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Abstract

Background: In the process of pig breeding, the average daily gain (ADG), days to 100 kg (AGE), and backfat
thickness (BFT) are directly related to growth rate and fatness. However, the genetic mechanisms involved are not
well understood. Copy number variation (CNV), an important source of genetic diversity, can affect a variety of
complex traits and diseases and has gradually been thrust into the limelight. In this study, we reported the
genome-wide CNVs of Duroc pigs using SNP genotyping data from 6627 animals. We also performed a copy
number variation region (CNVR)-based genome-wide association studies (GWAS) for growth and fatness traits in
two Duroc populations.

Results: Our study identified 953 nonredundant CNVRs in U.S. and Canadian Duroc pigs, covering 246.89 Mb (~
10.90%) of the pig autosomal genome. Of these, 802 CNVRs were in U.S. Duroc pigs with 499 CNVRs were in
Canadian Duroc pigs, indicating 348 CNVRs were shared by the two populations. Experimentally, 77.8% of nine
randomly selected CNVRs were validated through quantitative PCR (qPCR). We also identified 35 CNVRs with
significant association with growth and fatness traits using CNVR-based GWAS. Ten of these CNVRs were associated
with both ADG and AGE traits in U.S. Duroc pigs. Notably, four CNVRs showed significant associations with ADG,
AGE, and BFT, indicating that these CNVRs may play a pleiotropic role in regulating pig growth and fat deposition.
In Canadian Duroc pigs, nine CNVRs were significantly associated with both ADG and AGE traits. Further
bioinformatic analysis identified a subset of potential candidate genes, including PDGFA, GPER1, PNPLA2 and BSCL2.

Conclusions: The present study provides a necessary supplement to the CNV map of the Duroc genome through
large-scale population genotyping. In addition, the CNVR-based GWAS results provide a meaningful way to
elucidate the genetic mechanisms underlying complex traits. The identified CNVRs can be used as molecular
markers for genetic improvement in the molecular-guided breeding of modern commercial pigs.
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Background

Genetic variation occurs in many forms, including single
nucleotide polymorphisms (SNPs), insertions/deletions
(INDELSs) of small genetic fragments, and copy number
variations (CNVs), in human and animal genomes.
CNVs are a particular subtype of genomic structural
variation that range from approximately 50 bp to several
Mb and are mainly represented by deletions and dupli-
cations [1-4]. Adjacent copy number variation areas
with overlapping regions can be combined into a large
genome segment, known as the copy number variation
region (CNVR) [5]. In terms of the total bases involved,
CNVs encompass more nucleotide sequences and arise
more frequently than SNPs [6]. Therefore, they have
higher mutation probability and more significant poten-
tial impacts [7], such as changing gene structure and al-
tering gene dosage and thus dramatically affect gene
expression and adaptive phenotypes [8]. Additionally,
some CNVs are associated with several complex diseases
[9-11]. These observations led us to predict that CNVs
are a primary contributor to phenotypic variation and
disease susceptibility.

Indeed, multiple studies have suggested that CNVs
play an essential role in affecting some complex traits
and causing disease. In humans, Aitman et al. [12] dem-
onstrated that copy number polymorphism in the Fcgr3
gene is a determinant of susceptibility to immunologic-
ally mediated renal disease; additionally, a recent study
identified that copy number variation in NPY4R might
be related to the pathogenesis of obesity [13]. Similarly,
phenotypic variations and diseases caused by CNVs are
also widespread in domesticated animals. For example,
in pigs, the focus of this study, an increase in copy num-
ber (CN) of the KIT gene is associated the dominant
white phenotype [14, 15]. With regard to reproductive
performance, CNV in the MTHFSD gene was reportedly
correlated with litter size in Xiang pigs [16]. Zheng et al.
[17] also showed that a higher CN of the AHR gene had
a positive effect on litter size. With regard to productive
performance, Revilla et al. [18] discovered a CNVR con-
taining the GPAT2 gene, which might be associated with
several growth-related traits. Thus, analyzing CNVs and
identifying their potential association with complex traits
has gradually become an essential part of genetic
studies.

Growth rate and fatness are vital objectives in the
process of pig breeding, and are directly associated with
economic advantages. The growth rate measured at dif-
ferent stages mainly include average daily gain (ADG)
during the test period as well as with age (AGE), which
was defined as estimated age at a certain weight [19]. Fat
deposition is also a critical biological process that is gen-
erally measured as the backfat thickness (BFT). Until
now, considerable association analysis has focused on
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identifying single-site variants, quantitative trait loci
(QTLs), and related candidate functional genes that
might influence growth and fatness traits [20-22]. How-
ever, systematic association studies of complex quantita-
tive traits based on CNVs have rarely been conducted
[18, 23], and the full relevance of CNVs to the genetic
basis of these traits is yet to be clarified. In addition, the
genetic architecture of these traits is complex and usu-
ally controlled by multiple genes [19]. The majority of
association studies for growth and fatness traits in pigs
have used only a small number of genotyped animals,
which has limited the statistical power of the association
analysis [24]. It is therefore necessary to conduct CNV
association analysis in a population with a sufficiently
large sample size.

In this study, we performed genome-wide CNV detec-
tion in a large population of Duroc pigs of U.S. and Can-
adian origin. Moreover, CNVR-based genome-wide
association studies (GWAS) of growth and fatness traits
were applied to the two experimental populations. We
identified CNVR and candidate genes that can provide
additional information on the molecular mechanisms
underlying important economic traits and promote the
rapid development of molecular breeding approaches in

pigs.

