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Abstract

Background: Whole-genome approaches are widely preferred for species delineation in prokaryotes. However,
these methods require pairwise alignments and calculations at the whole-genome level and thus are
computationally intensive. To address this problem, a strategy consisting of sieving (pre-selecting closely related
genomes) followed by alignment and calculation has been proposed.

Results: Here, we initially test a published approach called “genome-wide tetranucleotide frequency correlation
coefficient” (TETRA), which is specially tailored for sieving. Our results show that sieving by TETRA requires > 40%
completeness for both genomes of a pair to yield > 95% sensitivity, indicating that TETRA is completeness-
dependent. Accordingly, we develop a novel algorithm called “fragment tetranucleotide frequency correlation
coefficient” (FRAGTE), which uses fragments rather than whole genomes for sieving. Our results show that FRAGTE
achieves ~ 100% sensitivity and high specificity on simulated genomes, real genomes and metagenome-assembled
genomes, demonstrating that FRAGTE is completeness-independent. Additionally, FRAGTE sieved a reduced
number of total genomes for subsequent alignment and calculation to greatly improve computational efficiency for
the process after sieving. Aside from this computational improvement, FRAGTE also reduces the computational cost
for the sieving process. Consequently, FRAGTE extremely improves run efficiency for both the processes of sieving
and after sieving (subsequent alignment and calculation) to together accelerate genome-wide species delineation.

Conclusions: FRAGTE is a completeness-independent algorithm for sieving. Due to its high sensitivity, high
specificity, highly reduced number of sieved genomes and highly improved runtime, FRAGTE will be helpful for
whole-genome approaches to facilitate taxonomic studies in prokaryotes.

Keywords: Tetranucleotide, Composition, Taxonomy, Species delineation, FRAGTE, Metagenomic binning, Average
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Background
Species delineation among prokaryotes is harder and more
controversial than among eukaryotes [1], mainly due to
the lack of species concepts [2, 3]. Historically, microbial
species delineation has not been driven by theory-based
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concepts [3], but progressed through a series of empirical
improvements in parallel with technical developments in-
stead [1]. Recent advances in sequencing technologies
have brought species delineation into the genomic era. A
widely-used approach is the Average Nucleotide Identity
(ANI), which computationally mimics DNA-DNA
hybridization through overcoming its shortcomings in-
cluding experimental complexity, labor-intensive oper-
ation and non-incremental results [4–7]. Other such
approaches include the average amino-acid identity [8, 9]
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and the Microbial Species Identifier (MiSI) [10]. All these
approaches are based on whole genomes and thus have
higher resolution and more accurate and reliable than
gene-based approaches, including those based on a single
gene such as 16S rRNA [11] or those based on several
housekeeping genes such as the species identification tool
[12], multilocus sequence typing [13] and multilocus se-
quence analysis [14].
However, genome-based approaches are based on

computationally intensive pairwise genomic alignments
and calculations, which are a disadvantage in large-scale
studies against many reference genomes. For example, a
comparison of 10,000 genomes against 1000 genome ref-
erences results in 10,000,000 alignment pairs. In reality,
the National Center for Biotechnology Information
(NCBI) database contains 83,075 genomes belonging to
19,190 putative species (up to 20 January 2017), though
this is likely to rise sharply in the face of the increasing
rate of species discovering and strain sequencing. Thus,
the development of new approaches with improved com-
putational efficiency is crucial.
In theory, genome-based species delineation requires

alignment and calculation of intraspecies strains only. How-
ever, a number of interspecies strains are inevitably com-
pared. A strategy to reduce computing cost would be
through “sieving”, which is selecting closely related (intra-
species and some closely related interspecies) pairs from
total pairs before alignment and calculation (Additional file 1:
Figure S1). Under this strategy, species delineation consists
of the sieving process followed by the process of alignment
and calculation. It is important to emphasize that sieving
does not directly delineate species, as some interspecies
pairs are still able to perforate the mesh of the sieving algo-
rithm. Therefore, sieving is not a substitute for genome-
based approaches such as the ANI approach.
Genomic composition is species specific [15–19] and

