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Abstract 

Background:  Genetic improvement of end-use quality is an important objective in wheat breeding programs to 
meet the requirements of grain markets, millers, and bakers. However, end-use quality phenotyping is expensive 
and laborious thus, testing is often delayed until advanced generations. To better understand the underlying genetic 
architecture of end-use quality traits, we investigated the phenotypic and genotypic structure of 14 end-use quality 
traits in 672 advanced soft white winter wheat breeding lines and cultivars adapted to the Pacific Northwest region of 
the United States.

Results:  This collection of germplasm had continuous distributions for the 14 end-use quality traits with industrially 
significant differences for all traits. The breeding lines and cultivars were genotyped using genotyping-by-sequencing 
and 40,518 SNP markers were used for association mapping (GWAS). The GWAS identified 178 marker-trait associa-
tions (MTAs) distributed across all wheat chromosomes. A total of 40 MTAs were positioned within genomic regions of 
previously discovered end-use quality genes/QTL. Among the identified MTAs, 12 markers had large effects and thus 
could be considered in the larger scheme of selecting and fixing favorable alleles in breeding for end-use quality in 
soft white wheat germplasm. We also identified 15 loci (two of them with large effects) that can be used for simulta-
neous breeding of more than a single end-use quality trait. The results highlight the complex nature of the genetic 
architecture of end-use quality, and the challenges of simultaneously selecting favorable genotypes for a large num-
ber of traits. This study also illustrates that some end-use quality traits were mainly controlled by a larger number of 
small-effect loci and may be more amenable to alternate selection strategies such as genomic selection.

Conclusions:  In conclusion, a breeder may be faced with the dilemma of balancing genotypic selection in early 
generation(s) versus costly phenotyping later on.
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Introduction
End-use quality improvement in soft white wheat (Triti-
cum aestivum  L.)  is one of the primary objectives of 
wheat breeding programs. End-use quality is complex 
and involves multiple traits. The key end-use quality 
parameters in soft white wheat include softer kernels, 
lower grain protein content and gluten strength, less 

damaged starch, lower non-starch polysaccharides that 
lead to decreased water absorption capacity, larger cook-
ies diameter and cake volume. For some soft wheat prod-
ucts, starch paste viscosity is a key quality trait.

In breeding programs, end-use quality phenotyping 
is laborious, expensive, time consuming and requires a 
large amount of grain. Consequently, selection for end-
use quality is often delayed until later breeding stages [1, 
2]. Since most end-use quality traits are predominantly 
controlled by genetic factors [3–5], a better understand-
ing of the underlying genetic architecture of the vari-
ous traits can support strategies for both phenotypic 
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and genotypic selection, including an assessment of the 
potential effectiveness of marker-assisted selection. Anal-
ysis of marker trait associations have identified numerous 
quantitative trait loci (QTL) for different end-use quality 
traits distributed across all 21 wheat chromosomes [2, 4, 
6–23]. However, most of these studies were performed 
in hard wheat (bread wheat) and these investigations [2, 
4, 17, 22, 23] were performed in soft wheat. Soft white 
wheat has unique milling and baking parameters which 
are aimed at making food products such as cookies and 
cakes [24, 25].

A number of end-use quality traits are influenced by 
the effect(s) of major genes. For example, the genetic 
architecture of grain hardness is primarily controlled 
by the puroindolines, of gluten strength by the high 
molecular weight glutenins, and of starch paste viscosity 
by the granule bound starch synthase (‘waxy’) genes [1, 
26]. However, these major genes are often fixed in elite 
breeding populations due to parent selection, or early 
generation phenotypic and/or genotypic selection and do 
not sufficiently account for the levels of end-use quality 
required for cultivar release nor for the range of variation 
observed among breeding populations [25].

A number of mapping studies for end-use quality 
were performed in bi-parental populations and in some 
cases one or both parents were either poorly adapted or 
would not constitute ‘elite’ germplasm for applied plant 
breeding [9, 11, 13]. Additionally, the bi-parental genetic 
structure limits QTL mapping resolution. Genome-wide 
association mapping (GWAS) can overcome these limita-
tions by using historical recombination events that occur 
throughout the germplasm evolution and using elite 
breeding germplasm from the breeding program of inter-
est.. In this study we implemented GWAS using recent 
breeding lines and cultivars from the Washington State 
University (WSU) soft white winter wheat breeding pro-
gram to investigate the underlying genetic architecture of 
phenotypic variation of 14 end-use quality traits in 672 
soft white winter wheat genotypes. We identified end-
use quality associated single nucleotide polymorphism 
(SNP) markers using GWAS and identified large effect 
QTL. These QTL contribute to better understanding of 
the underlying genetic architecture of end-use quality in 
soft white wheat and provide an objective assessment as 
to the potential for marker assisted selection (MAS) ver-
sus other genotypic and phenotypic selection strategies.

Materials and methods
Plant materials
A total of 672 soft white winter wheat breeding lines and 
cultivars were used in this study. The breeding lines were 
F4:5 lines and double haploid lines selected from differ-
ent crosses to represent the diversity present in the WSU 

winter wheat breeding program. The genotypes and 
the environments in which the lines were grown were 
described in Aoun et  al. [27]. In brief, this germplasm 
was evaluated in 29 environments (year-location com-
binations). Genotypes were grown from 2015 to 2019 in 
seven locations in Washington State (WA), USA includ-
ing Pullman, Lind, Davenport, Ritzville, Waterville, Walla 
Walla, and Dayton. In this dataset, there were 1–7 nurs-
eries per environment with a total of 76 nurseries. From 
each nursery, a single sample from one replicate per 
genotype was evaluated for end-use quality traits. The 
dataset was unbalanced with some shared lines between 
environments. The connectivity between environments 
in terms of genotypes was described in Aoun et al. [27]. 
There were 43 genotypes (out of the 672) evaluated for 
end-use quality in more than one-quarter of the environ-
ments [27].

Phenotypic data
The wheat genotypes were evaluated for 14 end-use qual-
ity traits that are classified into four categories which are 
grain characteristics, milling traits, flour characteristics, 
and baking parameters. The phenotypic and genotypic 
data were retrieved from Aoun et al. [27] which investi-
gated genotype × environment interactions and tested 
the performance of genomic prediction for the 14 end‐
use quality traits. Traits associated with grain charac-
teristics included Single Kernel Characterization System 
(SKCS) hardness, SKCS size, SKCS weight, test weight, 
and grain protein content. SKCS hardness is a key deter-
minant of end-use quality where hard wheat is mainly 
used for making bread, and soft wheat is primarily used 
for making cookies, cakes, and confectionery products [1, 
28, 29]. In the grain market, test weight and grain protein 
content are the two main parameters. High test weight, 
which is correlated with kernel weight and size [30, 31], 
usually leads to higher milling performance [32].

Milling traits included break flour yield, flour yield, 
flour ash content, and milling score. Break flour yield 
was calculated as the percent of flour recovered from 
the break rolls, whereas flour yield (‘straight grade’) was 
determined as the proportion of grain recovered as flour 
(break plus reduction flour). Flour ash content is the min-
erals remaining after flour combustion. Milling score was 
a function of both flour yield and flour ash content [33]. 
Higher break flour yield, flour yield, and milling score are 
desirable in soft wheat. Higher inclusion of bran reduces 
the functionality of most doughs and batters [34]. As 
such, mineral content of flours (ash) serves as a proxy for 
bran contamination and lower flour ash is preferred.

Flour functionality plays an important role in baking 
performance. Flour parameters included flour protein 
content, flour sodium dodecyl sulfate sedimentation 
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volume (SDS sedimentation), water solvent retention 
capacity (water SRC), and flour swelling volume (FSV). 
Unlike bread, soft white wheat products require lower 
grain/flour protein content, weaker gluten strength 
(lower SDS sedimentation volume), and low water SRC. 
FSV is an end-use quality parameter associated with 
the amount of amylose and amylopectin components in 
endosperm starch [35] and needs to be high for making 
some Asian-style noodles [1, 36]. The baking parameter 
cookie diameter is considered an important indicator of 
the overall quality of soft wheat [28, 37] and has been a 
key selection trait in soft wheat breeding programs.