Results

Detection of genome-wide CNVs in two pig populations
We detected CNVs in 18 autosomes in Duroc pigs of
Canadian and U.S. origin using PennCNV software
v1.0.5 [25]. A total of 33,347 CNVs (5403 losses and 27,
944 gains) were identified in 5928 pigs. Among these,
19,987 CNVs were from 3271 Duroc pigs of U.S. origin,
and 13,360 CNVs were from 2657 Duroc pigs of Canad-
ian origin. These CNVs were merged to identify CNVRs
(see Additional file 1: Table S1). A total of 953 CNVRs
were identified in the two populations with 388 gains,
376 losses, and 189 mixed variations (gains and losses
occurring in the same region). Table 1 and the CNVR
map (Fig. 1) summarize the distribution of total CNVRs
on different autosomes. CNVRs in chromosome 4
(SSC4) had the highest coverage (20.64%) while those in
SSC1 had the lowest (6.43%). The number of CNVRs
varied from 20 (SSC18) to 82 (SSC1), and the total size
of CNVRs detected in this study was 246.89 Mb, ac-
counting for ~ 10.90% of the pig autosomal genome.

By matching the CNVs in each population to the cor-
responding CNVRs, we identified 802 CNVRs in the
U.S. Duroc pigs, 499 CNVRs in the Canadian Duroc
pigs, with 348 CNVRs that were shared by both popula-
tions (see Additional file 2: Table S2). CNVs in U.S.
Duroc pigs ranged in size from 10.4kb to 2.6 Mb, aver-
aging 183.6 kb (Fig. 2a), while CNVR size ranged from
104kb to 2.7 Mb (Fig. 2b). In Canadian Duroc pigs,
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Table 1 Chromosome distribution of all 953 CNVRs in the pig autosomes

Chr Chr length (kb) CNVR counts Length of CNVR (kb) Coverage (%) Max size (kb) Average size (kb) Min size (kb)
1 274,330.53 82 17,626.89 643 1592.58 130.23 11.81
2 151,935.99 66 18,291.80 12.04 2380.53 170.95 22.54
3 132,84891 62 15,208.53 11.45 1909.62 165.13 2247
4 130,910.91 75 27,024.95 20.64 2599.17 202.77 16.65
5 104,526.01 47 11,743.52 11.24 1237.96 16243 3204
6 170,843.59 68 19,996.87 11.70 1410.90 178.36 2407
7 121,844.10 59 14,085.72 11.56 1037.19 166.25 18.22
8 138,966.24 53 12,195.85 8.78 1917.30 129.15 31.23
9 139,512.08 50 11,559.95 829 900.56 164.24 26.12
10 69,359.45 22 5184.21 747 1036.82 159.50 1040
1 79,169.98 37 10437.79 13.18 1635.59 168.97 40.53
12 61,602.75 40 10,988.12 17.84 222546 18549 2153
13 208,334.59 71 15,199.02 7.30 1662.75 139.99 24.59
14 141,755.45 75 18,455.58 13.02 2234.96 145.26 23.66
15 140,412.72 55 16,181.67 1152 2721.56 147.32 2413
16 79,944.28 31 8505.51 10.64 2187.75 174.40 29.21
17 63,494.08 40 8183.03 12.89 182261 124.68 48.59
18 55,982.97 20 6020.53 10.75 2495.98 168.20 2992

CNV size ranged from 10.4 kb to 2.1 Mb, with an aver-
age of 165.2 kb (Fig. 2c), while CNVR size ranged from
10.4 kb to 2.7 Mb (Fig. 2d). In summary, most CNVs and
CNVRs in both populations were 50—500 kb in size, with
the CNVRs covering ~9.56 and 7.44% of the porcine
genome (Sus scrofa 11.1) in U.S. and Canadian Duroc
pigs, respectively. Notably, CNV duplications were more

likely to occur in both populations. In addition, we
found that among the top 20 largest CNVRs, 19 were
mixed types. More intriguingly, 15 of them (75%) were
resided in telomeric regions (Fig. 1), indicating that
CNVs occur more frequently towards telomeres, which
are hot spots for the recombination and duplication of
large fragments [26].
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Comparison of CNVRs detected in previous swine studies
We compared the CNVRs identified in this study with
those in nine previous swine studies based on Scrofall.l
assembly (see Additional file 3: Table S3). For CNVRs
based on the early porcine assembly 10.2, we converted
the data to Scrofall.l assembly using the UCSC Lift-
Over tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver).
The results show varying levels of overlapping CNVRs in
the studies (Table 2), due to differences in breed, plat-
form, algorithm, and CNV definition, which significantly
impact the results [33]. We used a much looser defin-
ition of overlap, where two CNVRs were considered to

overlap as long as they shared at least one nucleotide
base [34].

The most considerable overlap in CNVRs identified
between this study and previous studies was observed
with results obtained from next-generation sequencing
platforms (see Additional file 3: Table S3). The percent-
ages of overlapped CNVRs were 21.72 and 21.82%, re-
spectively [17, 34].

