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Background: An evolutionary model using diploid and allotetraploid cotton species identified 80 % of non-coding
transcripts in allotetraploid cotton as being uniquely activated in comparison with its diploid ancestors. The
function of the IncRNAs activated in allotetraploid cotton remain largely unknown.

Results: We employed transcriptome analysis to examine the relationship between the IncRNAs and mRNAs of
protein coding genes (PCGs) in cotton leaf tissue under abiotic stresses. LncRNA expression was preferentially
associated with that of the flanking PCGs. Selected highly-expressed IncRNA candidates (n=111) were subjected to
a functional screening pilot test in which virus-induced gene silencing was integrated with abiotic stress treatment.
From this low-throughput screen, we obtained candidate IncRNAs relating to plant height and tolerance to

Conclusions: Low-throughput screen is an effective method to find functional INcRNA for further study. LncRNAs
were more active in abiotic stresses than PCG expression, especially temperature stress. LncRNA XLOC107738 may
take a cis-regulatory role in response to environmental stimuli. The degree to which IncRNAs are constitutively
expressed may impact expression patterns and functions on the individual gene level rather than in genome-wide

Background

More than 90 % of all transcripts in eukaryotic genomes
cannot be translated into proteins. A large proportion of
these transcripts are long non-coding RNAs (IncRNAs)
[1]. Despite not being protein-coding, these IncRNAs are
also under pressure for natural and human selection
during evolution. A comparative analysis of the human
and mouse genomes determined that IncRNAs are under
positive selection rather than neutral mutation [2]. Some
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IncRNAs are also known to be affected by positive selec-
tion in domesticated species, such as BRAFP in mam-
mals [3]; altered expression of IncRNAs during
domestication has likewise been identified in rice [4].
Therefore, IncRNAs actively take part in the evolution of
species just as coding genes do. In addition, difference
species exhibit distinctly different IncRNA profiles ; for
example, the mouse and rat genomes share only 2,572
IncRNAs, comprising ~ 12.7 and 11.1 % of their total re-
spective IncRNA profiles [5], and in citrus, no more than
10% of intergenic IncRNAs in Atalantia could be
aligned to other citrus species [6]. However, a few
functional IncRNAs are reported to be conserved across
species; one such is Xist in mice and humans [7].

One mechanism by which noncoding RNAs can be
functional is presented by the competitive endogenous
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RNA (ceRNA) hypothesis [3], which proposes different
transcripts compete for binding of shared miRNAs. This
hypothesis fits pseudogenes such as BRAFPI that retain
the miRNA targeting sequences of their parental coding
genes and exhibit evolutionary conservation across spe-
cies [8]. In contrast, the majority of IncRNA transcripts
are generated from transposon elements and intergenic
regions [1, 9].

The roles of IncRNAs in plants are of considerable
interest, having emerged as new epigenetic regulators of
coding gene expression in biological activities and as
specifically affecting plant responses to abiotic stress
[10-13]. In particular, IncRNAs are involved in tran-
scriptional gene silencing, gene expression regulation,
chromatin structural remodeling, and other epigenetic
mechanisms [14, 15]. Two common modes of regulation
by IncRNAs involve non-local actions in trans and local
actions in cis, which regulate the expression of adjacent
genes [16-18]. For example, COLDAIR recruits PRC2
(Polycomb Repressive Complex 2) to regulate FLOWER-
ING LOCUS C (FLC) in trans [19], asDOGI inhibits the
transcription of DOGI on the opposite chain acts in cis
[20]. Although a number of IncRNAs have been identi-
fied, only a few are functionally well characterized.
COOLAIR is a IncRNA with a conserved secondary
structure, which has been proposed evolutionarily con-
served across species and cis-regulate the FLC [21, 22],
MuLncl in mulberry [23], the involvement of cotton
IncRNA973 in response to salt stress [24], IncRNA1459
altering tomato fruit ripening [25], and T5120 as a regu-
lator of nitrate response and assimilation in Arabidopsis
[26]. Though IncRNAs have been identified at the gen-
ome level in many plants or conditions [27-30], it re-
mains difficult to characterize functional candidates.