These end-use quality traits were measured following 
the procedures from the American Association of Cereal 
Chemists International [38] and as described by Aoun 
et al. [27]. The data set was analyzed using mixed linear 
model in the R package lme4 [39, 40]. The environments 
were considered random, while genotypes were fitted as 
fixed in the model. For each trait, best linear unbiased 
estimators (BLUEs) of the genotypes were extracted from 
the mixed linear model and used for further statistical 
analysis. Broad sense heritability (H2

Cullis) and correla-
tions between traits were previously described by Aoun 
et al. [27].

Genotyping
Genotyping-by-sequencing (GBS) [41] was used to geno-
type the 672 soft white wheat breeding lines and cultivars. 
The genotypic data for the 672 genotypes were previously 
provided by Aoun et al. [27]. The GBS was performed at 
the North Carolina State University Genomic Sciences 
Laboratory in Raleigh, NC, USA. The sequence reads 
were aligned to the T. aestivum RefSeq v1.0 reference 
genome [42] and SNP data were filtered for minor allele 
frequency (MAF) ≥ 5%, missing data ≤ 30%, and hete-
rozygous frequency ≤ 15%. From this, 40,518 SNPs were 
used for further analysis. Missing datapoints in the SNP 
data were imputed using the expectation–maximization 
algorithm implemented in the package rrBLUP [43] in R 
version 4.0.2 [44].

Population structure and linkage disequilibrium
To visualize the population structure in the 672 geno-
types, principal component analysis (PCA) was per-
formed using the ‘prcomp’ function in R based on 40,518 
SNPs. The population structure was visualized using the 
first two principal components (PCs) that explained the 
highest percentage of variation. Pairwise linkage dise-
quilibrium (LD) between SNPs (r2) was estimated using 
TASSEL v5 [45] by applying a sliding window of 50 mark-
ers. The r2 values of marker pairs were plotted against 
the physical distances in Mega base pairs (Mb) after ran-
domly selecting 10% of the total SNP pairs. To visualize 

the LD decay across the genome and for each of the 21 
chromosomes, a locally estimated scatterplot smooth-
ing (LOESS) curve was fitted using the function ‘geom_
smooth’ in R package ggplot2 [46]. The r2 threshold was 
derived from the 95th percentile of the distribution of 
unlinked r2 (for markers on different chromosomes) [47] 
that were significant at the 99.99% level of confidence. 
The r2 threshold is the value beyond which LD was likely 
to be caused by genetic linkage. The intersection of the 
horizontal line at the r2 threshold value with the LOESS 
curve on the LD scatter plot was considered as the esti-
mate of the extent of LD across the genome (genome-
wise LD decay plot) and across each chromosome 
(chromosome-wise LD decay plot).

Genome‑wide association mapping
The BLUEs for each trait were considered as the pheno-
type in the GWAS. Association mapping was performed 
using three models 1) mixed linear model (MLM), 2) 
Fixed and random model Circulating Probability Uni-
fication (FarmCPU) [48], and 3) Bayesian-information 
and Linkage-disequilibrium Iteratively Nested Keyway 
(BLINK) [49] implemented in the GAPIT R package [50]. 
The single-locus MLM is the most widely used in asso-
ciation mapping studies. However, it tests one marker 
at a time and therefore is likely to increase the number 
of false negatives for complex traits [22, 51]. Multi-locus 
models such as FarmCPU were proposed to overcome 
this problem. FarmCPU iteratively uses fixed and random 
models in which the identified significant SNPs from 
the iterations are fitted as cofactors [48]. FarmCPU was 
reported to control for false negatives and false positives 
without causing model overfitting. BLINK was derived 
from the FarmCPU method with a few modifications. 
BLINK does not assume that causal genes are evenly 
distributed across the genome. It also works directly on 
markers instead of bins and excludes markers in LD with 
the most significant markers. BLINK uses Bayesian Infor-
mation Content (BIC) of a fixed effect model to approxi-
mate the maximum likelihood of a random effect model 
to select marker trait associations (MTAs).

The GWAS models considered family relatedness (Kin-
ship matrix or K matrix) [52] and population structure 
(Q matrix). K matrix was included in all GWAS models, 
whereas the optimal number of principal components 
(PCs) in the Q matrix were determined based on quan-
tile–quantile (Q-Q) plots that visualize the expected 
-log10 (P) versus the observed -log10 (P). The number of 
PCs included in the GWAS models was limited to the 
first four PCs. Manhattan plots for MTAs were visualized 
using the R package ‘qqman’ [53]. MTAs were considered 
significant at a false discovery rate (FDR) [54] of ≤ 0.05.
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Based on the T. aestivum RefSeq v1.0 reference genome 
assembly (https://​wheat.​pw.​usda.​gov/​jb/?​data=/​ggds/​
whe-​iwgsc​2018), we identified annotated genes within 
the genomic regions of significant SNPs that exhibit large 
effects (significantly impacted trait values based on Tuk-
ey’s HSD test, had large impact on the phenotype, and 
were unlikely to be false positives, i.e., MAF ≥ 7%). In this 
search, we considered only high-confidence annotated 
genes located within a few kilobase pairs before and after 
the associated SNP physical positions. The putative bio-
logical functions of the candidate genes were retrieved 
from this website https://​wheat-​urgi.​versa​illes.​inra.​fr/​
Seq-​Repos​itory/​Annot​ations. In addition, we extracted 
MTAs available at the International Wheat Genome 
Sequencing Consortium (IWGSC) sequence reposi-
tory that were within the genomic regions of large effect 
MTAs. Furthermore, markers (SNP, simple sequence 
repeat: SSR, Diversity Arrays Technology: DArT) associ-
ated with end-use quality in previous genetic studies [2, 
4, 6–17, 19–22] and physically close (based on T. aesti-
vum RefSeq v1.0 reference genome) to all MTAs in this 
study were determined.

Results
Phenotypic data
The distributions of BLUEs for each of the 14 end-use 
quality traits are illustrated in Fig.  1. There were con-
tinuous phenotypic distributions for all end-use quality 
traits. For grain characteristics, BLUEs ranged from -0.8 
to 54.1 for SKCS hardness, 2.1 to 3.2 mm for SKCS size, 
28.5 to 48.3 mg for SKCS weight, 55.6 to 65.4 kg/hL for 
test weight, and 8.3 to 15.7% for grain protein. For mill-
ing traits, BLUEs ranged from 36.5 to 54.9% for break 
flour yield, 57.1 to 74.3% for flour yield, 0.20 to 0.51% 
for flour ash, and 67.0 to 98.6 for milling score. For flour 
parameters, BLUEs ranged from 6.4 to 12.4% for flour 
protein, 3.4 to 18.2  g/mL for SDS sedimentation, 44.5 
to 73.1% for water SRC, and 11.6 to 26.2 mL/g for FSV. 
For cookie diameter, BLUEs ranged from 7.8 to 9.7  cm. 
For all of these traits, differences in phenotypes would 
be considered to be industrially significant, with many 
values below minimum targets [25]. Moderate to high 
broad sense heritability (H2 = 0.46–0.70) was observed 
for all traits except for grain and flour protein content 
(H2 = 0.18 to 0.19) [27].

Population structure and linkage disequilibrium
Of the 40,518 SNPs, there were 14,102 (34.8%) SNPs on 
the A genome, 16,626 (41.0%) SNPs on the B genome, 
8,656 (21.4%) SNPs on the D genome, and 1,134 (2.8%) 
SNPs on unaligned (UN) chromosome(s). PCA based on 
the first two PCs showed minimal clustering in wheat 
genotypes, which was expected since the plant materials 

in this study were from the same wheat breeding pro-
gram (Supplementary Fig. S1). The first 10 PCs accounted 
cumulatively for 26.3% of the variation. The first four PCs 
explained 5.3%, 4.0%, 3.3% and 3.0% of variation, respec-
tively. The genome-wise LD dropped to an r2 threshold 
of 0.1 within 6.5 Mb on average (Supplementary Fig. S2). 
LD decayed to 0.1 at ~ 2.5–5.0 Mb for chromosomes on 
the A genome, to 5.0–10 Mb for chromosomes on the B 
and the D genome (Supplementary Fig. S3).