Validation of identified CNVRs using qPCR
To confirm the reliability of the identified CNVRs, we
randomly selected nine CNVRs (CNVR 149, 359, 374,
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Table 2 Comparison of CNVRs identified in this study with other studies (based on the Sscrofa 11.1 genome assembly)

Study Platform Software Breeds Samples Number of CNVRs? Number of overlapped
(Number") (original CNVRs?) CNVRs in this study

Chen et al. Porcine SNP60 PennCNV Duroc, 1693 243 (565) 69

[27] Rongchang, etc.
(18)

Wang et al. Porcine SNP60 PennCNV Duroc, Laiwu, etc. 302 146 (348) 37

[28] (10)

Wiedmann Porcine SNP60 PennCNV a Mixed Breed 1802 185 (502) 37

et al. [29] Swine (1)

Wang et al. 1M aCGH Agilent Genomic Duroc, Yorkshire, 12 436 (758) 44

[30] Workbench etc. (9)

Xie et al. [31]  Porcine SNP60 PennCNV Xiang, Kele (2) 120 75 (172) 15

Stafuzza et al. Porcine SNP80 PennCNV Duroc (1) 3520 136 (425) 81

[32]

Wang et al. Porcine SNP80 PennCNV Large White (1) 857 175 (312) 97

[33]

Keel et al. [34] Next-generation CNVnator & LUMPY  Duroc, Landrace, 240 3538 338

sequencing etc. (3)

Zheng et al. Next-generation CNVnator & Duroc (1) 29 6700 1030

7] sequencing CNVcaller

All CNVRs identified in other studies were converted to Sscrofa 11.1 genome assembly using the liftOver tool. 'Pig breeds used for comparison; “Successfully

converted CNVRs; 3Original number of CNVRs

494, 621, 728, 732, 807, and 878) that co-localized with
the ELEN1, PUSL1, MAPRE2, SGMS2, PCID2, DSCAM,
GATD3A ADGRAI, and LIFR genes, respectively. Seven
of these CNVRs (CNVR 149, 359, 374, 494, 728, 732,
and 807) were successfully validated (Fig. 3). Details of
the primers used are listed in Additional file 4: Table S4.

CNVR frequency in two Duroc pig populations

We also calculated the frequencies of the CNVRs in the
U.S. (Fig. 4a) and Canadian (Fig. 4b) Duroc pig popula-
tions. The frequency of CNVR in U.S. Duroc pigs varied
from 0.030% (detected in one pig) to 40.6% (1327 of
3271 pigs). In the Canadian Duroc pigs, CNVR frequen-
cies ranged from 0.038% (detected in one pig) to 52.2%
(1386 of 2657 pigs). Moreover, the frequency of CNVRs
was concentrated at 0.03-0.3%, indicating most CNVRs
are rare, only exist in a few animals and are challenging
to measure reliably [35]. For this reason, CNVR-based
GWAS were performed using CNVRs with frequencies
exceeding 0.5% [32].

Phenotypic and CNVR-based GWAS statistics
To further characterize the functions of CNVRs in pigs,
GWAS were performed for three quantitative traits. The
statistical summaries of ADG, AGE, and BFT in the two
populations are listed in Table 3. All phenotypic data ap-
proximately followed a normal distribution.

Since most CNVRs have a low frequency that is chal-
lenging to measure reliably, we used CNVRs with fre-
quencies higher than 0.5% in each population for further
analysis, to improve the reliability of the GWAS results

[32]. A total of 139 CNVRs from 3303 U.S. Duroc pigs
and 92 CNVRs from 2677 Canadian Duroc pigs were se-
lected for association analysis. The Manhattan plots and
significant CNVRs obtained from separate association
analyses in these two populations are shown in Figs. 5
and 6, Tables 4 and 5.

Analysis of growth traits identified nine suggestive (7.19E-
03) and four genome-wide (3.60E-04) CNVRs associated
with ADG in U.S. Duroc pigs. The candidate regions were
located on SSC1, 2, 3,5, 6, 9, 11, 12, 13, and 15. Furthermore,
we also identified nine suggestive and four genome-wide
CNVRs that exceeded the thresholds for association with
AGE. Owing to the high genetic correlation between ADG
and AGE [19], we observed 10 shared CNVRs (CNVR 83,
85, 152, 315, 362, 602, 607, 637, 732, 852) associated with
both traits. In the Canadian Duroc pigs, we identified four
suggestive (1.09E-02) and five genome-wide (5.43E-04)
CNVRs that were significantly associated with both ADG
and AGE at different P values. However, no CNVR was
shared by the two pig populations.

Analysis of fatness traits identified eight suggestive (7.19E-
03) and six genome-wide (3.60E-04) CNVRs associated with
the BFT trait in U.S. Duroc pigs. Intriguingly, four CNVRs
(CNVR 152, 315, 514, 732) located on SSC3, 5, 9, and 13
had pleiotropic effects on growth traits. However, we found
only one suggestive (1.09E-02) CNVR that was associated
with the BFT trait in Canadian Duroc pigs.

GWAS in two populations identified five CNVRs as
the most significantly associated with growth and fatness
traits. Additional file 5: Table S5 were summarized to re-
flect the phenotypic effect of the CNVRs more
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A

intuitively. In brief, pigs with increased copy numbers of
CNVR 488 and 807 may have thinner backfat, and the
gain type of CNVR 732, the loss type of CNVR 354 and
the normal copy number of CNVR 315 may have better

performance in growth traits.

Based on the data from all pigs, we further investigated
the function of genes encompassing these significant
CNVRs. Several common significant CNVRs that are as-
sociated with both ADG and AGE traits were found to

overlap with numerous genes, and nine of these were
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Population Trait' Unit N2 Mean(+SD)* Min* Max® CV.(%)°
US. Duroc ADG g/day 3292 619.36 + 3176 52561 71658 513
AGE day 3292 15899 + 821 13442 182.70 516
BFT mm 3276 89 + 095 6.09 12.27 1067
Canadian Duroc ADG g/day 2595 61192 + 4216 483,55 7384 6.89
AGE day 2592 161.13 £ 11.15 127.82 195.29 6.92
BFT mm 2574 955 + 1.77 5.1 15.06 1853

'ADG Average daily gain at 100 kg; AGE Days to 100 kg; BFT Backfat thickness at 100 kg; 2Number of animals (N); *Mean (standard deviation); “Minimum (min);

SMaximum (max); ®Coefficient of variation (C.V.)