The allotetraploid evolutionary model is an appropri-
ate system to investigate IncRNA function. Within the
diploid parent species and the allotetraploid species,
non-coding regions can be compared in terms of se-
quence similarity and syntenic relationships. Further-
more, global genomic comparisons have revealed that
IncRNAs burst in the process of polyploidization [31].
An analytical model system applying a comparative gen-
omic method to allotetraploid cotton IncRNAs has been
developed [31, 32]. The diploid ancestors of the cotton
A and D subgenomes underwent interspecific
hybridization and polyploidy to form allotetraploid cot-
ton one to two million years ago [33]. As research re-
garding the evolutionary genomics, population genetics,
and epigenetics of allotetraploid cotton has developed
rapidly [34-38], this provides a useful model system in
which to further examine the rapid evolution of
IncRNAs.

Thus, the functional relationship of IncRNA and
protein-coding genes (PCGs) were further analyzed with
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the applied abiotic stresses in cotton leaves. We contin-
ued to use the IncRNA evolution system in cotton to in-
vestigate the functional IncRNAs in G. hirsutum.

Results

The source of IncRNAs activated in Gossypium hirsutum
The function of a IncRNA may be related to its sequence
conservation, location on the chromosome, and tran-
scriptional activity [39]. In our previous study, we re-
spectively identified 4,107, 2,381, and 8,514 IncRNAs in
the G. arboreum (Ga), G. raimondii (Gr), and G. hirsu-
tum (Gh) genomes. We then classified conserved
IncRNAs (C-IncRNAs) and non-conserved IncRNAs
(NC-IncRNAs) in Gh based on (1) the sequence similar-
ity (blastn -evalue 102 '° -max_target_seqs 1), (2) collin-
earity on the chromosome (MCscanX -b 2, -s 5) of the
IncRNA for downstream functional analysis. A total of
693 IncRNAs in Gh were retained from Ga or Gr, and
7821 were activated in Gh (Fig. 1, Table S1 and S2).
That C-IncRNAs comprised only about 10 % of all iden-
tified IncRNAs is in agreement with the common obser-
vation that most IncRNAs are unique to each species
[32, 40].

Expression pattern analysis of IncRNAs under abiotic
stresses

Plant IncRNAs are reported to be actively involved in
the molecular regulation of responses to environmental
stimuli and stresses. Abiotic stress is a serious threat that
can lead to significant losses of all field crops, including
cotton [41]. To validate the association of IncRNA ex-
pression with stress in cotton, we performed four abiotic
stress assays on cotton seedlings: drought, sodium chlor-
ide (NaCl), heat, and cold treatment. The leaves of the
treated seedlings were harvested for RNA-seq profiling
(Fig. 1), which revealed that both IncRNAs and protein-
coding genes (PCGs) tended to be expressed specifically
under stress; however, In both IncRNAs (total:8,514) and
PCGs(total:70,478), the percentage of differentially
expressed IncRNAs (DE-IncRNAs)was lower than the
percentage of differentially expressed protein coding
genes (DE-PCGs) (Fig. 2A-B; Table S3). The DE-
IncRNAs showed a significant divergence of expression
pattern relative to PCGs when plants were subjected to
abiotic stresses, especially heat and cold. In particular,
high temperatures tended to up-regulate IncRNAs,
whereas low temperatures down-regulated them
(Fig. 2C-E). Meanwhile, C-IncRNAs and NC-IncRNAs
showed no significant difference in terms of their stress-
responsive expression patterns (Fig. 2C; Table S3).
Finally, biological replicates of the RNA-seq results
showed high consistency (Fig S1). These findings suggest
that abiotic stresses, and especially temperature stress,
proactively stimulate IncRNA expression more than
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PCG expression. The correlation between IncRNAs and
PCGs in response to stimuli has yet to be studied.

Co-expression of IncRNAs with adjacent PCGs

The IncRNA-mediated regulation of gene expression oc-
curs in either cis or trans [42]. To investigate potential
patterns in the mode by which IncRNAs regulate PCGs,
we examined the association of their expression profiles
in the context of abiotic stress. Here we defined a 1:1
orthologous adjacent PCG that co-expressed with a
IncRNA within 50 kb as being subject to a cis effect of
the IncRNA, consistent with the latest literature [5, 32].
The correlation of expression between IncRNAs and
their adjacent PCGs (IncRNA/Control) was significantly
high (Fig. 2F; p=.0006358, Table S4) compared with
that between neighboring PCGs (PCG/Control). And no
significant difference was found between C-IncRNA/
Control and NC-IncRNA/Control (Fig. 2G; p=.3352,
Table S5). The above results are consistent with docu-
mented IncRNA dynamics in mice [5], and indicate that

most IncRNAs tend to play a role in cis gene regulation.
By combining the expression pattern in stress and ex-
pression with adjacent PCGs, we also found that IncRNA
conservation level is independent of its function and
regulation pattern.