can be used to indicate relationships among species. The
ability to distinguish genomic composition goes up with
oligonucleotide sizes [19–22]. However, the computing
cost also correspondingly increases. For compromise be-
tween the distinguishing power and the computing cost,
tetranucleotide is widely used [23–28]. Before our pub-
lished method called“Tetranucleotide-derived Z-value
Manhattan Distance” (TZMD), a total of four statistical
methods have been published for tetranucleotide profil-
ing, including the zero-order Markov method [22, 25],
the maximal-order Markov method [22, 25], the “relative
tetranucleotide frequency” method [16] and the z-value
method [19]. All of these methods uses the Pearson cor-
relation coefficient distance (PCCD) to assess compos-
ition similarity between two genomes [19, 22]. Our
previous study showed that the approach using PCCD
for genome-wide TETRAnucleotide z-value (TETRA) is
able to represent the three other statistical methods [29].
In addition, TETRA is alignment-free and accordingly re-
quires less computing cost than alignment-based ap-
proaches. Although Richter et al. [4] developed the TETRA
approach to sieve pairs for species delineation, our previous
study showed that TETRA is affected by genomic com-
pleteness [29]. In this study, we also found that TETRA is
completeness-dependent (Fig. 1) and is not suitable for in-
complete genomes, especially those with < 40% complete-
ness (Fig. 2a). As TZMD is more susceptible to genome
incompleteness than TETRA [29], we just used TETRA as
the reference method for comparion in this study.
Here, we developed a completeness-independent

method termed FRAGment TEtrinucleotide frequency
PCCD (FRAGTE). Our results showed that FRAGTE
dramatically improves sieving sensitivity (the number of
sieved intraspecies pairs divided by the total number of
intraspecies pairs) as well as sieving specificity (the num-
ber of correctly filtered interspecies pairs divided by the
total number of interspecies pairs). Additionally,
FRAGTE reduces the number of totally sieved pairs (in-
cluding intra- and some inter-species pairs) to greatly
lower the required computing cost for subsequent align-
ment and calculation. Also, we showed that FRAGTE
runs faster than TETRA. Thus, FRAGTE will assist all
genome-based species-delineation approaches to facili-
tate taxonomic studies for prokaryotes in the future.

Results
Sieving by TETRA depends on genome completeness
Genome-based approaches require pairwise genome-wide
alignments. To reduce the computing cost, Richter et al. [4]
developed an alignment-free TETRA approach to retrieve
or “sieve” only closely related pairs for subsequent align-
ment and ANI calculation. These authors calculated the
TETRA values fully according to Teeling et al. algorithm
[19]. In brief, TETRA first counts the observed tetranucleo-
tide frequencies, as well as trinucleotide and dinucleotide
frequencies. Then, it calculates the expected tetranucleotide
frequencies using a maximal-order Markov model. Subse-
quently, it measures the divergence between observed and
expected frequencies as z-scores with additional consider-
ation of variances. Finally, it assesses composition similarity
between a pair of genomes by calculating the PCCD for
their z-scores. These authors found that TETRA values cor-
related strongly with ANI values in high ANI value zone
(Fig. 3 of [4]) and most intraspecies TETRA values were >
0.99 [4]. Therefore, 0.99 was recommended as the TETRA
criterion to sieve closely related genomes. In this way,
TETRA greatly decreases the amount of pairs required for
alignment and ANI calculation, which considerably im-
proves computation efficiency. It is also worth pointing out
that TETRA also sieves some closely related interspecies
genomes with similar composition (Additional file 1: Figure
S1) and thus TETRA might not be used to delineate species