~logso(P value)

~logso(P value)

~logso(P value)
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Fig. 5 Manhattan plots of CNVR-based GWAS in the U.S. Duroc pig population. Manhattan plots consisted of average daily gain at 100 kg (a),
days to 100 kg (b), and backfat thickness at 100 kg (c). The x-axis represents the chromosomes, and the y-axis represents the -log10(P-value). The
solid and dashed lines indicate the 5% genome-wide (3.60E-04) and suggestive (7.19E-03) Bonferroni-corrected thresholds, respectively
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identified as major functional candidates, including
PNPLA2, SDK1, PFKL, and BSCL2. For BFT, we identi-
fied seven candidate genes, including GPERI, PDGFA,
and GRTP1I.

Functional analysis of genes associated with trait-related
CNVRs

A total of 606 genes overlapping with 31 significant
CNVRs were detected based on the Ensembl [36] anno-
tation of the Sus scrofa 11.1 genome (see Additional file 6:
Table S6). These include 447 protein-coding genes and
110 IncRNA genes, as well as some miRNAs, small
nucleolar genes (snoRNA), and processed pseudo-
genes. To further investigate the functional genes af-
fecting growth performance and fatness, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway
and gene ontology (GO) analyses of protein-coding
genes were carried out using the KOBAS software
(version 3.0) [37].

Gene set enrichment analysis revealed many terms
relevant to growth and fatness traits (see Add-
itional file 7: Table S7, the accession numbers were
obtained from Ensembl database [36]). In brief, KEGG
analysis revealed that these genes mainly participate
in glycosaminoglycan degradation, oxytocin signaling,
and the cholinergic synapse pathway. Furthermore,
GO analysis was primarily enriched in positive regula-
tion of protein kinase B signaling, MAP kinase activ-
ity, carbohydrate metabolic process, and other
important biological processes. Using information
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Table 4 Significant CNVRs associated with growth traits in U.S. and Canadian Duroc pigs

Population Traits' CNVR ID? Type®>  Chromosome  Start (bp) End (bp) P-value* Candidate genes
U.S. Duroc ADG CNVR 79 Gain 1 270413118 270492246  6.07E-03

ADG CNVR 122 Gain 2 105,908,671 106,135493  6.39E-03

ADG CNVR 514 Loss 9 619,847 1,268,010 571E-03

ADG;, AGE ~ CNVR 83 Mixed 2 27,459 2,407,984 1.54E-03; 1.78E-03 PNPLA2

ADG; AGE  CNVR 85 Mixed 2 3,094,575 3,946,741 2.16E-04; 3.67E-04

ADG;AGE  CNVR 152  Mixed 3 2,789,839 3,480,462 7.38E-05; 2.85E-04  SDKIT

ADG; AGE  CNVR 315  Gain 5 52,276,104 52,737,350 2.01E-04; 4.78E-05

ADG; AGE  CNVR362 Mixed 6 66,808,707 67,379,563 5.20E-04; 1.59E-04

ADG;AGE  CNVR 602  Mixed 11 39,893,652 40,308,946 5.02E-03; 5.20E-03

ADG; AGE  CNVR 607  Gain 11 43,760,741 43,890,386 3.44E-03; 1.48E-03

ADG;, AGE CNVR 637  Mixed 12 23,605,417 24,199,377 1.42E-03; 9.13E-04

ADG; AGE ~ CNVR 732 Mixed 13 206,578,011 208,240,759  8.78E-06; 2.43E-04  PFKL

ADG; AGE CNVR 852  Gain 15 122,779,236 122,863,462  3.73E-03; 3.98E-03

AGE CNVR 27 Mixed 1 68,740,759 69,522,447 5.25E-03

AGE CNVR 516 Mixed 9 3,080,614 3,416,559 4.85E-03

AGE CNVR 658 Gain 12 53,806,610 54,033,307 3.93E-03 PIK3R6, PIK3R5
Canadian Duroc ~ ADG; AGE ~ CNVR 90 Mixed 2 8,919,611 9,435,996 3.89E-03; 5.18E-03 BSCL2

ADG; AGE  CNVR 149  Mixed 3 162,027 2,071,648 1.51E-05; 3.10E-05  GPERI, PDGFA

ADG; AGE CNVR 188  Gain 3 105,163,639 105,756,806 1.87E-03; 2.73E-03

ADG; AGE  CNVR 267  Gain 4 108,348,774 108589640  4.96E-04; 4.82E-05

ADG; AGE  CNVR 277  Gain 4 116,110,055 116,722,933 1.01E-03; 8.12E-04

ADG; AGE  CNVR 354  loss 6 46,826,412 47,252,470 4.05E-07; 8.81E-07

ADG; AGE  CNVR 537 Mixed 9 61,615,730 62,034,708 7.70E-05; 1.43E-04

ADG; AGE CNVR 684  Mixed 13 32,709,504 32,901,267 1.44E-03; 1.32E-03 GNAI2

ADG; AGE CNVR 789  Gain 14 121,605,565 121,639,735  3.28E-05; 1.90E-04

'ADG Average daily gain at 100 kg; AGE Days to 100 kg. >CNVRs ID in boldface represents the CNVR identified in both traits. *Gain: duplications; Loss: deletions;
Mixed: Gain and Loss occurring in the same region. “P-value in boldface: genome-wide significant; P-value not in boldface: suggestive significant

from the GeneCards database and relevant literature,
we further identified several genes involved in critical
pathways and biological processes (Tables 4 and 5).
Here, we highlight four genes of interest that over-
lapped with significant CNVRs and were enriched in
gene set enrichment analysis (P<0.05): platelet-
derived growth factor subunit A (PDGFA), G protein-
coupled estrogen receptor 1 (GPERI), patatin-like
phospholipase domain containing 2 (PNPLA2) and
Bernardinelli-Seip Congenital Lipodystrophy Type 2
Protein (BSCL2).