Functional examination of IncRNAs in allotetraploid
cotton

Several functional studies have reported that IncRNAs
can play roles in growth, development, and abiotic
stresses in rice, cotton, and other plants [24, 28, 43-47].
Therefore, in this study, we carried out a functional
evaluation of IncRNAs in upland cotton (G. hirsutum,
acc. Texas Marker-1 [TM-1]) by applying virus-induced
gene silencing (VIGS) treatment and assessing plant
height and tolerance of four abiotic stresses (drought,
NaCl, heat [42 C], and cold [4 ‘C]) (Figs. 1 and 3A). We
also evaluated transcriptional activity in leaves in terms
of FPKM. Candidate IncRNAs were selected on account
of having top-ranking transcriptional activity. Ultimately,
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Fig. 2 Expression patterns of INcRNAs and PCGs under four abiotic stressors. A: Upset plot showing the number of differentially-expressed genes
(DE-PCGs) under each stress condition. B: Upset plot showing the number of differentially-expressed IncRNAs (DE-IncRNAs) under each stress
condition. C: Expression amplitude of differentially-expressed PCGs, IncRNAs, conserved (C-)IncRNAs, and non-conserved (NC-)IncRNAs under each
stress condition. The p-values were calculated by two-sided Wilcoxon signed-rank test. D: Bar chart showing the distributions of up-regulated and
down-regulated PCGs under stress conditions. E: Bar chart showing the distributions of up-regulated and down-regulated IncRNAs under stress
conditions. F: Density distributions of the Pearson correlation coefficients between adjacent PCG-IncRNA pairs. Each such PCG was also paired
with its most adjacent PCG as a control. G: Density distributions of the Pearson correlation coefficients between adjacent C-IncRNA-PCG and NC-
INCRNA-PCG pairs. The p-values were calculated by two-sided Wilcoxon signed-rank test

67 NC-IncRNAs and 44 C-IncRNAs were cloned and
subjected to VIGS. And 56 (out of 111) IncRNAs af-
fected the phenotype, suggesting they are protentionally
involved with correlated biological functions (Figs. 1 and

3B). In terms of IncRNA function, 20 (out of 111 ob-
served) affected plant height, and 34 (out of 90 observed)
affected plant death rate in drought abiotic stress. Both
positive and negative correlation between the IncRNA
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Fig. 3 Results of the low-throughput VIGS screening for functional INcRNAs in G. hirsutum. A: Bar chart showing the numbers of functional and
non-functional INcRNAs that exhibited differences in the low-throughput VIGS screening. B: The dot plot on the left shows the INncRNA expression
distribution in leaves and ovules. Red dots: INCRNA candidates in the preselection for VIGS. Grey dots: all other IncRNAs. The dot plots on the
right show the respective expression distributions of functional and non-functional IncRNAs in leaves and ovules. Blue dots: functional INcRNAs.
Grey dots: non-functional IncRNAs. C: VIGS positive controls, TRV2:CLA and TRV2:GhGoPGF]1. D: Photo of VIGS-treated seedlings (n = 16) for two
IncRNAs potentially affecting plant height. E-H: Photos of VIGS-treated seedlings (n = 16) for four INcRNAs potentially involved in abiotic stress
response. AT, after stress treatment; BT, before stress treatment; RE, after recovery from stress treatment. I: Histogram showing relative expression
of IncRNAs compared with the TRV2 vector control after VIGS. Data are shown as the means and SDs of three biological replicates. Two asterisks

indicate significant difference between samples (Student’s t-test, **, p <.01)

and the phenotype were observed as shown in Table S6.
Zero IncRNAs (out of 36 observed) were found to be re-
lated to NaCl tolerance. One (out of 12 observed) was re-
lated to heat tolerance, and five (out of 13 observed)
showed differential response to cold stress (Fig. 3A, Table
S6). Overall, most of the potential functional IncRNAs
that were screened were associated with abiotic stress.
The selection of phenotypic lines after VIGS is shown in
Fig. 3C-H, with transcription suppression of the

corresponding IncRNA shown in Fig. 3I. The primary re-
sults identified XLOC 133330 and XLOC 499884 as related
to drought stress, XLOC_420526 and XLOC_127222 as as-
sociated with temperature changes, and XLOC_541335 and
XLOC _707056 as involved in plant development regulation.
Detailed information and phenotypic observations of
IncRNAs after VIGS silencing are given in Table S6. These
findings indicate that cotton IncRNAs are actively associ-
ated with growth and stress tolerance regulation.
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Functional validation of IncRNAs identified in the low-
throughput screen

To validate the accuracy of the low-throughput func-
tional examination, representative functional IncRNAs
were further assessed. Specifically, we examined two
candidates from the functional pilot tests to double-
check their phenotypes and examine their potential
regulation patterns (cis/trans).

