestic horses share the same 
pasture. Before treatment with anthelmintic, we collected 
the feces of all zebras and domestic horses in the Zoo to 
detect the infection of the roundworms. Interestingly, P. 
univalens eggs were only detected in some zebra feces but 
not in domestic horse feces. All specimens were washed 
extensively in sterile physiological saline (37  °C), snap-
frozen and transported with dry ice, and then stored at 
-80 °C until further use.

Karyotyping
We performed karyotyping on the collected samples. 
Worms were carefully dissected and the gonads were 
located and excised. The gonads were then processed for 
karyotyping as previously described [3]. Using a modi-
fied freeze-crack method permeated and fixed embryos. 
Briefly, the embryos were immersed in KCl (0.075  M) 
hypotonic for 5  min, then rinsed with methanol/ace-
tic (3:1) acid solution. Next, drip 45% acetic acid on the 
siliconized coverslip. After pressurizing for about 60  s, 
put the slider in liquid nitrogen and freeze for 1–2 min. 
Staining was carried out with 4′,6-diamidino-2-phenylin-
dole (DAPI) for 5 min, and the slides were then examined 
under a fluorescence microscope.

Nucleic acid isolation, library construction and sequencing
Total genomic DNA was isolated using sodium dodecyl 
sulphate/proteinase K digestion [25] followed by phe-
nol–chloroform extraction and ethanol precipitation. 
Genomic DNA was sheared into 200–800 bp for paired-
end libraries preparation according to the manufacturer’s 



Page 11 of 14Han et al. BMC Genomics          (2022) 23:489 	

instructions of the DIPSEQ platform (BGI-Shenzhen, 
Shenzhen, China). Libraries were then subjected to the 
DIPSEQ-T1 sequencer for short-read whole genome 
sequencing (WGS) sequencing (Table S1).

Read mapping and SNP calling
High-quality reads were aligned to the P. univa-
lens reference genome (WormBase accession ID: 
GCA_002259215.1) using BWA-MEM (0.7.13-r1126) 
[26] with default parameters. SAMtools (v0.1.19) [27] 
was used to convert mapping results into the BAM for-
mat and filtered the unmapped and non-unique map-
ping reads. The Parascaris equorum reference genome 
(WormBase project ID: PRJEB514) was used for spe-
cies identification. Duplicated reads were marked with 
the Picard Tools (picard.sourceforge.net, Version: 2.1.1). 
Then Genome Analysis Toolkit (GATK v 4.0.3.0) [28] 
was used to population SNP calling. Then hard filter-
ing was applied to the raw variant set using "QD < 2.0 || 
FS > 60.0 || MQ < 20.0 || MQRankSum < -12.5 || ReadPos-
RankSum < -8.0" –filter-name "snp_filter". SNPs with > 1% 
missing data or < 0.01 minor allele frequency (MAF) were 
filtered out using vcftools (v0.1.12a) [29] for downstream 
bioinformatic analyses. Variants Annotation of variants 
was performed according to the reference genome using 
the package ANNOVAR (Version: 2015–12-14). Using 
the SAMtools software, the coverage of each sample was 
counted based on aligned BAM data.

Diversity analysis
SNP density was counted with a 10  kb sliding window 
using VCFtools (v0.1.13) software [29]. Genome-wide 
nucleotide diversity (π) and Tajima’s D were computed by 
sliding windows of 1 kb using all individuals in each pop-
ulation using VCFtools (v0.1.13). The Weir-Cockerham 
fixation index (Fst) was estimated among three popula-
tions with genotype data using the VCFtools (v0.1.13).

Phylogenetic relationship, genetic structure, 
and admixture
Principal component analysis (PCA) was carried out 
using EIGENSOFT [30] software based on the SNP data-
set, and the population clustering analysis was conducted 
in PLINK (v1.90b6.10) [31]. We used genome-wide SNPs 
to construct the maximum likelihood (ML) phylogenetic 
tree with 1000 bootstraps using iqtree (v1.6.12) [32]. 
The genome sequence of Baylisascaris schroederi was 
selected as an outgroup. Population structure was ana-
lyzed using the ADMIXTURE (v1.3.0) program with a 
block-relaxation algorithm. To explore the convergence 
of individuals, we predefined the number of genetic clus-
ters of K from 2 to 4.

We investigated the relationships within P. univalens 
populations in a coalescent framework with SNAPP 
implemented in BEAST v2.6.3 [33]. We performed two 
independent runs with a chain length of 10,000,000 gen-
erations, sampling every 1,000 generations. We exam-
ined convergence using TRACER v1.7.1 and created a 
maximum clade credibility tree after a burn-in of 20% via 
TREEANNOTATOR [34]. According to epidemiologi-
cal investigation, we assumed that the average genera-
tion time of P. univalenswas 0.17 year, and converted the 
SNAPP analyses into units of real-time using a mutation 
rate (μ) of 9 × 10–9 per generation per site.