Fig. 2 Sieving sensitivity of the TETRA and FRAGTE approaches on simulated genomes. a for TETRA; b for FRAGTE. All were run on the 1779
queries against 264 references with 10–100% of genome completeness,. The number in cell is sensitivity (%), which is calculated using the
number of sieved intraspecies pairs divided by 1779 and used as a basis for color intensity

Fig. 1 Impact of genomic completeness on TETRA values. Each plot row shows a different level of completeness for the reference genomes.
Dashed box, queries with 100% completeness versus references with 100% completeness. All were run on 1779 queries (Additional file 2: Table
S1) against 264 references (Additional file 2: Table S2) with 10–100% of genome completeness
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Fig. 3 Distribution of inter- and intra-species Pearson correlation coefficient distances (PCCDs). a Four selected examples with different sizes are
presented. Inter- and intra-species PCCDs can be approximated by normal distributions (P-values < 2.2e-16, one-sample Kolmogorov–Smirnov
test). b Mean and standard deviation (SD) of intra- and inter-species PCCD distribution. For pairwise sizes in the x axis, please refer to Additional
file 3
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directly but just to sieve closely related genomes for subse-
quent species delineation [4]. However, our results showed
that genome completeness strongly affected TETRA values
(Fig. 1). As expected, genome completeness affected sieving
especially for genomes with completeness < 40% to sieve
only < 95% of intraspecies genomes (Fig. 2a), showing that
TETRA is completeness-dependent.
Although most TETRA values for complete genomes

are ≥0.99, there are two exceptions (Fig. 1), including the
value of 0.95 for Borreliella burgdorferi strains CA382 and
B31, and the value of 0.97 for Borrelia hermsii strains HS1
and CC1. Our checking found that the two varied
compositions were both attributed to their plasmid differ-
ences (Additional file 1: Figure S2). This demonstrates that
TETRA is not the ideal method to detect all intraspecies
genomes even when these genomes are complete. Also,
this indicates that composition is genome specific, requir-
ing developing a genome-specific cutoff (GSC) to reflect
the genome-specific feature of composition.

Empirical analysis of fragment intra- versus (vs.) inter-
species PCCD distributions
It has been reported that intragenomic differences are
generally smaller than intergenomic differences in
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genomic composition [15–19]. This feature is widely
used for metagenomic binning (classifying metagenomic
assemblies into species-specific groups) [30–33], imply-
ing that fragments are able to indicate species relation-
ship and can be used to select closely related genomes.
Thus, we devised an approach based on fragment rather
than whole genome to overcome the above limitation of
TETRA. To use fragments, we used 2043 complete ge-
nomes with unambiguous species affiliations including
1779 queries (Additional file 2: Table S1) and 264 refer-
ences (Additional file 2: Table S2) to summarize the in-
formation useful for designing FRAGTE.
Our results showed that the intra- vs. inter-species

PCCD distributions of long fragments (> 10 kilobase pair,
kb) were well separated (Fig. 3a), but not those of short
fragments (data not shown). Therefore, one possible ad-
vantage of using fragment rather than whole genome is
completeness-independent, only requiring fragments with
length > 10 kb. To further assess the effect of fragment size
on PCCD, we tested pairs ranging from 10 kb to 200 kb in
length. Our empirical analysis showed that each intra- or
inter-species PCCD distribution was approximated by a
normal distribution (P-value < 2.2e-16, one-sample Kol-
mogorov–Smirnov test) (Fig. 3a). Additionally, our results
showed that the average intraspecies PCCDs increased
with fragment size, while their standard deviations (SDs)
correspondingly decreased (Fig. 3b and Additional file 3).
In contrast, both the average and SD of interspecies
PCCDs increased slightly. These results imply that the
ability to distinguish species increases with fragment size
and thus a unified cutoff cannot be set to differentiate spe-
cies, supporting the idea that setting a rigid cutoff of 0.99
in TETRA is not appropriate.
As we determined the intra- vs. inter-species PCCD dis-