The first, XLOC 227558, was a C-IncRNA in G. hirsu-
tum on chromosome AO08, with a syntenic IncRNA,
XLOC 393369, in G. arboreum on chromosome 3
(Fig. 4A). After silencing XLOC 227558, TM-1 seedlings
exhibited a drought-sensitive phenotype (Fig. 4B and C,
Table S6). ABA plays an important role in plant drought
stress response, and some specific genes in the ABA
pathway have been singled out as involved, such as
ABSCISIC ACID RESPONSIVE ELEMENT-BINDING
FACTOR 1 (ABFI), PYRABACTIN RESISTANCE 1-LIKE
9 (PYL9), and DEHYDRATION-RESPONSIVE PROTEIN
RD22 (RD22) [48]. To observe whether silencing of
XLOC_227558 affected the ABA pathway, we carried out
a quantitative analysis of ABF1, PYL9, and RD22. Ex-
pression of ABFI was decreased in XLOC_227558-si-
lenced plants (Fig. 4D-G). Meanwhile, XLOC_ 227558
expression did not correlate with that of its adjacent
PCG (Gh_A08G1105) (Fig. 4I), and the co-expression
network of Gh_A08G1105 displayed no direct evidence
of correlation with drought stress (Fig. 4 F; Table S7).

The second candidate selected for validation, the NC-
IncRNA XLOC_107738, also yielded a drought-sensitive
phenotype after silencing (Fig. 5A to C, Table S6). In
XLOC_107738-silenced plants, expression of ABFI was
likewise decreased while that of RD22A and RD22D was
increased (Fig. 5D-G). Expression of XLOC_107738 was
correlated with that of its adjacent gene Gh_A05G0714
(RPS11). Two genes co-expressed with Gh_A05G0714
related to photosystem II (Fig. 5 H-J; Table S8), namely
Gh_D07G1455, which encodes the photosystem II reac-
tion center protein C (psbC), and Gh_A02G0992, which
encodes the photosystem II reaction center protein B
(psbB). As chloroplasts and photosynthesis are actively
involved with abiotic and biotic stress in plants [49], we
speculated that XLOC_107738 might act in cis to adjust
the drought tolerance of cotton. These findings con-
firmed that both conserved and non-conserved IncRNAs
can play a role in cotton stress regulation.

Discussion

The rapid evolution of IncRNAs to obtain new functions
Rapid evolution of IncRNAs is commonly observed in
both plant and animal kingdoms in the form of interspe-
cies polymorphisms and epigenomic modifications [39,
50]. For example, diverged Arabidopsis ecotypes show
polymorphisms in the promoter region of the flowering
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gene FRIGIDA INTERACTING PROTEIN 1 (FIP1), and
DNA demethylation associated with IncRNA transcripts
can be inherited [51]. Furthermore, whole-genome du-
plication and domestication can specifically induce
IncRNA origin to drive their fast evolution [31]. In com-
parisons between wild and cultivated cotton varieties,
IncRNA transcripts were relatively stable and fixed after
polyploidization in wild populations, races, and cultivars
alike [31]. These data indicate that environmental stim-
uli introduced transcriptional variation via inheritable
epigenetic modifications, from which beneficial pheno-
types were obtained [51-56]. Our study on functional
IncRNAs in allotetraploid cotton confirms that the rapid
evolution of IncRNAs introduces new, functional non-
coding genes.

Among IncRNAs, no statistical difference in the re-
sponse to stimuli was observed for C-IncRNAs com-
pared with either all IncRNAs or NC-IncRNAs.
Furthermore, our primary functional screening indicated
that in the cotton lineage, both C-IncRNAs and NC-
IncRNAs have biological roles. In our study, the defin-
ition of conserved IncRNA is based on sequence similar-
ity; however, conserved IncRNAs reported to be
functional show low sequence similarity. Some structural
elements, such as an RNA-loop, could be sufficient for
IncRNA function; thus, our definition of conservation
may underestimate the impacts from features such as
short motifs or secondary structures. However, the trend
observed in our study also supports that NC-IncRNAs
have the chance to gain a new regulatory role and, for
cotton, were selected in the cultivated population. These
results are in agreement with the notion that epigenetic
modifications associated with beneficial traits are under
positive selection. We therefore speculate that inherit-
able and functional epigenetic modifications can play a
role in the rise of domesticated traits. Polymorphisms of
epigenetic modifications in a natural population may
thus be an unknown reservoir of genetic markers for the
development of new germplasms.