Discussion

Over the past decade, GWAS have made remarkable
contributions to the discovery of common SNPs that in-
fluence complex traits [38]. However, most variants ex-
plain only a small proportion of heritability, a
phenomenon known as “missing heritability” [39]. To
this end, CNVs, as an important source of genetic

diversity, may provide a new way for explaining the gen-
etic variability that GWAS cannot detect [40].

In this study, we successfully identified 19,987 and 13,
360 CNVs in U.S. and Canadian Duroc pigs, respectively,
using rigorous criteria to reduce false-positive rates. All
CNVs were merged to generate 953 CNVRs in the two
populations, accounting for ~ 10.90% of the pig auto-
somal genome (Sus scrofa 11.1). The results showed that
the size and frequency of duplications were much higher
than those of deletions in the large fragment (> 10kb)
CNVs (27,944 gains vs. 5403 losses). Previous CNV stud-
ies reported similar cases. For example, a CNV study
conducted by Long et al. [41] using Porcine SNP60
BeadChip, identified approximately 70.6% duplications
and 29.4% deletions. Using Next-generation sequencing
data, Zheng et al. [17] also reported that the frequency
of duplications was higher than that of deletions in the
Duroc and Meishan pigs. This phenomenon suggests
that although CNVs can cause duplications or deletions
at the same locus in different populations [42], the
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Table 5 Significant CNVRs associated with BFT in U.S. and Canadian Duroc pigs

Population CNVR ID’ Type? Chromosome Start (bp) End (bp) P-value® Candidate genes
U.S. Duroc CNVR 69 Mixed 1 265,085,761 265,301,383 1.09E-07
CNVR 136 Loss 2 135,551,879 135,647,128 1.73E-03
CNVR 149 Mixed 3 162,027 2,071,648 1.57E-05 GPER1, PDGFA, GNA12
CNVR 152 Mixed 3 2,789,839 3,480,462 2.94E-03 SDK1
CNVR 315 Gain 5 52,276,104 52,737,350 4.03E-04
CNVR 333 Mixed 6 51,842 1462,744 6.16E-03
CNVR 415 Mixed 7 29,599,648 30,265,671 4.66E-03
CNVR 514 Loss 9 619,847 1,268,010 1.52E-03
CNVR 584 Mixed 10 67,366/433 68,403,256 3.74E-06
CNVR 621 Mixed 1 77,144,460 78,780,052 3.24E-07 GRTP1
CNVR 718 Gain 13 188222477 188,693,046 7.95E-06
CNVR 732 Mixed 13 206,578,011 208,240,759 3.81E-03 PFKL
CNVR 807 Mixed 14 139,484,309 141,719,266 1.64E-08 ADAMS8
CNVR 862 Mixed 15 137,417,592 140,139,156 1.07E-03
Canadian Duroc CNVR 488 Gain 8 97,990916 99,088,450 7.24E-03

'CNVRs ID in boldface represents the CNVR had pleiotropic effects on growth and fatness traits. 2Gain: duplications; Loss: deletions; Mixed: Gain and Loss
occurring in the same region. *P-value in boldface: genome-wide significant; P-value not in boldface: suggestive significant

genome is more tolerant to duplications than it is to de-
letions [43], and these duplications are more likely to
occur in large CNVs (> 10kb) [5, 44]. In addition, based
upon SNP chip design principles, it can be inferred that if
there are more than 2 copies (duplications) in a diploid or-
ganism, then the likelihood of identifying a high frequency
SNP and the chance of detecting variation may be greater
than if there are only 0, 1 or 2 copies [45].

To evaluate the accuracy of the PennCNV software in
identifying CNVs, we performed qPCR validation for
nine randomly selected CNVRs and successfully con-
firmed seven of these (~77.8%). This percentage is simi-
lar to that reported by Wang et al. [28] (75%), Dong
et al. [46] (70%), and Wang et al. [33] (80%). We also ob-
served that two “failed” CNVRs were inconsistent with
our expectations. Multiple factors may have contributed
to the discordance in the results. For example, the sparse
probes on the SNP chip may cause the estimated size of
CNVRs to be larger than their actual length. Conse-
quently, the primers may have been designed outside the
exact boundaries of the CNVRs [46]. Additionally, these
results indicate that a high proportion of singleton
CNVs exists in the population [47].