tributions for pairs with lengths ranging from 10 kb to
200 kb, we were able to determine the length-specific cut-
offs (LSCs) to decide which genomes were closely related.
Here, we determined two cutoffs for fragments with a pair
of given lengths: one cutoff to include at least 95% of in-
traspecies pairs based on the above-determined intra-
species PCCD distribution and the other cutoff to exclude
at least of 95% of interspecies pairs based on the above-
determined inter-species PCCD distribution. The smaller
cutoff was chosen as the LSC (Additional file 1: Figure
S3A), to ensure that almost 100% of intraspecies pairs
were selected. Our assessment from the above-determined
PCCD distributions (Additional file 3) showed that the
LSCs for large-sized fragments (> 60 kb) achieved > 99.87%
of sensitivity (Additional file 1: Figure S3B), while the LSCs
for small-sized fragments (< 60 kb) showed considerably
less sensitivity (Additional file 1: Figure S3B and S3C).
Therefore, we designed an elaborate strategy in FRAGTE
to improve sensitivity for small-sized fragments as de-
scribed in the next section (Additional file 1: Figure S3C).
Algorithm description
The FRAGTE approach was designed to use fragments
rather than whole genomes. To use LSCs, FRAGTE di-
vides each genome into fragments and selects a typical
fragment to represent that genome. Besides, composition
is genome-specific, as indicated by the two exceptions
(Fig. 1), possibly due to (but not limited to) plasmid dif-
ferences (Additional file 1: Figure S2). However, LSCs
were drawn from empirically determined PCCD distri-
butions (Fig. 3) and were not genome-specific. As a gen-
ome can be divided into multiple fragments, a GSC can
be calculated as the mean intragenomic PCCD minus
two SDs based on all its divided fragments with two add-
itional restrictions (for details, see Materials and
Methods). Taking 1779 queries with 60% genome com-
pleteness as an example, we found that their GSCs
broadly ranged from 0.75 to 0.92, efficiently reflecting
the individuality of each genome (Additional file 1: Fig-
ure S4). Therefore, we designed FRAGTE to use LSCs
for genome selecting and then GSCs for genome filtering
to ensure both high sensitivity and high specificity.
FRAGTE consists of fragmenting phase followed by

determining phase. In the fragmenting phase, it divides
each genome into fragments and then selects a represen-
tative fragment. If an incomplete genome has multiple
contigs/scaffolds, FRAGTE first concatenates contigs/
scaffolds for this genome (Fig. 4a). Subsequently,
FRAGTE divides the (concatenated) genome by a sliding
window of l kb (with 0.5 l kb overlap). Here, we devised
FRAGTE to divide each genome into fragments as long
as possible (Additional file 1: Figure S5, for details, see
Materials and Methods), considering the two following
benefits. One is to increase selecting sensitivity by LSC,
as selecting sensitivity by LSC increases with fragment
size (Additional file 1: Figure S3B). The other is to in-
crease filtering power by GSC, as the average intraspecies
PCCD increases and the SD of intraspecies PCCDs de-
creases with fragment size (Fig. 3b) to yield a large GSC.
Then, FRAGTE calculates 256 z-scores for all fragments
as described in Teeling et al. [19].
Next, for each fragment, FRAGTE calculates PCCDs

with all non-overlapped intragenomic fragments. In this
way, a set of PCCDs is obtained for each fragment.
FRAGTE calculates the accumulated PCCD for each
fragment by summing all its PCCDs. Then, FRAGTE se-
lects the fragment with the largest accumulated PCCD to
represent its genome and obtains z-scores for the repre-
sentative fragment (ZRF). As FRAGTE divides a genome
into fragments as long as possible, it may filter some in-
traspecies pairs due to the large GSCs derived from in-
creased average but decreased SD of intraspecies PCCDs
from long fragments. To improve on this, FRAGTE was
made to use an even longer fragment (concatenated from
4 fragments with top 4 largest accumulated PCCDs) to