Using the RNA silencing technology of VIGS to validate
the LncRNA function

LncRNAs are abundantly present and transcribed in the
genome [57]; however their gene structure and tran-
scriptional activity are relatively unstable compared with
PCGs [58, 59]. Utilization of cell lines may aid in achiev-
ing high-throughput screening with strong transcrip-
tional signal, but IncRNA function is often cell-type
specific, thus the cultured cells may not reflect the real
functions of the IncRNAs [60]. Multiple published stud-
ies have carried out functional IncRNA screenings with
various strategies, including reverse genetics, which uses
CRISPRI technology [29, 60]; comparative genomics and
transcriptome-based prediction across species, wild



Wang et al. BMC Genomics (2021) 22:443 Page 7 of 13

Before Treatment  Drought Treatment Water Recovery

B PCG M IncRNA '™ Synthetic INcRNA region

Ga_ch3 -8 E B EE B XLOC_393369 S
Gh Aos B8 [T E-: XLOC_227558 g
1
--- 4
'_
[800]
Ga_Chr3 . ‘ I
©
[To)
XLOC_393369 [Te]
N~
[800] Q
|
Gh_A08 %)
9
XLOC_227558 >
C XLOC_227558 D GhABF1 E GhPYL9 F GhRD22A G GhRD22D
1.2 *k 1.4 1.8 1.8
*% —
1.6 1.6
6 1.2
14 1.4
1 12 12
-
u_i 4 0.8 1 q
© 0.6 038 0.8
06 0.6
2 0.4
0.4 04
0.2 0.2 0.2
0 0 0 0
XLOC_227558 TRV2::00 XLOC_227558 TRV2::00 XLOC_227558 TRV2::00 XLOC_227558 TRV2::00 XLOC_227558 TRV2::00
H | T - J
Gh_A08G1105 XLOC_227558 Gh_A03G1372
W TRV2::00 (NFDS)
10 B XLOC_227558 ® R=042 P=0.08608 * CK1
’ -_— ~41e © Drought Gh_D04G0245
0 » NaCl (RLK1)
= 0 42°C Gh_D03G1467 Gh_D01G0322
ol o CK2 (GDPDL2)
@ . 4°C v
O <2 Gh_A08G2203
L al Gh/A08G1105 Gh_D10G1819
b FAB1D SD25
Q Gh_D10G234§ ) B02o)
S N) Gh_A06G0091
ao (RLK1)
Gh_D11G1001
Gh_A08G1105 XLOC_227558 0 10 20 (CMPST1)

FPKM (XLOC_227558)

Fig. 4 A representative C-IncRNA that screened as affecting cotton seedling drought tolerance. A: Schematic showing the collinear position of
XLOC_227558, between Gossypium arboreum (Ga) chr3 and Gossypium hirsutum (Gh) A08. This gene is syntenic with XLOC_227558. The lower
graph shows a stack view of the locus with leaf RNA-seq reads from Ga and Gh. Blue box, PCGs; red box, INcCRNAs; dashed box, syntenic IncRNA
region. B: Photos showing cotton seedlings (n = 16) treated with TRV2:XLOC_227558 and TRV2:00 before drought treatment, after drought
treatment, and after water recovery. Bar =5 cm. C: Histogram showing the relative expression level of XLOC_227558 in TRV2:XLOC_227558 and
TRV2:00 treated plants as quantified by gRT-PCR. Error bar: standard error of the mean. Asterisks indicate significant difference between samples
(Student’s t-test, *, p < .05; **, p <.01). REL, relative expression level. D-G: Histograms showing the respective relative expression levels of GhABFI,
GhPYL9, GhRD22A, and GhRD22D in TRV2:XLOC_227558 and TRV2:00 treated plants as quantified by qRT-PCR. Error bar: standard error of the
mean. Asterisks indicate significant difference between samples (Student’s t-test, *, p < .05; **, p <.01). REL, relative expression level. H: Histogram
showing the relative expression of XLOC_227558 and its adjacent PCG Gh_A08G1105 as determined by gRT-PCR. Error bar: standard error of the
mean. Asterisks indicate significant difference between samples (Student's t-test, *, p <.05; **, p < .01). I: Scatterplot showing the linear relationship
between expression of XLOC_227558 and that of the adjacent PCG, Gh_A08G1105, under different abiotic stressors. J: Co-expression network