Genome‑wide association mapping
GWAS model selection
The best models within each method were selected based 
on examination of Q-Q plots. For MLM, we selected 
MTAs from the K (Kinship) model. Using FarmCPU, 
K + 2PCs (Kinship and Q based on the first two PCs) was 
selected to model SKCS hardness, SKCS weight, grain 
protein content, flour yield, flour ash, milling score, SDS 
sedimentation, water SRC, and cookie diameter, whereas 
K + 3PCs (Kinship and Q based on the first three PCs) 
was selected to model the remaining traits, SKCS size, 
test weight, break flour yield, flour protein content, and 
FSV. For BLINK, we selected K + 4PCs (Kinship and Q 
based on the first four PCs) for all traits.

In contrast to the Q-Q plots generated from FarmCPU 
models, the Q-Q plots from MLM and BLINK did not 
show a sharp deviation of the observed P-value distribu-
tion from the expected P-value distribution (Supplemen-
tary Fig. S4, S5, S6). These results suggest that FarmCPU 
provided a better control of false negatives and false posi-
tives compared to MLM and BLINK. Thus, only associa-
tion mapping results from FarmCPU will be discussed in 
this study (Tables 1,2,3,4 , Supplementary Fig. S7). MTAs 
generated from MLM and BLINK are provided in Sup-
plementary Table S1, S2.

Marker‑trait associations
Based on the LD between markers, each MTA identified 
from the FarmCPU models represent a distinct locus or 
QTL. Considering all traits together, a total of 178 sig-
nificant MTAs were identified across all wheat chromo-
somes (Tables 1,2,3,4). Sixty-two MTAs were detected on 
the A genome, 77 MTAs on the B genome, 34 MTAs on 
the D genome, and five MTAs on unaligned (UN) chro-
mosomes. Chromosome 1B and 7A carried the highest 
number of MTAs (n = 16), whereas chromosome 4D had 
only a single MTA. The favorable alleles and their cor-
responding frequencies are described in Tables  1,2,3,4. 
There were 12 large-effect markers associated with 11 
traits (1–2 markers per trait) (Table  5). For SKCS size, 
FSV, and cookie diameter, all significant markers had 
small effects.

https://wheat.pw.usda.gov/jb/?data=/ggds/whe-iwgsc2018
https://wheat.pw.usda.gov/jb/?data=/ggds/whe-iwgsc2018
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
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Fig. 1  Distributions of best linear unbiased estimators (BLUEs) for 14 end-use quality traits in 672 soft white winter wheat genotypes



Page 6 of 17Aoun et al. BMC Genomics          (2022) 23:440 

Table 1  Summary of SNP markers associated with grain characteristics in 672 soft white winter wheat genotypes