Fig. 4 Outline of the FRAGTE approach. A, fragmenting phase. An incomplete genome is concatenated (a). Then the concatenated genome is
divided by a sliding l-kb window with 0.5 l-kb overlap (b) and 256 z-scores are calculated for each fragment (c). For each fragment, PCCDs are
calculated with all non-overlapped intragenomic fragments (d) and then summed as an accumulated PCCD. Subsequently, a representative
fragment with the maximal accumulated PCCD is determined for its genome (e) and its z-scores is selected as z-scores for representative
fragment (ZRF). Besides, 4 fragments with top 4 largest accumulated PCCDs are used to calculate z-scores for long fragment (ZLF) (f). Finally, the
average PCCD and standard deviation (SD) based on all PCCDs of the representative fragment are calculated and genome-specific cutoff (GSC) is
thus computed as the mean intragenomic PCCD minus two SDs with two restrictions (g). In this way, FRAGTE finishes fragmenting phase and
obtains z-scores for the representative fragment (ZRF) and the fourfold longer fragment (ZLF), as well as a GSC. b determining phase. a PCCD (P1)
based on ZRFs is calculated. If P1 > LSC, the pair is selected. To improve specificity, GSC is used. GSC for a pair (GSCp) is determined as the smaller
between GSC for the query (GSCq) and for the reference (GSCr). If P1 > GSCp, this pair is finally sieved. Otherwise, a second PCCD (P2) based on
ZLFs is calculated. If P2 > GSCp, this pair is sieved
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possibly yield a larger PCCD than that normally obtained
from shorter fragment (the divided fragment) for a given
intraspecies pair. Fortunately, the average interspecies
PCCDs only increase slightly (Fig. 3b), implying that
using a longer fragment does not greatly increase the
amount of sieved interspecies pairs to keep its high spe-
cificity. In this context, FRAGTE additionally uses the
fourfold longer fragment to generate a PCCD for com-
paring with the GSC calculated from the divided frag-
ments. Using this strategy, FRAGTE is able to ensure
both high specificity and high sensitivity. Thus, FRAGTE
additonally selects 4 fragments with top 4 largest accu-
mulated PCCDs to form a fourfold longer fragment and
calculated z-scores for the fourfold longer fragment
(ZLF) as described in Teeling et al. [19]. Besides, as LSCs
affect the sensitivity of small-sized pairs (< 60 kb) and
their selecting sensitivities increase with fragment size
(Additional file 1: Figure S3B), we designed FRAGTE to
use the fourfold longer fragment (i.e. ZLF) instead of its
representative fragment (i.e. ZRF) for selecting by LSC,
when the size of the fourfold longer fragment is ≤200 kb.
By this means, the selecting sensitivity is dramatically
improved to ensure that almost 100% of intraspecies
pairs are selected by LSC (Additional file 1: Figure S3C).
Finally, FRAGTE calculates both mean and SD for all
PCCDs of the representative fragment to compute a
GSC (for details, see Materials and Methods). Up to this
step, FRAGTE finishes all intragenomic processing in the
fragmenting phase.
In the determining phase of FRAGTE, it effectively as-

sesses if genomes are closely related. It calculates an
intergenomic PCCD (termed P1) between a pair of ge-
nomes based on their ZRFs (Fig. 4b). If the P1 is larger
than its LSC, this pair is considered to be the same spe-
cies. To further improve specificity, GSCs are then used
to filter pairs. For a given pair, two GSCs are obtained
and the smaller one is taken as the GSC for this pair
(term GSCp). Determining GSCp by this means has two
benefits. One is automatically determining the cutoff,
without setting a prior cutoff as in TETRA. The other is
that the cutoff is genome-specific (Additional file 1: Fig-
ure S4), unlike TETRA using a rigid cutoff of 0.99. If the
P1 is larger than its GSCp, the pair is considered to be
closely related and thus sieved. Otherwise, FRAGTE cal-
culates a second PCCD (termed P2) based on their ZLFs.
If the P2 is larger than its GSCp, this pair is considered
to be closely related and consequently sieved.