We also compared our results with those of previous
studies on CNVRs and found a low overlap rate [17, 27—
34]. In brief, a total of 465 CNVRs entirely or partially
overlapped with previously reported CNVRs. A consid-
erable overlap rate was observed with the results re-
ported by Zheng et al. [17], whereas those reported by
Xie et al. [31] gave the lowest overlap. These discrepant
observations may be due to differences in the breeds
studied. In this study, the large number of samples used

for CNV detection led us to identify more novel CNVRs
than previous studies. It also suggests that a vast number
of CNVs in the pig genome have not been discovered
[48]. In addition, most of the previous studies were
based on the Sscrofal0.2 genome version, whereas the
comparative work in our study was based on version
Sscrofall.l. Thus, based on the vast differences between
these two genome versions [49], many CNVRs in
Sscrofal0.2 could not be successfully converted to
Scrofall.l (Table 2). Differences in SNP density after
quality control, as well as different CNV detection plat-
forms, algorithms, and criteria for CNV determination
could also explain this outcome [33]. Intriguingly, even
within the same breed, different genetic backgrounds
may have significant effects on reproducibility. In our
previous GWAS, principal component analysis (PCA)
and linkage disequilibrium (LD) decay analysis suggested
that the U.S. Duroc population had a genetic back-
ground that differed from that of the Canadian Duroc
population [50, 51]. As shown by our results, only 348 of
953 CNVRs were detected in both populations. In
addition, population size might also affect CNV detec-
tion. In our study, the number of U.S. Duroc pigs used
for CNV detection was 1.3 times higher than that of
Canadian Duroc pigs (3770 vs. 2857), which may have
led to differences in the final numbers of CNVs (19,987
vs. 13,360) and CNVRs (802 vs. 499).

Although CNVs are widespread in pigs and are associated
with economically important traits, the full relevance of
CNVs to the genetic architecture of growth rate and fatness
across all stages is yet to be elucidated. To further investi-
gate the relationship between CNVs and complex traits
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(ADG, AGE, and BFT), we performed CNVR-based GWAS
on these two pig populations. We identified 16 significant
CNVRs that were associated with ADG or AGE in U.S.
Duroc pigs, including 10 CNVRs that were significant for
both traits. A similar pattern was observed in the Canadian
Duroc pigs. For instance, we detected nine CNVRs that
affect both traits. The computational formula of the ad-
justed ADG was inversely proportional to that of the ad-
justed AGE in this study, and both traits also had a
relatively high genetic association [19]. This may explain
why most CNVRs were significant for both traits.

However, the results of GWAS between U.S. and Can-
adian Duroc pigs differed substantially, and we found no
shared CNVRs when we analyzed ADG and AGE in the
two populations. Moreover, we detected 14 BFT-related
CNVRs in U.S. pigs, but only one was identified in the
Canadian population. This finding highlights the com-
plex genetic architecture of growth and fatness traits. Al-
though Duroc is considered a single breed, substantial
genetic differences exist between subpopulations [52], as
shown for the U.S. and Canadian Duroc pigs in this
study. These results are consistent with those of Zhou
et al. [50] and Zhuang et al. [51]. It is presumed that,
due to differences in natural and human selective pres-
sures, genetic drift and the exchange of genetic material
has resulted in less consistency in CNVRs between the
two populations [53]. Therefore, genetic differentiation
between the two populations may have a substantial im-
pact on the genome localization of genetic variants [51].
More notably, four CNVRs—CNVR 152 (SSC3: 2.8-3.5
Mb), CNVR 315 (SSC5: 52.3-52.7Mb), CNVR 514
(SSC9: 0.6-1.3Mb), and CNVR 732 (SSC13: 206.6—
208.2 Mb)—were associated with growth and fatness
traits in U.S. Duroc population. These results suggest
that these CNVRs may play a pleiotropic role in regulat-
ing pig growth and fat deposition [18, 20].

To better understand the molecular function of the
genes involved in significant CNVR, we examined their
GO and KEGG classification. Many of these genes par-
ticipated in carbohydrate metabolic process, MAP kinase
activity, glycosaminoglycan degradation, and O-glycan
biosynthesis. Consequently, we highlighted four genes;
PDGFA, GPERI, PNPLA2, and BSCL2, which were pre-
viously recognized as important for body weight and fat
deposition, but their roles in pigs are poorly understood.
White adipose tissue is recognized as an energy-storing
organ that is closely associated with fat deposition and
body weight [54]. Gonzalez et al. [55] found that PDGFA
plays a vital role in the proliferation and maintenance of
adipocyte progenitors in dermal adipose tissue through
the PI3K-Akt pathway. Previous studies also reported
that PDGFRa is activated by the homodimers PDGFA,
PDGFB, and PDGFC, whereas PDGFRf is activated by
PDGFB and PDGFD [56, 57]. More importantly, human
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adipose tissue differentiation into beige or white adipo-
cytes depends on PDGFRa/PDGFRp signaling [58]. The
BSCL2 gene also participates in adipocyte differentiation
and lipid droplet formation. Mutations in the BSCL2
gene cause human congenital lipodystrophy, an auto-
somal recessive genetic disease characterized by almost
complete loss of adipose tissue, insulin resistance, and
fatty liver [59, 60]. The gene GPERI encodes G protein-
coupled estrogen receptor 1, which is involved in metab-
olism and immunity [61]. Sharma et al. [62] reported
that weight gain in male GPER-knockout (KO) mice was
associated with visceral and subcutaneous fat. However,
these GPER KO mice showed no differences in food in-
take or exercise activity levels compared with wild-type
littermates. This observation demonstrates that GPER
may regulate metabolic parameters associated with obes-
ity. As an important triglyceride hydrolase in mamma-
lian cells, PNPLA2 predominantly performs the first step
in triglyceride hydrolysis. Dai et al. [63] revealed that
functional polymorphisms in the 5 upstream region of
PNPLA2 are potential DNA markers for backfat thick-
ness in Duroc pig breeding programs.

In recent years, studies on the influence of CNVs on
complex traits have gradually been thrust into the lime-
light [17, 33]. To the best of our knowledge, the present
study represents the largest sample size used for the de-
tection of genome-wide CNVs in Duroc pigs. However,
due to the sparse markers in the SNP chip used, we may
have overestimated the frequency of large-scale CNVs
detected in our study. Accordingly, high-density SNP
chips or whole-genome sequencing technologies should
be applied for further CNV detection.