Traita SNPb Chromosome Position (bp)c Allelesd MAFe P valuef FDRg Effect

SKCS hardness S1A_583894689 1A 583,894,689 T/C 0.28 1.75E-05 4.44E-02 1.04

SKCS hardness S1B_635869100 1B 635,869,100 A/G 0.24 3.84E-08 5.19E-04 -1.46

SKCS hardness S3A_690786387 3A 690,786,387 A/G 0.23 4.73E-06 1.60E-02 1.72

SKCS hardness S3B_718850970 3B 718,850,970 C/G 0.46 7.04E-09 1.43E-04 -1.34

SKCS hardness S4D_509798252 4D 509,798,252 A/G 0.38 1.32E-05 3.55E-02 -0.97

SKCS hardness S5A_480515221 5A 480,515,221 C/T 0.14 2.91E-19 1.18E-14 -3.34

SKCS hardness S5B_549556474 5B 549,556,474 G/T 0.06 1.45E-07 1.18E-03 -2.49

SKCS hardness S6B_11537871 6B 11,537,871 C/T 0.05 5.51E-07 3.19E-03 -3.51

SKCS hardness S6B_130163859 6B 130,163,859 A/G 0.18 4.98E-07 3.19E-03 -1.47

SKCS hardness S6B_233122036 6B 233,122,036 T/C 0.07 7.69E-07 3.90E-03 2.10

SKCS hardness S6B_705613777 6B 705,613,777 G/A 0.08 1.36E-06 6.15E-03 2.14

SKCS hardness S7A_12011069 7A 12,011,069 T/A 0.05 9.44E-06 2.73E-02 2.85

SKCS hardness S7A_514892901 7A 514,892,901 A/T 0.12 1.56E-06 6.32E-03 -1.78

SKCS hardness S7B_643501407 7B 643,501,407 A/G 0.46 5.79E-08 5.86E-04 1.37

SKCS hardness S7D_56065854 7D 56,065,854 C/G 0.17 9.33E-06 2.73E-02 1.32

SKCS hardness S7D_617377539 7D 617,377,539 C/T 0.06 3.91E-06 1.44E-02 2.27

SKCS size S1B_569507932 1B 569,507,932 T/C 0.47 1.19E-06 5.36E-03 0.02

SKCS size S2B_154846350 2B 154,846,350 T/G 0.40 1.72E-06 6.96E-03 0.02

SKCS size S2D_563799166 2D 563,799,166 G/T 0.07 8.65E-06 2.50E-02 -0.04

SKCS size S2D_586961640 2D 58,6961,640 A/G 0.20 3.38E-06 1.05E-02 0.03

SKCS size S3A_60689591 3A 60,689,591 T/C 0.32 3.84E-07 2.25E-03 -0.02

SKCS size S3A_721092685 3A 721,092,685 C/G 0.17 2.26E-07 1.96E-03 0.03

SKCS size S4B_578521140 4B 578,521,140 T/C 0.23 2.91E-08 3.93E-04 0.03

SKCS size S5A_578074731 5A 578,074,731 A/G 0.21 4.99E-07 2.53E-03 -0.03

SKCS size S5A_583031341 5A 583,031,341 C/T 0.42 2.28E-06 7.80E-03 -0.02

SKCS size S5A_636959783 5A 636,959,783 T/C 0.17 2.31E-06 7.80E-03 -0.02

SKCS size S5B_615969532 5B 615,969,532 G/A 0.08 3.89E-07 2.25E-03 0.04

SKCS size S6B_126632693 6B 126,632,693 T/G 0.05 1.31E-08 2.65E-04 0.04

SKCS size S6B_336606108 6B 336,606,108 T/G 0.17 2.42E-07 1.96E-03 -0.02

SKCS size S6B_583281710 6B 583,281,710 G/A 0.11 2.86E-10 1.16E-05 0.04

SKCS weight S1B_427530823 1B 427,530,823 T/C 0.15 5.42E-07 4.39E-03 -0.87

SKCS weight S2A_165870782 2A 165,870,782 A/T 0.38 8.34E-07 5.63E-03 0.64

SKCS weight S2B_18326207 2B 18,326,207 C/T 0.23 4.55E-07 4.39E-03 0.63

SKCS weight S2B_533178165 2B 533,178,165 C/G 0.09 4.42E-07 4.39E-03 -1.11

SKCS weight S2D_563799166 2D 563,799,166 G/T 0.07 1.16E-05 5.22E-02 -1.04

SKCS weight S2D_613442636 2D 613,442,636 G/T 0.05 1.77E-06 8.96E-03 1.36

SKCS weight S6B_583281710 6B 583,281,710 G/A 0.11 1.77E-07 4.39E-03 0.75

SKCS weight S7B_686004231 7B 686,004,231 G/A 0.09 3.31E-07 4.39E-03 -1.15

SKCS weight S7D_7495567 7D 7,495,567 G/T 0.05 1.14E-06 6.57E-03 1.42

Test weight S2A_762292662 2A 762,292,662 T/G 0.23 8.08E-06 2.89E-02 -0.31

Test weight S4B_413497949 4B 413,497,949 C/T 0.09 4.02E-08 5.43E-04 -0.39

Test weight S5A_611568887 5A 611,568,887 A/G 0.25 1.79E-08 3.62E-04 0.24

Test weight S5B_506953332 5B 506,953,332 T/A 0.21 1.76E-06 1.42E-02 -0.21

Test weight S5B_550910513 5B 550,910,513 T/C 0.43 3.72E-06 2.15E-02 0.19

Test weight S5B_605171604 5B 605,171,604 T/C 0.09 4.76E-06 2.15E-02 0.27

Test weight S6A_46675024 6A 46,675,024 C/G 0.06 5.32E-06 2.15E-02 -0.36

Test weight S6A_559428977 6A 559,428,977 G/A 0.26 2.45E-09 9.93E-05 0.27

Test weight S6B_510608440 6B 510,608,440 G/A 0.08 4.91E-06 2.15E-02 0.40

Test weight S7A_669715941 7A 669,715,941 T/C 0.14 3.66E-06 2.15E-02 -0.29
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For grain characteristics, five MTAs with large effects 
were detected on chromosome 1B, 2B, 4B, 5A, and 6B 
(Table 5). Markers S5A_480515221 and S6B_705613777 
were associated with SKCS hardness and impacted 
the hardness index by 6.7 and 7.9 units on average, 
respectively. Marker S2B_533178165 was associated 
with SKCS weight and influenced the phenotype by 
3.55 mg. For test weight, S4B_413497949 had the larg-
est effect and resulted in 1.2  kg/hL difference in the 
phenotype on average, whereas for grain protein con-
tent, S1B_46883868 had the largest effect with 0.85% 
increase/decrease in the phenotype. S1B_46883868 was 
also associated with flour protein content and affected 
the trait value by 0.63% on average.

For milling traits, five markers had large effects and 
were detected on chromosomes 1B, 1D, 5A, and 6B 
(Table  5). Marker S1B_653681752 was associated 
with break flour yield and flour yield and influenced 
trait values by 2.9% and 2.7% on average, respec-
tively. An additional large effect marker was associ-
ated with flour yield: S6B_19335996 affected the trait 
value by 2.5%. Marker S4A_120144412 was associated 
with flour ash and influenced the phenotype by 0.03% 
on average. For milling score, S1D_14707739 and 
S5A_20640566 affected the phenotype by 3.8 and 2.4 
units, respectively.

For flour parameters, there were four markers with 
large effects located on chromosomes 1B, 1D, and 4A 
(Table 5). In addition to break flour yield, S1B_653681752 
also influenced water SRC by 4.9% on average. For SDS 
sedimentation, two large effect markers were identified 
including S1D_121990680 and S1D_411063068, which 
affected the trait values by 1.3 and 1.4  g/mL, respec-
tively. Except for S5A_480515221, S4A_120144412, and 
S1D_121990680, which were associated with SKCS hard-
ness, flour ash, and SDS sedimentation, the favorable 
alleles for the remaining nine large effect markers were 
present in high frequencies (86–93%) in this soft white 
wheat germplasm.

Loci associated with at least two end‑use quality traits
Among the 178 MTAs identified in this study, there were 
17 loci associated with more than a single end-use quality 
trait (Table  6). Among these loci, there were two large-
effect markers (S1B_46883868 and S1B_653681752) and 
ten small-effect markers that were associated with at least 
two end-use quality traits. For each of these 12 mark-
ers, there was desirable linkage between the favorable 
alleles. This suggests that these markers are having desir-
able pleiotropic effects and could be useful to simultane-
ously breed for more than a single end-use quality trait. 
Based on pairwise LD estimates between physically close 

a SKCS, Single Kernel Characterization System
b Significant single-nucleotide polymorphism (SNP). Markers in bold are markers with large effects
c Physical position of SNP sequence based on Wheat Chinese Spring IWGSC RefSeq v1.0
d SNP major allele/minor allele, the allele in bold is the favorable allele in soft white wheat (associated with higher phenotypic values for SKCS size, SKCS weight, and 
test weight and lower phenotypic values for SKCS hardness and grain protein content)
e Minor allele frequency of the SNP
f P value of the significant SNP
g False discovery rate of the significant SNP

Table 1  (continued)

Traita SNPb Chromosome Position (bp)c Allelesd MAFe P valuef FDRg Effect

Test weight S7B_40194878 7B 40,194,878 G/C 0.18 2.26E-07 2.29E-03 0.25

Test weight S7B_636744313 7B 636,744,313 T/A 0.17 8.54E-06 2.89E-02 0.28

Grain protein S1A_585175145 1A 58,517,5145 G/C 0.10 1.33E-05 4.48E-02 0.28

Grain protein S1B_46883868 1B 46,883,868 C/A 0.09 1.04E-10 4.22E-06 0.38

Grain protein S1B_633974958 1B 633,974,958 A/G 0.45 9.35E-08 7.58E-04 -0.18

Grain protein S2A_612836091 2A 612,836,091 C/T 0.05 5.91E-06 2.18E-02 -0.31

Grain protein S3B_405161312 3B 405,161,312 T/C 0.27 2.74E-06 1.20E-02 -0.19

Grain protein S3B_690878020 3B 690,878,020 T/C 0.44 1.72E-06 9.94E-03 -0.14

Grain protein S4A_352495200 4A 352,495,200 G/A 0.10 1.61E-06 9.94E-03 -0.23

Grain protein S4B_63121316 4B 63,121,316 C/T 0.10 3.36E-08 3.41E-04 0.31

Grain protein S5D_543253602 5D 543,253,602 G/A 0.08 1.85E-09 2.50E-05 -0.38

Grain protein S6D_471179733 6D 471,179,733 A/C 0.05 2.95E-06 1.20E-02 0.52

Grain protein S7A_731026067 7A 731,026,067 A/T 0.26 1.43E-09 2.50E-05 0.27

Grain protein SUN_86449317 UN 86,449,317 T/G 0.19 1.45E-05 4.53E-02 0.22

Grain protein SUN_351152321 UN 351,152,321 A/G 0.31 2.75E-06 1.20E-02 -0.19
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Table 2  Summary of SNP markers associated with milling traits in 672 soft white winter wheat genotypes