Sieving performance on simulated genomes
All 1779 query (Additional file 2: Table S1) and 264 ref-
erence genomes (Additional file 2: Table S2) with unam-
biguous species relationships (> 96% ANI) were selected
to investigate the sieving performance of the FRAGTE
approach. We extracted 10–100% of genomes to assess
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the effect of completeness on the sieving performance.
Our results showed that FRAGTE strikingly yielded per-
fect sensitivities of 100%, regardless of their complete-
ness (Fig. 2b). Compared with TETRA, FRAGTE
achieved sensitivity with ~ 50% improvement for the ge-
nomes with 10% completeness and even slight improve-
ment for the complete genomes (Fig. 2). Besides,
FRAGTE correctly filtered about 98.31–98.94% of inter-
species pairs (Fig. 5a), while TETRA only correctly
Fig. 5 Specificity and percentage of totally selected pairs for the FRAGTE a
FRAGTE; b for specificity of TETRA; c for totally sieved pairs of FRAGTE; d fo
against 264 references with 10–100% of genome completeness, totally com
number of correctly filtered interspecies pairs divided by the total number
calculated using the total number of sieved pairs divided by the total num
filtered about 96.21–96.76% interspecies pairs to achieve
the same sensitivities as FRAGTE (Fig. 5b), demonstrat-
ing that FRAGTE has higher specificity than TETRA.
Collectively, FRAGTE achieved both high sensitivity and
high specificity. Due to its high specificity, FRAGTE
sieved only approximately 1.43–2.07% of total pairs (in-
cluding intra- and some inter-species pairs) to achieve
its 100% of sensitivities (Fig. 5c). Then, we compared the
total number of sieved pairs of FRAGTE with that of
nd TETRA approaches on simulated genomes. a for specificity of
r totally sieved pairs of TETRA. All were run on the 1779 queries
prising 469,656 pairs. The specificity (%) in cell is calculated using the
of interspecies pairs. The percentage of totally sieved pairs in cell is
ber of pairs. The number in cell is used as a basis for color intensity
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TETRA when TETRA achieved the same sensitivities as
FRAGTE. Our results showed that the total number of
sieved pairs by FRAGTE were ~ 42.66% to ~ 64.79%
lower than those by TETRA (Fig. 5c and d), demonstrat-
ing that FRAGTE greatly reduces the amount of pairs for
subsequent alignment and calculation and thus greatly
reduces computing cost.
Although FRAGTE highly reduced the computing cost

for species delineation through sieving a lower number
of pairs in total for subsequent alignment and calculation
than TETRA, we tested whether FRAGTE itself reduced
runtime of the process sieving. For this, we used a single
Fig. 6 Runtime comparison of FRAGTE and TETRA on simulated genomes.
of genome completeness. The runtime is the summed executive time inclu
by using serial execution (single thread, single process). Only a single comp
was used
compute node with two Intel® Xeon® Silver 4114 20-core
processors and evaluated the runtime of both FRAGTE
and TETRA using serial execution (single thread, single
process). We observed that FRAGTE drastically reduced
~ 77–82% of runtime of TETRA (Fig. 6). Therefore,
FRAGTE extremely reduced the executive time for the
process of sieving as well as the process of alignment
and calculation after sieving due to reduced amount of
all sieved pairs, which together improved the run effi-
ciency for genome-wide species delineation. In conclu-
sion, all these findings demonstrated that FRAGTE
performs better than TETRA for sieving.
All were run on the 1779 queries against 264 references with 10–100%
ding both fragmenting and determining phrases for all 469,656 pairs
ute node with two Intel® Xeon® Silver 4114 20-core processors