Estimates of the effective population size and divergence 
time
The pairwise sequentially Markovian coalescent (PSMC) 
method [35] was used to evaluate the dynamic change 
of effective population size (Ne) of each population. We 
used 0.17 year per generation (g) and a mutation rate (μ) 
of 9 × 10–9 per generation per site to rescale the time to 
year [36, 37]. More recent (within 1000 years) changes in 
effective population size of each population and separa-
tion time between different populations were further 
estimated by using the multiple sequentially Markovian 
coalescent (MSMC2) [38], which can much compensate 
for results from PSMC. However, the inference accuracy 
of MSMC2 largely depends on the phasing accuracy of 
genotypes. Switch error rates will introduce bias in the 
calculation. To further confirm results from MSMC2, we 
also used Sequentially Markovian Coalescent (SMC + +) 
methods [39] to do the same analysis as MSMC2. The 
SMC +  + used phasing-free genotype data to do the 
population history and separation time inference, which 
become a reliable method to support inferences from 
MSMC2. For SMC +  + , we set the upper bound for the 
number of generations to 10,000 to estimate size his-
tory and calculate the lower bound based on a heuristic 
approach. For MSMC2, we first phased all SNPs of each 
individual by using beagle (v5.0) [40], then the calcula-
tion was performed with the following parameters: -i 20 
-t 6 -p ’10*1 + 15*2’. The mutation rate (μ) of P. univalens 
for SMC +  + and MSMC2 have used the same values as 
for PSMC.

Demographic inference using fastsimcoal2 and δaδi
We used the fastsimcoal2 [41] approach to deduce the 
recent demographic history of P. univalens popula-
tions. We chose only SNPs located in intergenic regions 
to avoid the influence of SNPs under selection [42]. We 
used δaδi [43] to investigate alternative demographic 
scenarios for the species complex. In the absence of 
historical evidence, we hypothesized that there may or 
may not be any form of gene flow between roundworm 
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populations. In order to get the best model, we first simu-
lated a total of ten δaδi 3D models, including one simple 
model, three simultaneous splitting models, one ancient 
migration model, one simultaneous splitting variations 
model, one admixed (“Hybrid”) origin model and three 
divergences with gene flow variations models. When fit-
ting demographic models, we perform multiple runs (100 
rounds) and ensure that final optimizations converge on 
a similar log-likelihood score. The derivative-based BFGS 
algorithm was used to optimize the composite log-like-
lihood to estimate demographic parameters. All models 
and scripts are available at https://​github.​com/​dport​ik/​
dadi_​pipel​ine.

Recent nature selection analysis
Extended Haplotype Homozygosity (EHH) and Inte-
grated Haplotype Score (iHS) methods were used for 
detecting SNPs under a recently positive selection of 
three roundworm populations [44]. We use SNPs with 
an iHS score of top 0.5% and the distance between adja-
cent SNPs < 50  kb as candidate SNPs [45]. We searched 
for genes in the 5-kb flanking region from both sides of 
candidate SNPs and calculated the accumulated iHS 
scores by adding all iHS scores of candidate genes. Next, 
to uncover genetic variants under strong positive selec-
tion in each host population, we used cross population 
extended haplotype homozygosity (XP-EHH) method 
on each pair of combinations (PEc vs PEz, PEc vs PEa 
and PEz vs PEa) to find population-specific SNPs under 
strong positive selection. XP-EHH we used in this study 
was from the R package rehh (v3.1.2; https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​rehh/​vigne​ttes/​rehh.​html). The 
regions with P values < 0.01 were considered significant 
signals in the population of interest.

Conclusion
P. univalens is the main parasitic pathogen that infects 
equine, and it is also the chief culprit in horses’ weight 
loss and weakened immunity. The genetic variation and 
host differences complicate the development of broad-
spectrum diagnostics, therapeutic. Here we report the 
recent divergence of P. univalens and reveal that the rapid 
evolution of glycolysis-related genes drove this diver-
gence. It is also a key factor leading to the parasitic pref-
erence of roundworm populations. In addition, we found 
that resistance-related genes have a similar tendency, 
which was the potential impact of overuse of anthelmin-
tics. We have established a rapid evolution gene set of 
P. univalens, which will help managers decide on thera-
peutic strategies targeting specific populations and allow 
researchers to monitor the ongoing evolution and diver-
sification of P. univalens.
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