Trait SNPa Chromosome Position (bp)b Allelesc MAFd P valuee FDRf Effect

Break flour yield S1B_100055026 1B 100,055,026 T/C 0.08 2.96E-07 2.40E-03 1.00

Break flour yield S1B_653681752 1B 65,368,1752 G/T 0.14 1.32E-13 3.52E-09 -1.05

Break flour yield S2A_678005650 2A 678,005,650 C/T 0.31 1.74E-13 3.52E-09 0.55

Break flour yield S3B_630394456 3B 630,394,456 G/T 0.06 6.94E-07 4.69E-03 0.79

Break flour yield S4A_584538827 4A 584,538,827 A/G 0.11 7.69E-11 1.04E-06 -0.87

Break flour yield S4B_611852943 4B 611,852,943 G/C 0.08 6.37E-09 6.45E-05 0.70

Break flour yield S5B_508665777 5B 508,665,777 T/C 0.07 3.67E-06 1.65E-02 -0.62

Break flour yield S7A_34527313 7A 34,527,313 G/C 0.33 9.84E-06 3.63E-02 0.27

Break flour yield S7A_642899331 7A 642,899,331 C/G 0.14 1.23E-06 7.13E-03 -0.44

Break flour yield S7A_732594008 7A 732,594,008 A/G 0.23 1.60E-06 8.11E-03 -0.41

Break flour yield S7D_56065854 7D 56,065,854 C/G 0.17 4.55E-06 1.84E-02 -0.44

Flour yield S1A_9128313 1A 9,128,313 G/T 0.39 1.09E-06 4.43E-03 0.38

Flour yield S1A_15686346 1A 15,686,346 A/G 0.34 2.28E-06 8.40E-03 -0.31

Flour yield S1A_587581129 1A 587,581,129 A/G 0.06 1.20E-05 3.05E-02 -0.48

Flour yield S1B_555294134 1B 555,294,134 C/T 0.10 3.62E-06 1.20E-02 -0.48

Flour yield S1B_585326031 1B 585,326,031 C/G 0.44 5.55E-07 3.22E-03 0.28

Flour yield S1B_653681752 1B 653,681,752 G/T 0.14 5.38E-17 2.18E-12 -1.05

Flour yield S2A_57924183 2A 57,924,183 A/G 0.42 9.10E-06 2.46E-02 -0.25

Flour yield S3A_621592864 3A 621,592,864 C/T 0.31 7.74E-06 2.24E-02 -0.31

Flour yield S5A_382294123 5A 382,294,123 G/A 0.24 1.37E-11 1.84E-07 0.55

Flour yield S5B_508665777 5B 508,665,777 T/C 0.07 2.14E-07 1.45E-03 -0.64

Flour yield S6B_19335996 6B 19,335,996 G/A 0.07 2.13E-13 4.32E-09 -0.89

Flour yield S6D_471614981 6D 471,614,981 T/C 0.35 1.88E-07 1.45E-03 -0.32

Flour yield S7A_66283612 7A 66,283,612 A/C 0.33 8.24E-07 4.17E-03 -0.34

Flour yield S7A_735818991 7A 735,818,991 C/G 0.22 9.60E-07 4.32E-03 0.36

Flour yield S7B_123656516 7B 123,656,516 G/C 0.15 7.25E-10 7.34E-06 -0.60

Flour ash S1D_20702150 1D 20,702,150 G/T 0.23 2.54E-06 1.03E-02 0.01

Flour ash S1D_488805272 1D 488,805,272 G/A 0.17 3.53E-06 1.30E-02 0.01

Flour ash S2A_77744254 2A 77,744,254 G/A 0.09 1.18E-05 3.99E-02 -0.01

Flour ash S2B_794429290 2B 794,429,290 C/T 0.30 5.61E-07 3.79E-03 -0.01

Flour ash S2D_551847796 2D 551,847,796 G/C 0.10 2.19E-06 9.85E-03 -0.01

Flour ash S3D_540232458 3D 540,232,458 C/A 0.08 1.60E-05 4.99E-02 -0.01

Flour ash S4A_120144412 4A 120,144,412 T/C 0.10 4.63E-08 4.85E-04 -0.02

Flour ash S5A_3649534 5A 3,649,534 C/A 0.33 3.13E-07 2.53E-03 0.01

Flour ash S5B_64633223 5B 64,633,223 G/A 0.05 7.56E-07 3.83E-03 -0.02

Flour ash S5B_68052478 5B 68,052,478 A/T 0.36 1.49E-09 3.02E-05 -0.01

Flour ash S5D_416596873 5D 416,596,873 T/G 0.10 1.33E-10 5.38E-06 0.02

Flour ash S6D_469583807 6D 469,583,807 G/C 0.10 7.00E-07 3.83E-03 0.01

Flour ash S7B_624947199 7B 624,947,199 C/A 0.05 4.79E-08 4.85E-04 0.02

Milling score S1D_14707739 1D 14,707,739 G/T 0.08 4.78E-08 3.88E-04 1.49

Milling score S2B_47200283 2B 47,200,283 C/G 0.22 5.52E-06 2.24E-02 1.00

Milling score S2B_130028901 2B 130,028,901 G/C 0.27 6.33E-06 2.33E-02 -0.59

Milling score S2B_759735490 2B 759,735,490 T/C 0.27 3.51E-11 1.42E-06 1.01

Milling score S3B_82495634 3B 82,495,634 G/C 0.07 1.64E-06 9.48E-03 1.17

Milling score S4A_724316409 4A 724,316,409 G/A 0.27 1.67E-05 5.19E-02 0.58

Milling score S5A_20640566 5A 20,640,566 C/T 0.09 1.41E-08 2.29E-04 -1.24

Milling score S5B_68052478 5B 68,052,478 A/T 0.36 2.19E-06 1.11E-02 0.71

Milling score S5B_503326206 5B 503,326,206 C/T 0.19 2.49E-06 1.12E-02 -0.78

Milling score S6B_27918221 6B 27,918,221 C/T 0.24 5.81E-08 3.93E-04 0.90



Page 9 of 17Aoun et al. BMC Genomics          (2022) 23:440 	

markers, there were additionally five loci on chromo-
somes 1A, 1B, 6B, 7A, and 7B that were associated with 
more than a single end-use quality trait (Table  6). For 
each of these loci, LD between significant markers that 
were associated with different traits was higher than the 
r2 threshold of 0.1. For three of these loci, S1A_586706
397/S1A_587581129, S6B_27918221/ S6B_29771821 and 
S7A_730416426/S7A_731026067, there was desirable 
linkage between marker alleles in each locus, whereas for 
the other two loci S1B_561712520/S1B_569507932 and 
S7B_624947199/S7B_636744313, there was unfavorable 
linkage. Therefore, for the latter two loci, selecting for 
one trait could negatively affect the other trait.

Co‑localized MTAs with previously identified end‑use 
quality genes/QTL
A total of 35 annotated genes were located close to the 
physical positions of the 12 large effect markers. The 
putative functions of these genes are described in Supple-
mentary Table S3. In addition, we found 13 GWAS MTAs 
available at the IWGSC sequence repository that were 
within the genomic regions of the 12 large effect markers 
identified in our study. These GWAS MTAs from previ-
ous studies were associated with thousand kernel weight, 
test weight, grain fill duration, grain protein content, SDS 
sedimentation, and grain minerals (Cu and Zn) (Sup-
plementary Table S3). Furthermore, comparative map-
ping (based on physical positions of molecular markers) 
between all the 178 identified MTAs from this study and 
end-use quality QTL/genes from previous genetic stud-
ies [2, 4, 6–17, 19–22] showed that 40 MTAs were posi-
tioned within genomic regions of previously discovered 
end-use quality genes/QTL (Supplementary Table S4).

Of the 16 identified loci for SKCS hardness in this study, 
10 loci were found within genomic regions of previously 
reported grain hardness QTL (Supplementary Table  S4). 
For instance, SKCS hardness associated markers in this 
study, S1A_583894689, S3A_690786387, S3B_718850970, 

S5A_480515221, S6B_130163859, S6B_705613777, and 
S7A_12011069 were located close to the positions of pre-
viously reported grain hardness associated markers/QTL, 
QGh.caas-1A (~ 575  Mb, [9]), wPt-4725 (709  Mb [12],), 
QKh.WJ-3B.3 (~ 695  Mb, [8]), S5A_463766631 (464  Mb, 
[22]), IWB11485 (121  Mb, [2]), S6B_703822990 (704  Mb, 
[22]), wPt-0744 (0.2  Mb, [12]), respectively. Similarly, 
S1B_635869100 was positioned 8–13  Mb from Qgh-1B 
[13], QKh.WY-1B.1b [8], QGh.cass-1B [7], QNhi.hwwgr-
1BL [10], and QKH.ksw-1B [21]. On chromosome 5B, 
S5B_549556474 identified in this study was found close to 
Qshi.hwwgr-5BL (566–571 Mb, [10]) and a QTL flanked by 
the SSR marker wmc289 (556 Mb, [11]). In addition, a MTA 
on chromosome 7B, S7B_643501407, was located at ~ 8 Mb 
from QKh.WJ-7B.1B [8] and QGh.caas-7B.1b [7]. Our com-
parative mapping showed the importance of these 10 previ-
ously characterized loci in controlling kernel hardness and 
suggests that the remaining six loci could be novel.

Three loci associated with SKCS size were located 
close to previously identified kernel size QTL (Sup-
plementary Table S4). For instance, S2B_154846350, 
associated with SKCS size in this study, was located at 
4–5 Mb from IWB30179 [2] and QKd.cob-1A (~ 134 Mb, 
[14]) that were associated with SKCS size and kernel 
diameter, respectively. Similarly, S2D_563799166 and 
S5A_578074731 were close to previously identified ker-
nel diameter QTL, QKd.hwwgr-2DL (~ 552  Mb, [10]) 
and QKD.ksu-5A1 (568 Mb, [21]), respectively. For SKCS 
weight, S2D_563799166 identified in this study was 
positioned at ~ 12  Mb from QSkw.hwwgr-2DL (552  Mb, 
[10]) (Supplementary Table S4). Two of our identified 
MTAs for test weight were found near previously iden-
tified test weight associated markers/QTL. This includes 
S2A_762292662 located close to IWB35564 (760 Mb, [2]) 
and S7B_40194878 located at 7–8 Mb from QTW.ksu-7B 
[21] and IWB54370 [2] (Supplementary Table S4).