Fig. 7 Sieving performance on real genomes. a for sensitivity. Black,
60,298 intraspecies pairs sieved by both FRAGTE and TETRA; gray,
1199 intraspecies pairs uniquely detected by FRAGTE. b for
specificity. c for total number of sievied pairs. d for runtime. The
runtime is the summed executive time including both fragmenting
and determining phrases for all pairs by using serial execution
(single thread, single process). Only a single compute node with two
Intel® Xeon® Silver 4114 20-core processors was used. All were run
on 61,914 queries (Additional file 2: Table S3) against 5680
references (Additional file 2: Table S4), which totally comprise
351,671,520 pairs

Zhou et al. BMC Genomics          (2020) 21:183 Page 9 of 16
Sieving performance on real genomes
Artificial simulation may generate non-overlapping regions
for intraspecies pairs. In contrast, real genomes for different
intraspecies strains contain overlapping (aligned) regions,
possibly because aligned regions have similar features such
as G +C features and thus are similarly readily to assemble.
Accordingly, sieving using simulation data cannot com-
pletely reflect the sieving performance on the real data.
Consequently, we assessed the sieving performance on the
real genomes. For this, 61,914 query (Additional file 2: Table
S3) and 5680 reference genomes (Additional file 2: Table
S4), which comprised 61,914 labeled intraspecies pairs and
351,609,606 interspecies pairs, were used. Our checking
found that 58,120 (93.87%) of queries and 4335 (76.32%) of
references were incomplete and thus were suitable to assess
the impact of completeness on the sieving performance of
both the FRAGTE and TETRA approaches. FRAGTE sieved
61,497 (99.33%) intraspecies pairs, while TETRA sieved 60,
298 (97.48%) using its criterion of 0.99 (Fig. 7a), demon-
strating that FRAGTE is more sensitive. Strikingly, FRAGTE
detected all 60,298 intraspecies pairs sieved by TETRA (Fig.
7a), implying that FRAGTE can completely substitute
TETRA. To find out why 417 pairs labeled as intraspecies
in the NCBI taxonomy database were not successfully
sieved, we calculated their ANIs and alignment fractions
(AFs) by using the MUMmer algorithm (version 3.23) ac-
cording to the method in [4]. We found that only 15 of
them had an ANI > 96% and an AF > 60%. Therefore, ac-
cording to the MiSI method [10], from these 417 pairs, only
15 pairs were truly intraspecies. Thus, FRAGTE substan-
tially achieved a nearly perfect sensitivity of about 99.98%,
which was similar to the sensitivity obtained with the simu-
lated genomes (Fig. 2). Also, we found that FRAGTE cor-
rectly filtered more interspecies pairs than TETRA when
TETRA achieved the same sensitivity as FRAGTE (Fig. 7b),
supporting that FRAGTE is more specific than TETRA for
sieving. Taken together, FRAGTE achieved both higher sen-
sitivity and higher specificity on real genomes than that by
the TETRA approach, demonstrating that FRAGTE is also
greatly useful for practical/real genomes. In addition, our
analysis showed that FRAGTE sieved a total of 2,231,656
(0.63%) pairs, while TETRA sieved a total of 4,950,417
(1.41%) pairs to achieve the same sensitivity as FRAGTE
(Fig. 7c), showing that FRAGTE dramatically reduced the re-
quired computing cost for subsequent species delineation.
Finally, we used a single compute node with two Intel®
Xeon® Silver 4114 20-core processors as well as serial execu-
tion to compare the runtime of FRAGTE with that of
TETRA. We found that FRAGTE amazingly reduced the
execution time to approximatively 29.69% of that of TETRA
(Fig. 7d). Consequently, we proved that FRAGTE extremely
improved run efficiency for the process of sieving as well as
subsequent alignment and calculation to together accelerate
genome-wide species delineation.
Sieving performance on metagenome-assembled
genomes (MAGs)
MAGs are genomes reconstructed from the metage-
nomic data (microbial communities). However, due to
the complexity of metagenome, MAGs may be more
fragmented than genomes recovered from isolates, mani-
fested by the larger numbers of their contigs/scaffolds
(Additional file 1: Figure S6A) or smaller sizes of their
contigs/scaffolds (Additional file 1: Figure S6B). Accord-
ingly, sieving using both the above simulated and real ge-
nomes cannot completely reflect the sieving performance
on MAGs. Consequently, we assessed the sieving per-
formance on MAGs. For this, 3032 MAGs (Additional
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file 2: Table S5) against themselves, which comprised 94,
618 intra- and 9,095,374 inter-species pairs, were used.
FRAGTE sieved 94,616 intraspecies pairs to achieve a
nearly perfect sensitivity of ~ 100% (Fig. 8a), which was
similar to the sensitivity obtained with the simulated ge-
nomes (Fig. 2b) or the real genomes (Fig. 7a). In con-
trast, TETRA sieved 91,794 (97.02%) intraspecies pairs,
supporting that FRAGTE is more sensitive. Surprisingly,
FRAGTE detected all 91,794 intraspecies pairs sieved by
TETRA (Fig. 8a), indicating that FRAGTE can com-
pletely substitute TETRA. Meanwhile, FRAGTE correctly
filtered 8,743,496 (96.13%) interspecies pairs, while
TETRA only correctly filtered 8,414,994 (92.55%) inter-
species pairs to achieve the same sensitivity as FRAGTE
(Fig. 8b), demonstrating that FRAGTE has higher specifi-
city than TETRA. Collectively, FRAGTE achieved both
higher sensitivity and higher specificity on MAGs than
that by the TETRA approach, demonstrating that
FRAGTE is also greatly useful for MAGs.
Due to the improved sieving specificity, FRAGTE