of Gh_A08G1105




Wang et al. BMC Genomics (2021) 22:443 Page 8 of 13

A B Before Treatment Drought Treatment Water Recovery

[l PCG M IncRNA ! ™! synthetic INcRNA region

1
cachrio il : None

I
[P !
Gh_A05 :_._:- B N B R :_: XLOC_107738

TRV2::00

[0-300]
Gh_A05

— —
XLOC_107738 Gh_A050714

XLOC_107738

C xLoc_107738 D GhaBF1 E GhPYL9 F GhrRD22A G GhRD22D

*k *k * *k

15
1.5 3

REL
o

10 3
1 1 2

05 05 1

0 0 0 0 0
XLOC_107738 TRV2::00 XLOC_107738 TRV2:00 XLOC_107738 TRV2::00 XLOC_107738 TRV2::00 XLOC_107738 TRV2::00

H | J

M TRV2::00
1.75 M XLOC_107738

ke *k

Gh_D05G1987

& CK1 (MAF1) Gh_D05G3443
* Drought

* NaCl
. 42°C Gh_A07G1423 Gh_D13G0626
« CK2 (TAF6) /

°4°C
Gh_A05G0714
(rps11)

.
R=0.73, P=0.0006358

)

20

1.5

1.25 4 18

=1 104

10

Gh_A05G0714

o 075
® Gh_D07G1455

0.5 (psbC)

05

FPKM (

0.25 Gh_D01G0353

0.0 G0 #e” Gh_A02G0992 Gh_D01G1076

Gh_A05G0714  XLOC 107738 00 05 10 15 20
- - FPKM (XLOC_107738)

Fig. 5 A representative NC-IncRNA may regulate its adjacent gene in cis in plants under drought stress. A: Schematic showing the collinear
position of XLOC_107738 between Gossypium arboreum (Ga) chr10 and Gossypium hirsutum (Gh) A05. The lower graph shows a stack view of the
locus in Gh. Blue box, PCGs; red box, INcCRNAs; dashed box, syntenic PCG region. B: Photo showing the phenotype of TRV2:XLOC_107738 and
TRV2:00 treated plants (n = 16) before drought treatment, after drought treatment, and after water recovery. Bar =5 cm. C: Histogram showing
the relative expression level of XLOC_107738 in TRV2:XLOC_107738 and TRV2:00 treated plants as quantified by gqRT-PCR. Error bar: standard error
of the mean. Asterisks indicate significant difference between samples (Student’s t-test, *, p <.05; **, p <.01). REL, relative expression level. D-G:
Histograms showing the respective relative expression levels of GhABF1, GhPYL9, GhRD22A, and GhRD22D in TRV2:XLOC_107738 and TRV2:00
treated plants as quantified by gRT-PCR. Error bar: standard error of the mean. Asterisks indicate significant difference between samples (Student's
t-test, ¥, p < .05; **, p < .01). REL, relative expression level. H: Histogram showing the relative expression of XLOC_107738 and its adjacent PCG
Gh_A05G0714 as determined by qRT-PCR. Error bar: standard error of the mean. Asterisks indicate significant difference between samples
(Student’s t-test, *, p < .05; **, p <.01). I: Scatterplot showing the linear relationship between expression of XLOC_107738 and that of the adjacent
PCG, Gh_A05G0714, under different abiotic stressors. J: Co-expression network of Gh_A05G0714

(psbB) (ACS2)

species, and cultivars [4, 39]; and mapping based on fragment editing of 1 to 10 base pairs, which may not
epigenetic recombination lines [54, 61]. High- significantly influence RNA transcription at the edited
throughput CRISPRi operations made great improve- site [62]. Likewise, RNA silencing technology of VIGS
ment on testing the IncRNA function. The typical used in this study should be an efficient gene oper-
CRISPRi operation is targeted for short DNA ation of functionla IncRNA screening.
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In general, most IncRNAs are responsive to or play
roles in responses to environmental stimuli. However, it
is noteworthy that in both animal and plant populations,
high-throughput screening has not identified a specific
biological function for C-IncRNAs. The reported low
conservation of IncRNAs across species and the
screening-out of conserved IncRNAs among functional
candidates in this study suggest that the potential func-
tionality of each conserved non-coding gene needs to be
considered as an individual case. That is, degree of
IncRNA conservation shows little correlation to function
at the genome-wide level. This observation favors our
conclusion that IncRNA function is unique to species
and to lineage over the course of evolution. The results
of the present study might be skewed due to the small
number of conserved IncRNAs, but that the functional
IncRNA profile is unique to each organism is in agree-
ment with most of the reported biological impacts of
IncRNAs.