Four of the associated loci with grain protein content in 
this study were previously reported (Supplementary Table 
S4). This includes S1B_633974958, which was positioned 

a Significant single-nucleotide polymorphism (SNP). Markers in bold are markers with large effects
b Physical position of SNP sequence based on Wheat Chinese Spring IWGSC RefSeq v1.0
c SNP major allele/minor allele, the allele in bold is the favorable allele in soft white wheat (associated with higher phenotypic values for break flour yield, flour yield, 
and milling score and lower phenotypic values for flour ash)
d Minor allele frequency of the SNP
e P value of the significant SNP
f False discovery rate of the significant SNP

Table 2  (continued)

Trait SNPa Chromosome Position (bp)b Allelesc MAFd P valuee FDRf Effect

Milling score S6D_471614981 6D 47,161,4981 T/C 0.37 1.70E-08 2.29E-04 -0.83

Milling score S7D_319849357 7D 319,849,357 G/A 0.14 4.16E-08 3.88E-04 1.25

Milling score SUN_31626104 UN 31,626,104 G/T 0.25 1.08E-05 3.63E-02 0.65
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Table 3  Summary of SNP markers associated with flour functionality in 672 soft white winter wheat genotypes

Traita SNPb Chromosome Position (bp)c Allelesd MAFe P valuef FDRg Effect

Flour protein S1B_46883868 1B 46,883,868 C/A 0.09 1.67E-09 3.37E-05 0.29

Flour protein S2A_159882069 2A 159,882,069 C/T 0.09 4.24E-07 2.46E-03 0.24

Flour protein S2D_28763299 2D 28,763,299 G/A 0.34 1.17E-08 1.19E-04 -0.18

Flour protein S3B_690878020 3B 690,878,020 T/C 0.44 8.56E-09 1.16E-04 -0.19

Flour protein S4A_514430898 4A 514,430,898 C/T 0.46 3.11E-12 1.26E-07 0.19

Flour protein S4B_63121316 4B 63,121,316 C/T 0.10 2.21E-06 9.95E-03 0.22

Flour protein S5D_135645455 5D 135,645,455 G/A 0.35 2.28E-08 1.85E-04 -0.17

Flour protein S7A_32805734 7A 32,805,734 G/A 0.27 1.27E-06 6.46E-03 -0.16

Flour protein S7A_730416426 7A 730,416,426 G/A 0.21 1.06E-05 4.00E-02 0.13

Flour protein S7D_507227865 7D 507,227,865 G/T 0.05 1.09E-05 4.00E-02 -0.32

Flour protein SUN_351152321 UN 351,152,321 A/G 0.31 1.35E-07 9.13E-04 -0.19

SDS sedimentation S1A_5326555 1A 5326,555 G/A 0.30 1.59E-06 8.65E-03 -0.37

SDS sedimentation S1B_561712520 1B 561,712,520 G/A 0.40 8.53E-14 3.45E-09 0.48

SDS sedimentation S1D_121990680 1D 121,990,680 T/G 0.07 1.08E-06 7.26E-03 -0.67

SDS sedimentation S1D_223797230 1D 223,797,230 C/A 0.05 1.78E-06 8.65E-03 -0.75

SDS sedimentation S1D_411063068 1D 411,063,068 T/A 0.14 1.95E-10 3.95E-06 0.65

SDS sedimentation S2B_155110438 2B 155,110,438 A/G 0.42 2.14E-06 8.65E-03 -0.33

SDS sedimentation S3A_697202279 3A 697,202,279 T/C 0.09 7.40E-06 2.50E-02 0.47

SDS sedimentation S3B_723505334 3B 723,505,334 T/G 0.43 1.18E-09 1.59E-05 -0.42

SDS sedimentation S5A_585018041 5A 585,018,041 A/G 0.44 1.97E-06 8.65E-03 0.33

SDS sedimentation S5A_633105837 5A 633,105,837 C/A 0.06 3.25E-06 1.20E-02 -0.75

SDS sedimentation S5B_539075483 5B 539,075,483 A/G 0.11 7.34E-08 7.44E-04 0.61

SDS sedimentation S7A_108785365 7A 108,785,365 G/A 0.07 1.06E-05 3.32E-02 0.93

SDS sedimentation S7A_675198728 7A 675,198,728 C/T 0.11 1.42E-07 1.15E-03 -0.57

Water SRC S1B_547973154 1B 547,973,154 C/T 0.10 5.59E-08 3.78E-04 0.60

Water SRC S1B_653681752 1B 653,681,752 G/T 0.14 1.25E-10 5.08E-06 0.92

Water SRC S2A_613720768 2A 613,720,768 T/C 0.06 2.02E-07 1.02E-03 -0.74

Water SRC S2B_66559534 2B 66,559,534 C/A 0.08 5.49E-07 2.22E-03 0.69

Water SRC S3A_24993876 3A 24,993,876 C/T 0.08 1.49E-07 8.61E-04 0.74

Water SRC S5A_382294123 5A 382,294,123 G/A 0.24 2.88E-08 2.33E-04 -0.46

Water SRC S5A_673550305 5A 673,550,305 C/G 0.37 1.18E-09 1.59E-05 -0.45

Water SRC S6B_29771821 6B 29,771,821 G/C 0.35 2.97E-07 1.34E-03 -0.36

Water SRC S7A_709765148 7A 709,765,148 G/T 0.12 9.56E-10 1.59E-05 0.69

Water SRC S7B_539196288 7B 539,196,288 A/G 0.07 1.35E-08 1.37E-04 0.72

Water SRC S7D_327690580 7D 327,690,580 G/A 0.26 8.76E-06 3.23E-02 -0.38

FSV S1A_534055653 1A 534,055,653 G/T 0.05 1.70E-06 8.40E-03 0.74

FSV S1B_6678732 1B 6,678,732 A/C 0.28 8.90E-09 3.60E-04 -0.38

FSV S2A_705583892 2A 705,583,892 T/C 0.10 2.86E-06 9.65E-03 0.44

FSV S2B_7653964 2B 7,653,964 C/T 0.19 2.28E-06 8.40E-03 0.43

FSV S2B_31382050 2B 31,382,050 G/C 0.48 1.74E-06 8.40E-03 -0.27

FSV S3D_266839264 3D 266,839,264 A/G 0.29 2.21E-06 8.40E-03 0.31

FSV S3D_601013637 3D 601,013,637 A/G 0.13 4.77E-07 3.22E-03 0.49

FSV S4A_12168393 4A 12,168,393 C/T 0.33 3.61E-07 3.22E-03 -0.33

FSV S4B_541252759 4B 541,252,759 A/G 0.15 2.04E-06 8.40E-03 -0.44

FSV S5D_86308878 5D 86,308,878 C/A 0.05 4.10E-08 8.31E-04 0.80

FSV S7A_200608114 7A 20,060,8114 G/T 0.18 1.28E-05 3.71E-02 0.45

FSV S7A_583357214 7A 583,357,214 G/A 0.05 4.20E-07 3.22E-03 0.73

FSV S7B_540056850 7B 540,056,850 C/T 0.06 6.71E-08 9.06E-04 0.66

FSV S7D_38000037 7D 38,000,037 C/T 0.06 5.62E-06 1.75E-02 -0.63

a Water SRC, water solvent retention capacity; FSV, flour swelling volume
b Significant single-nucleotide polymorphism (SNP). Markers in bold are markers with large effects
c Physical position of SNP sequence based on Wheat Chinese Spring IWGSC RefSeq v1.0
d SNP major allele/minor allele, the allele in bold is the favorable allele in soft white wheat (associated with higher phenotypic values FSV and lower phenotypic values 
for flour protein, SDS sedimentation, and water SRC)
e Minor allele frequency of the SNP
f P value of the significant SNP
g False discovery rate of the significant SNP
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close to QGpc.caas-1B.1 (628–638 Mb) and QWgc.caas-1B 
(~ 628–634 Mb), which were associated with grain protein 
content and wet gluten content, respectively [7]. Similarly, 
S4B_63121316 and S5D_543253602 were found close to 
associated markers with grain protein content gwm368 
(60  Mb, [11]) and wPt-9788/wPt-0400 (560  Mb, [12]), 
respectively. On chromosome 7A, the grain protein con-
tent associated marker, S7A_731026067 was 18 Mb from 
Qgpc.7A.1 (wmc525, [19]), which was associated with both 
protein content and dry gluten content.