Conclusions

In this study, we performed genome-wide CNV detection
and CNVR-based GWAS for growth and fatness traits in
a large population of U.S. and Canadian Duroc pigs. A
total of 953 CNVRs were detected in these two popula-
tions, accounting for ~ 10.90% of the pig autosomal gen-
ome. Moreover, 35 CNVRs were associated with growth
and fatness traits. However, we found no shared CNVR
QTL in the two populations among these CNVRs. These
findings indicate that genetic differences between the two
populations may have a substantial impact on the genomic
localization of genetic variants. We also identified major
candidate genes, including PDGFA, GPERI, PNPLA2, and
BSCL2, that may be related to growth and fatness traits.
Our results provide valuable insights into the genetic
mechanisms underlying growth and fatness traits in pigs.

Methods

Ethics statement

The animals and experimental methods used in this
study follow the guidelines of the Ministry of Agriculture
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of China and the Use Committee of South China Agri-
cultural University (SCAU). The ethics committee of
SCAU (Guangzhou, China) approved all animal experi-
ments. The experimental animals were not anesthetized
or euthanized in this study.

Samples and phenotype data

Experimental animals were raised at the Wens Food-
stuff Group Co., Ltd. (Guangdong, China) of Duroc
core breeding farms. A total of 6627 Duroc pigs
were used, including 3770 (2280 males and 1490 fe-
males) Duroc pigs of U.S. origin and 2857 (1570
males and 1287 females) Duroc pigs of Canadian ori-
gin, born between 2013 and 2018. Once these 6627
Duroc pigs reached a body weight of 30+ 5kg, they
were transferred to the test station. During the ex-
periment, all pigs were raised under normal manage-
ment conditions, provided with drinking water, and
were freely fed. Additionally, data on average daily
gain at 100kg (ADG), days to 100kg (AGE), and
backfat thickness at 100kg (BFT) were collected
from each population; a more detailed description of
the phenotypic measures can be found in our previ-
ous publication [50]. In brief, when their body
weight reached approximately 100kg (100 +5kg),
ADG and AGE traits were measured and adjusted to
100 kg. The adjusted formula for AGE is as follows
[19, 50]:

AGE adjusted to 100 kg (day)
M ight-1
_ Measured age- < easurea” weight-100 kg>
Correction factor one

where correction factor one differs between sire and
dam based on the formulas below:
Measured weight

Sire : Correction factor one =
Measured age

x 1.826

Dam : Correction factor one
M d weight
_ Measured weight _ . ...

Measured age

The following formula was used for adjusted ADG
[19, 50]:

ADG adjusted to 100 kg (kg/day)
100 kg

" AGE adjusted to 100 kg

In addition, when their body weight reached 100 + 5
kg, the BFT phenotype was measured using an Aloka
500V SSD B ultrasound probe (Corometrics Medical
Systems, USA) from the 10th-rib to the 11th-rib of the
pig [64]. Adjusted 100 kg BFT was obtained from the
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Canadian Centre for Swine Improvement (http://www.
ccsi.ca/Reports/Reports_2007/Update_of_weight_
adjustment_factors_for_fat_and_lean_depth.pdf)  using
the following formula:

BF adjusted to 100 kg (mm)
= Measured backfat thickness
x Correction factor two

where Correction factor two = AHBX(Meam;;‘d Weight—100)] *
A =13.468 and B =0.111528 in sires, and A = 15.654 and
B=0.156646 in dams. Before the association analysis,
outliers outside the mean + 3 standard deviations were
removed.

SNP genotyping and quality control

Genomic DNA was extracted from ear tissue using the
traditional phenol/chloroform method, and the quality
of DNA in all samples (6627 DNA samples) was assessed
based on light absorption ratio (Ajep2s0 and Aaxeo/230)
and gel electrophoresis, using a DNA concentration of
50 ng/uL [65]. Samples were genotyped using the Illu-
mina GeneSeek 50 K SNP array (Neogen, Lincoln, NE,
United States) with 50,649 SNP markers across the en-
tire genome. Quality control was performed using the
PLINK software v1.90 [66]. SNPs located in sex chromo-
somes, or without positional information, were discarded
and only samples with high-quality genotyping (call rate
of 90% and above) were retained [27, 41, 67]. Finally, a
set of 46,458 informative SNPs from 3770 Duroc pigs of
U.S. origin and 46,458 informative SNPs from 2857
Duroc pigs of Canadian origin was used for CNV
detection.