Conclusions

The impact of IncRNA conservation on expression pat-
terns and functions may operate at the level of individual
genes rather than genome-wide. The development of in-
heritable and functional IncRNAs over evolution can
participate in the emergence of adaptive traits.

Methods

Plant materials

Plants of the upland cotton (G. hirsutum) genetic stand-
ard line Texas Marker-1 (TM-1) [63] were obtained
from the Agricultural Research Service, U.S. Department
of Agriculture, and the Texas Agricultural Experiment
Station. Plants were cultivated in a growth chamber at
25 to 28 C with a light/dark cycle of 16/8 hours. All
were planted in 6.5 cm * 6.5 cm plastic pots filled with a
1:1 (v/v) mixture of commercial humus:commercial
vermiculite.

Plasmids and constructs

Unique 200- to 400-bp fragments of IncRNAs were
amplified from TM-1 c¢cDNA by polymerase chain reac-
tion (PCR) using Ex Taq (Takara, Code No.: RROIAM).
The primer list is given in Table S9. PCR products were
cloned into EcoR I-BamH I-digested pTRV2 to produce
a VIGS vector. Resulting constructs were introduced
into Agrobacterium tumefaciens strain GV3101 by liquid
nitrogen transformation.

Virus-induced gene silencing

TM-1 plants were cultivated in a growth chamber under
conditions of 16 h/8 h light/dark and 21 °C + 1 °C. Plants
used for gene silencing were approximately eight days
old when their cotyledons expanded. For each
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experiment, A. tumefaciens harboring pTRV1, pTRV2
(TRV2:00), TRV2::CLA (Cloroplastos alterados 1) [64],
TRV2:GhGoPGF1 [65], and pTRV2 containing host tar-
get genes were grown on Luria broth (LB) agar plates
supplemented with 50 pg/mL of kanamycin and 25 pg/
mL of rifampicin. The plates were incubated at 28 °C for
two days. Plasmids TRV2:CLA and TRV2:GhGoPGFI
were utilized as positive controls, and the empty vector
TRV2:00 was the negative control. Silencing of CLA
causes the plants to become photobleached, and this was
used as a silencing efficiency control. For each strain, 3-
mL primary liquid culture of LB was inoculated with the
above-mentioned antibiotics and was incubated with
shaking at 200 rpm at 28 °C for 14 to 16 h. A 1:100 dilu-
tion of the primary culture was then inoculated into a
secondary liquid induction media culture with 50 pg/mL
of kanamycin and 25 pg/mL of rifampicin, which was in-
cubated with shaking at 28 °C for 14 to 16 h at 200 rpm
until the ODgyo was 1.5 to 2.0. The cells were then har-
vested by centrifugation for ten minutes at 4000 x g and
were resuspended in a culture medium with 10 mM
magnesium chloride, 10 mM MES, and 200 uM acetyla-
cetone. For each culture, a bacterial suspension with an
ODgqo of 2.0 was prepared and incubated in the dark at
28 °C for three to five hours. Cultures containing the
pTRV1 vector and the pTRV2 vector with the gene of
interest were mixed at a 1:1 ratio. The bacterial suspen-
sions were infiltrated into the cotyledons of the seed-
lings, and the plants were kept at 21 °C+1 °C in a
growth chamber with a 16-hour day length and 50 %
relative humidity for at least three weeks before use in
assays.