For break flour yield, the associated locus tagged by 
marker S3B_630394456 was at the physical position 
of IWA6254 (630  Mb) also associated with break flour 
yield [17]. For flour yield, five of the identified MTAs 
were mapped close to flour yield associated loci in pre-
vious genetic studies (Supplementary Table S4). For 
instance, S1A_9128313 and S1A_15686346 were in close 
proximity to QFY.ksu-1A (7  Mb, [21]). S1A_9128313 
and S1A_15686346 were also within the genomic 
regions of the genes TraesCS1A01G010900 (5  Mb) and 
TraesCS1A01G039600 (16  Mb), respectively. TraesC-
S1A01G010900 (5  Mb) and TraesCS1A01G039600 were 
annotated as low molecular weight glutenin subunit 
and high molecular weight glutenin subunit, respec-
tively. Another MTA on chromosome 1B associated with 
flour yield, S1B_653681752, was identified close to QFY.
ksu-1B (649  Mb) [21]. Similarly, S5A_382294123 and 
S6B_19335996 were found in proximity to IWB76667 
(384  Mb, [2]) and IWA7725 (27  Mb, [17]), respectively. 

Two flour ash associated loci in this study, S5A_3649534 
and S5B_68052478, were positioned close to Qgac.
cob-5A (gwm443, 11  Mb) and Qgac.cob-5B.1 (gwm540, 
67 Mb), respectively, which were previously identified by 
El-Feki et al. [14] (Supplementary Table S4).

For flour protein, S2D_28763299 was located 
15–17  Mb from QGpc.caas-2D [7], which was associ-
ated with grain protein content and QWgc.WY-2D.5 [8], 
which was associated with wet gluten content. Similarly, 
S7A_730416426 associated with flour protein content 
in this study was ~ 17  Mb away from qGPC.7A.1 [19], 
which was associated with grain protein content and 
dry gluten content (Supplementary Table S4).

Two SDS sedimentation associated markers in this 
study were previously identified (Supplementary 
Table S4). These loci include S1B_561712520 located 
close to IWB14950 (558 Mb, [2]) and the gene Glu-B1 
(556 Mb) and S5B_539075483, which mapped close to 
QSsd.caas-5B (527  Mb, [9]). Among water SRC asso-
ciated markers, S1B_547973154, S1B_653681752, 
S2B_66559534, and S6B_29771821 were positioned 
near Glu-B1 (556  Mb), IWB27057 (652  Mb, [2]), 
IWA820 (44  Mb, [17]), and IWA7725 (27  Mb, [17]), 
respectively (Supplementary Table S4).

Discussion
This study used historical data that captured a wide 
range of phenotypic variation for end-use quality within 
a soft white winter wheat breeding program. Heritability 

Table 4  Summary of SNP markers associated with cookie diameter in 672 soft white winter wheat genotypes

a Significant single-nucleotide polymorphism (SNP). Markers in bold are markers with large effects
b Physical position of SNP sequence based on Wheat Chinese Spring IWGSC RefSeq v1.0
c SNP major allele/minor allele, the allele in bold is the favorable allele in soft white wheat (associated with higher cookie diameter)
d Minor allele frequency of the SNP
e P value of the significant SNP
f False discovery rate of the significant SNP

Trait SNPa Chromosome Position (bp)b Allelesc MAFd P valuee FDRf Effect

Cookie diameter S1A_586706397 1A 586,706,397 G/T 0.06 1.89E-09 3.83E-05 -0.08

Cookie diameter S1B_573323546 1B 573,323,546 G/A 0.12 6.74E-06 2.62E-02 -0.06

Cookie diameter S2D_28832058 2D 28,832,058 T/C 0.40 2.25E-06 1.01E-02 0.04

Cookie diameter S4A_583968823 4A 583,968,823 G/A 0.10 8.52E-08 5.77E-04 0.06

Cookie diameter S4A_688407511 4A 688,407,511 G/A 0.17 5.03E-08 5.09E-04 -0.05

Cookie diameter S4B_667833352 4B 667,833,352 C/T 0.18 1.33E-06 6.73E-03 -0.06

Cookie diameter S5A_555334864 5A 555,334,864 C/T 0.43 1.27E-09 3.83E-05 0.05

Cookie diameter S5B_418463680 5B 418,463,680 A/T 0.18 9.94E-08 5.77E-04 -0.06

Cookie diameter S5B_571725191 5B 571,725,191 T/A 0.36 7.11E-06 2.62E-02 0.03

Cookie diameter S5B_580976632 5B 580,976,632 A/C 0.18 1.25E-05 3.89E-02 0.04

Cookie diameter S7B_648784573 7B 648,784,573 G/A 0.10 4.48E-08 5.09E-04 0.07

Cookie diameter S7D_56065854 7D 56,065,854 C/G 0.18 9.97E-08 5.77E-04 -0.05

Cookie diameter SUN_82579190 UN 82,579,190 G/C 0.14 9.93E-06 3.35E-02 -0.05
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Table 5  Allelic effect of large-effect markers on end-use quality traits in soft white wheat

a Minor allele frequency
b Allele in bold is the favorable allele in soft white wheat
c Number of genotypes per marker allele
d BLUE, best linear unbiased estimators
e The letters represent results of Tukey’s HSD test (treatments with different letters are significantly different at 95% level of confidence)

Trait Markers MAFa Allelesb Nc Mean BLUEd Tukey’s teste

SKCS hardness S5A_480515221 0.14 CC 572 25.6 A

CT 18 20.6 B

TT 82 18.9 B

S6B_705613777 0.08 AA 13 32.8 A

AG 75 24.9 B

GG 584 24.5 B

SKCS weight S2B_533178165 0.09 CC 569 39.3 A

CG 89 37.9 B

GG 14 35.8 B

Test weight S4B_413497949 0.09 CC 602 62.1 A

CT 15 61.3 AB

TT 55 60.9 B

Grain protein S1B_46883868 0.09 AA 46 11.9 A

AC 17 11.8 A

CC 609 11.1 B

Break flour yield S1B_653681752 0.14 GG 494 48.3 A

GT 171 47.3 B

TT 7 45.5 C

Flour yield S1B_653681752 0.14 GG 494 69.6 A

GT 171 68.7 B

TT 7 66.9 B

S6B_19335996 0.07 AA 38 67.0 B

AG 16 68.1 B

GG 618 69.5 A

Flour ash S4A_120144412 0.10 CC 49 0.36 B

CT 29 0.36 B

TT 594 0.39 A

Milling score S1D_14707739 0.08 GG 556 84.7 B

GT 84 86.8 A

TT 10 88.5 A

S5A_20640566 0.09 CC 576 85.2 A

CT 31 85.7 A

TT 43 82.8 B

Flour protein S1B_46883868 0.09 CC 609 9.2 B

CA 17 9.7 A

AA 46 9.8 A

SDS Sedimentation S1D_121990680 0.07 GG 16 9.4 B

GT 58 10.2 AB

TT 598 10.7 A

S1D_411063068 0.14 AA 76 11.9 A

AT 25 10.8 AB

TT 571 10.5 B

Water SRC S1B_653681752 0.14 GG 494 54.0 C

GT 171 55.1 B

TT 7 58.9 A
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estimates for end-use quality traits were moderate 
to high except for grain and flour protein content. 
This suggests that most traits are primarily controlled 
by genetic factors and that a genotypic selection (as 
opposed to phenotypic selection) is a rational strategy. 
This study identified the genetic architecture underlying 
14 end-use quality traits among recent breeding lines 
and cultivars from a soft white winter wheat breeding 
program. Prior to this study, Jernigan et al. [2] investi-
gated the genetic architecture of end use quality in a set 
of 480 advanced soft white winter wheat breeding lines 
and cultivars from Pacific Northwest breeding pro-
grams selected from 1992 to 2014. Thus, the germplasm 
used in this study is different from that used by Jernigan 
et al. [2]. Consequently, our investigation was expected 
to corroborate previous and/or discover additional QTL 
associated with end-use quality in soft white wheat.