CNV detection

The PennCNV software v1.0.5 was used to identify
individual-based CNVs by combining the SNP signal
data of log R ratio (LRR) and B allele frequency (BAF) as
well as the population frequency of the B allele (PFB).
The LRR and BAF values for each SNP were computed
using the GenomeStudio software (v2.0; Illumina, Inc.,
USA). The Perl comppile_pfb.pl command in PennCNV
was used to calculate PFB based on the BAF of each
SNP. Moreover, the wave adjustment procedure was
conducted using the -gcmodel option in the PennCNV
to reduce the impact of genomic waves [68]. We calcu-
lated the GC content in the 500kb genomic region
around each SNP derived from the Sscrofa 11.1 version
of the pig reference genome (http://ensemble.org/Sus_
scrofa/Info/Index). PennCNV was run using the -test op-
tion without considering pedigree information, as the re-
lationship among the pigs in our study population is
unknown. The final CNVs were identified by retaining
high-quality samples according to the following criteria:
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LRR < 0.3, BAF drift <0.01, and GC wave factor of LRR <
0.05. Meanwhile, to further decrease false-positive
CNV calls, CNVs with consecutive SNPs >3 and CNV
length > 10 kb were retained. We also used the BED-
Tools software v2.26.0 [69] to merge CNVs with at
least 1bp overlap in all samples to define the CNV
region (CNVR) [17]; CNV and CNVR borders were
determined based on the location of SNP markers.
The CNVRuler software v1.3.3.2 [70] was used to de-
fine three types of CNVR: loss, gain and mixed (gains
and losses occurring in the same region). In addition,
we matched CNVs with the corresponding CNVR in
each population to obtain the CNVRs. In other
words, CNVRs with full coverage CNV sequences
were considered population-based CNVRs. A final set
of 802 CNVRs mapped in 3303 U.S. Duroc pigs and
499 CNVRs mapped in 2677 Canadian Duroc pigs
was used for subsequent analyses.

Quantitative PCR validation

We chose real-time quantitative polymerase chain re-
action (qPCR) to validate the CNVRs detected by
PennCNV. A total of nine CNVRs were randomly se-
lected based on the CNVR type (loss, gain, and
mixed) and frequency in the population. Due to un-
certainty in the boundaries of the identified CNVRs,
we used the Oligo 7 software [71] to design primers
for specific regions in the ELFNI, PUSL1, MAPRE2,
SGMS2, PCID2, DSCAM, GATD3A ADGRAI1, and
LIFR genes (see Additional file 4: Table S4). We also
selected the GCG gene as the reference locus because
this gene is highly conserved among pigs and exists
as a single copy in the reference genome [17, 33, 72].
A total of 74 DNA samples were randomly selected
for qPCR validation, and normal samples identified
with no copy number change in the test region were
used as references. Real-time quantitative PCR was
conducted using Qiagen’s Quantitative Reaction Kit
(QuantiFast SYBR Green PCR kit, Qiagen, Hilden,
Germany). The PCR reaction was performed using a
total 10 uL volume consisting of the following re-
agents: 1 pL. DNA (50 ng/pL), 0.3 uL of both forward
and reverse primers (10 pM/uL), 5puL Blue-SYBR-
Green mix (2x), and 3.4 pL water. The PCR condi-
tions were as follows: 95°C denaturation, hot start 5
min; 45-50 PCR cycles (95°C, 10s, 60°C, 155, and
72°C, 20s); dissolution curve (95°C, 15s, 55°C, 15s,
and 95°C, 15s). All reactions were carried out on
384-well clear reaction plates, and each sample was
amplified in triplicate, with average C, values calcu-
lated for further copy number determination. The
relative copy number difference in the test region was
determined using 2 x 22, where AAC, = [(mean C,
of the target gene in the test sample) - (mean C; of
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GCG in the test sample)] - [(mean C, of the target
gene in the reference sample) - (mean C, of GCG in
the reference sample)] [73]. Values of approximately 2
were considered normal. A value of 3 or more and a
value of 1 or less represented gain and loss statuses,
respectively.

CNVR genotyping and GWAS

To provide the required input for GWAS, specific geno-
typing for CNVR was necessary. We used in-house
script to genotype CNVRs in U.S. and Canadian Duroc
pigs into “+/+7, “+/-", “~/-", following previous studies
[74, 75].

In this study, the GEMMA software v0.98.1 [76] was
applied to a univariate linear mixed model to conduct
GWAS on a single population. To improve the accuracy
of the GWAS results, we filtered the CNVR datasets
with frequencies lower than 0.5% in each population
[32]. A final set of 139 CNVRs in 3303 U.S. Duroc pigs
and 92 CNVRs in 2677 Canadian Duroc pigs was se-
lected for association analysis. Before GWAS, genomic
relatedness matrix (GRM) and principal component ana-
lysis (PCA) based on SNP datasets for each population
were generated using the GEMMA and GCTA software
v1.92.4beta [77]. The statistical model used was as
follows:

y=Wa+X+u+e

where y represents a vector of the corrected phenotypic
value for each population; W is the incidence matrix of
covariates, including fixed effects of the top three eigen-
vectors of PCA, sex, birth weight, and parity; a repre-
sents the vector of corresponding coefficients including
the intercept; X is the vector of CNVR marker geno-
types; 8 specifies the corresponding effect size of the
CNVR; u is the vector of random effects, with
u~MVN,, (0,A77K); ¢ is the vector of random residuals,
with e~MVN, (0,7 'In); A signifies the ratio between
two variance components; 7' is the variance of the re-
sidual errors; K is GRM; [ is an n x n identity matrix;
MVN,, denotes the n-dimensional multivariate normal
distribution. In the CNVR-based GWAS, the Bonferroni
method was used to determine the genome-wide signifi-
cant (0.05/N) threshold, where N represents the number
of CNVRs. Given that is a stringent criterion, a more le-
nient threshold was also used for detecting the suggest-
ive (1/N) CNVRs [78, 79].

Candidate gene identification and functional enrichment
analysis

The physical position information was obtained from
the Sscrofa 11.1 version of the pig reference genome.
Genes that overlapped with significant CNVRs were
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selected for KEGG pathway and GO analyses using
KOBAS v3.0. Enriched terms with P<0.05 based on
Fisher’s exact test were selected for further exploration
of the genes involved in biological pathways and pro-
cesses [65, 80]. GeneCards (http://www.genecards.org/)
and Ensembl (www.ensembl.org/biomart/martview) were
used to query gene functions.
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