Height observation and stress treatment of cotton plants

with virus-induced gene silencing

TM-1 plant height (from cotyledon to growth point) and
leaf number were measured about 30 days after VIGS.
For drought stress, plants were irrigated with sufficient
water, then subject to water restriction until those in-
fected with TRV2:IncRNA or TRV2::00 were dying. Soil
water content (SWC) was determined according to the
formula: SWC (%) = (Ww-Wd)/(Wd-Wt) x 100 %,
where Ww is the wet mass of soil in tube, Wd the dry
mass of soil in tube (after over-drying at 80 °C until a
constant mass was obtained), and Wt is the mass of the
empty tube [24]. Leaf samples were harvested right be-
fore water restriction and were immediately frozen in li-
quid nitrogen and stored at -80 °C. Plants were
photographed before and after the water restriction and
subsequent rewatering. For NaCl stress, plants were irri-
gated with 200 mM NaCl instead of water. For heat
stress, the plants were placed in a 42 C incubator until
those treated with TRV2:IncRNA or TRV2:00 were
dying. For cold stress, plants were placed in a 4 C
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incubator until those treated with TRV2:IncRNA or
TRV2:00 were dying. Survival rates were scored after
plants were restored to normal growth conditions for
seven days. Each group consisted of 16 replicates.

cDNA synthesis and quantitative polymerase chain
reaction

Total RNA was isolated using an RNA extraction kit
(RK-16, Zhong Ding, Nanjing, China), and first-strand
c¢DNA synthesis was performed using HiScript® II
(Vazyme). Gene-specific primers were used for the SYBR
Green-based qPCR, which was performed on an ABI
StepOnePlus system with 20 pL of 100 ng of cDNA, 4
pM of each primer, and 10 pL of AceQ qPCR SYBR
Green Master Mix (Vazyme, Nanjing, China) according
to the manufacturer’s protocol. The thermal cycle condi-
tions were as follows: 95 °C for three minutes, then 40
cycles of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for
30 s. Relative expression levels were calculated using the
2-AACt method. Histone 3 (AF024716) was used as an
internal control for normalization. The primer sequences
are listed in Table S10.

Classification of C-IncRNA and NC-IncRNA

The IncRNA sequences and genome coordinate files of
G. arboreum (Ga), G. raimondii (Gr), and G. hirsutum
(Gh) were previously generated by our laboratory and
are deposited in Github repositories (https://github.com/
epi-cotton/LncRNA-in-polyploid-cotton). Conservation
was determined based on synteny and sequence similar-
ity. MCScanX [66] was used to analyze the multicolli-
nearity between Ga and GhAt and Gr and GhDr (blastn
-evalue 107710 -max_target_seqs 1; MCscanX file -b 2, -s
5) [31]. Individual transcript expression levels were
quantified in terms of the fragments per kilobase of exon
per million fragments (FPKM) by StringTie [67].

Expression profiling of stress-treated cotton plants by
RNA-seq

Cotton seedlings with four expanded leaves were used
for stress treatments. Cold treatment was carried out at
4 C, heat at 42 C, salt with 200 mmol NaCl, and
drought in the form of water restriction. All plants were
grown in chambers with a light/dark cycle of 16/8 hours.
Leaf tissues were harvested after 30 days of treatment
and frozen with liquid nitrogen for RNA extraction and
sequencing (Table S11). Read quality was assessed before
and after trimming using FastQC [68]. Reads were
aligned to the reference genome G. hirsutum V1.0 [36]
using HISAT2 [69], and the resulting BAM files were
sorted and indexed using SAMtools [70]. Expression
(FPKM) was calculated by StringTie [67], and differential
gene expression was determined using DESeq [71] with
a false discovery rate threshold of 0.05.
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Co-expression with adjacent coding genes

Cotton IncRNAs (with filtered IncRNAs) were assigned
to their nearest PCG using bedtools based on the dis-
tance between gene bodies. Each PCG assigned to a
IncRNA was then matched to its immediate neighboring
PCG, which was used as a control. We estimated the
Pearson’s expression correlation and performed a two-
sided Wilcoxon signed-rank test between the IncRNA/
control and PCG/control pairs using.The same analysis
was also carried out for C-lncRNA/control and NC-
IncRNA/control pairs.

Co-expression network

The co-expression network for IncRNAs was con-
structed as described previously. Positive and negative
co-expression networks for PCGs were generated online
(http://structuralbiology.cau.edu.cn/gossypium/) [72].

General statistics and plots

All statistical analyses were performed in R (https://
www.r-project.org/) using the packages data.table and
stats. All plots were generated in R using the packages
ggplot2 (https://cran.r-project.org/web/packages/ggplot2/
index.html), ggpubr (https://cran.r-project.org/web/
packages/ggpubr/index.html), pheatmap (https://cran.r-
project.org/web/packages/pheatmap/index.html), and
gmodels (https://cran.r-project.org/web/packages/
gmodels/index.html).
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TRV2:XLOC_227558 and TRV2::00. E: Soil water content before drought
treatment for seedlings receiving TRV2: XLOC_107738 and TRV2:00. F: Soil
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