Identified MTAs in this study as well as genotypes with 
favorable alleles will be useful for end-use quality improve-
ment in soft white and other types of wheat. The 12 large effect 
markers can be converted into Kompetitive Allele Specific 
PCR (KASP) or thermal asymmetric reverse PCR  (STARP) 
markers for use in marker-assisted selection (MAS). Among 
these large effect markers, S1B_653681752 is useful to breed 
for higher break flour yield and flour yield and lower water 
SRC. Similarly, S1B_46883868 is associated with both grain 
protein content and flour protein. The favorable alleles of nine 
of the large effect markers were present in high frequencies in 
this germplasm. This suggested that these markers were under 
high selection pressure in the soft white wheat breeding pro-
gram, likely the result of long-term phenotyping and selection, 
and the pyramiding of favorable alleles across the breeding 
populations. Based on our comparative mapping, eight of the 
large effect markers including S1B_46883868, S1D_14707739, 
S1D_121990680, S1D_411063068, S2B_533178165, 
S4A_120144412, S4B_413497949, and S5A_20640566 were 
not reported in previous studies, thus should be prioritized 
for MAS. Only a few loci were found to have large effects, sug-
gesting that many end-use quality traits have complex genetic 
architecture and are mainly controlled by several minor genes 
with small effects. For some traits like SKCS diameter, FSV, 
and cookie diameter, all identified markers had small effects, 
suggesting that MAS may not be useful for these traits. There-
fore, genomic selection might be a better approach to imple-
ment for such traits [27, 55].

Grain characteristics
Grain characteristics greatly influence wheat end-use qual-
ity [4, 7, 11, 30, 47]. Grain hardness affects most end-use 
quality traits including break flour yield, flour yield, flour 
particle size, starch damage, dough strength, and cookie 
diameter [27, 56–58]. The variation in grain hardness in 
the present soft wheat germplasm, like most soft wheat 

breeding populations, is independent of the puroindolines 
because wild-type puroindoline genes at the Ha locus are 
generally fixed. This is consistent that no MTAs were iden-
tified on chromosome 5DS in this study. Other grain char-
acteristics including SKCS size, SKCS weight, test weight, 
and grain protein influence wheat milling performance [28, 
30]. SKCS size and SKCS weight were highly correlated in 
this germplasm (r = 0.8; [27]) and this was reflected in the 
GWAS in which S2D_563799166 and S6B_583281710 
were found to be associated with both traits.

Grain protein content is an essential quality trait that 
affects flour functionality. Unlike bread, soft wheat prod-
ucts often require lower protein levels to minimize gluten 
formation and mixing strength [5]. The positive correla-
tion (r = 0.4–05; [27]) between grain/flour protein content 
and SDS sedimentation (a measure of gluten strength) in 
this germplasm provides further evidence of their direct 
relationship. However, based on the GWAS, no significant 
markers were in common between SDS sedimentation and 
grain/flour protein content. Grain and flour protein were 
phenotypically correlated in this germplasm [27]. This rela-
tionship was also evident in our GWAS in which five mark-
ers were associated with both grain and flour protein. Grain 
and flour protein in this wheat collection had low heritabil-
ity estimates and high genotype by environment interac-
tions as described by Aoun et al. [27]. Consequently, most 
markers associated with grain/flour protein in this study 
had small effects, except for marker S1B_46883868.

Milling traits
Higher break flour yield, flour yield, lower flour ash, and 
higher milling score are desirable traits in soft wheat. Cul-
tivars with alleles that increase these traits could lead to 
higher milling performance and thus greater profit for flour 
millers. Moderate to high heritability estimates and posi-
tive correlations among milling traits in this germplasm 
[27] suggest that genetic gain and simultaneous breeding 
for these traits is possible. Positive correlations between 
milling traits were also obvious in our GWAS results. For 
instance, S1B_653681752 and S5B_508665777 favorable 
alleles for break flour yield were also associated with higher 
flour yield. Similarly, S6D_471614981, a favorable allele for 
flour yield was also associated with higher milling score. 
Negative correlations between milling score and ash in this 
germplasm (r = -0.7) were discussed in Aoun et  al. [27]. 
This desirable negative correlation was also reflected in our 
GWAS in which the S5B_68052478 minor allele was asso-
ciated with lower ash and higher milling score. We found 
that S1B_100055026, which was associated with break 
flour yield, was located close to Glu-B3 gene flanked by the 
DArT marker wPt-1317 (137 Mb, [14]). Similarly, the flour 
yield associated marker in this study, S1B_555294134, was 
located 1 Mb from Glu-B1 (556 Mb). It is well known that 
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glutenin subunit families are major components of wheat 
endosperm storage proteins and are associated with many 
end-use quality traits. The presence of break flour yield 
and flour yield associated loci close to Glu-B1 and Glu-B3 
may suggest that there is a genetic association between 
endosperm storage proteins and endosperm structure as 
evidenced by Boehm Jr et al. [59]. The composition of the 
protein matrix surrounding starch granules likely contrib-
utes to the mechanical strength of the endosperm.

Flour and baking parameters
Unlike bread, confectionary products require lower glu-
ten strength and water absorption capacity, which were 
measured using SDS sedimentation and water SRC, 
respectively. Higher water SRC is in part due to starch 
damage from milling and non-starch polysaccharides 
[5, 33, 60] and thus, lower water absorption is preferred 
as it results in better cookie spread and lower viscosity 
batters. Three water SRC associated markers co-local-
ized with milling trait associated markers including 
S1B_653681752, S5A_382294123, and S6B_27918221/ 
S6B_29771821. Negative correlations between water SRC 
and milling traits previously discussed by Aoun et al. [27] 
were also observed in our GWAS results particularly for 
markers S1B_653681752 and S5A_382294123.

Higher FSV is desirable for making some Asian-style 
noodles [1, 36]. We found that S1A_534055653, which was 
associated with FSV in our study was near the gene Glu-
A1 flanked by the SSR marker wmc312 (511  Mb, [14]). 
This result suggests genetic correlation between gluten 
content/strength and FSV. Similar observation was also 
found for cookie diameter in which its associated marker 
S1B_573323546 was close to the position of the gene Glu-
B1. The FSV associated marker S7D_38000037 from this 
study was 2 Mb from the waxy locus Wx-D1. The associa-
tion between S7D_38000037 and any null allele at Wx-D1 
is at present unknown, but is unlikely as the known Waxy 
allele at Wx-D1 is rare [61]. Similarly, we did not identify 
MTAs for FSV that were close to the locations of the other 
homoeologous waxy loci Wx-A1 and Wx-B1 which were 
located on chromosome 7A and 4A, respectively [35, 62]. 
Mutation/deletion in any of the three waxy loci often results 
in reduced amylose ‘partial waxy’ wheat which is associ-
ated with higher FSV. Therefore, the variation in FSV in this 
germplasm is likely independent of the waxy loci. As noted 
above, there were no major QTL identified for cookie bak-
ing. As such, alternative genotypic selection strategies such 
as genomic selection may be more appropriate for this trait.

Conclusion
In this study we investigated the phenotypic and genotypic 
structure of 14 end-use quality traits in 672 soft white win-
ter wheat breeding lines and cultivars adapted to the Pacific 

Northwest region of the United States. A total of 178 MTAs 
were identified across all wheat chromosomes of which 40 
MTAs were positioned within genomic regions of previ-
ously discovered end-use quality genes/QTL. These results 
highlight the fact that among the multitude of traits that a 
wheat breeder selects for, end-use quality is a relatively large 
proportion. The high heritability of most traits underscores 
the success of long-term phenotypic selection. Among the 
identified MTAs, 12 markers had large effects (eight of 
them were previously uncharacterized) and thus could be 
prioritized in breeding programs. For example, a relatively 
manageable number of lines, say, those resulting from head 
row selection, could be subjected to a single round of geno-
typic selection to fix the favorable allele at one or more of 
the large effect loci. Such a strategy could return benefits 
later on as a greater proportion of lines would meet end-
use quality targets during subsequent replicated yield trials. 
This study also revealed that for some end-use quality traits 
(SKCS size, FSV, and cookie diameter), only small effect 
markers were identified, suggesting that these traits are con-
trolled by multiple minor genes in this germplasm, and that 
alternative selection strategies such as genomic selection 
could augment traditional and laborious phenotyping.
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