sieved only a total of 446,494 (4.86%) pairs, while
TETRA sieved a increased number of 771,966 (8.40%)
Fig. 8 Sieving performance on metagenome-assembled genomes (MAGs).
and TETRA; gray, 2822 intraspecies pairs uniquely detected by FRAGTE. b fo
runtime is the summed executive time including both fragmenting and de
single process). Only a single compute node with two Intel® Xeon® Silver 4
(Additional file 2: Table S5) against themselves, which comprise 94,618 intra
pairs to achieve the same sensitivity as FRAGTE (Fig.
8c). This result indicates that FRAGTE dramatically re-
duces the required computing cost for subsequent align-
ment and calculation. Additionally, we compared the
runtime of FRAGTE with that of TETRA by using a sin-
gle compute node with two Intel® Xeon® Silver 4114 20-
core processors and serial execution. We found that
FRAGTE amazingly reduced the execution time to
approximatively 27.69% of that of TETRA (Fig. 8d).
Consequently, we proved that FRAGTE extremely im-
proves run efficiency for both the processes of sieving
and after sieving (subsequent alignment and calculation)
to together accelerate genome-wide species delineation.

Discussion
The need for a completeness-independent sieving
approach
Although we are able to obtain complete or near-
complete genomes more readily than before, due to re-
cently emerging long-read sequencing technologies such
as single-molecule, real-time (SMRT) and Oxford Nano-
pore MinION sequencing [34–37], it is still difficult to
a for sensitivity. Black, 91,794 intraspecies pairs sieved by both FRAGTE
r specificity. c for total number of sievied pairs. d for runtime. The
termining phrases for all pairs by using serial execution (single thread,
114 20-core processors was used. All were run on 3032 MAGs
- and 9,095,374 inter-species pairs
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obtain high-completeness genomes for uncultured mi-
crobes. The genomes of uncultured organisms, which
cannot be obtained by traditionally sequencing monocul-
tures, are alternatively obtained via binning metage-
nomic assemblies or single-cell sequencing. Genomes
binned from metagenomic assemblies are mostly drafts
[38–40], due to the complex nature of metagenomes. Al-
though SMRT sequencing is also able to improve assem-
bly to yield even complete genomes, it is still challenging
to generate finished genomes for most such microbes
[41]. In addition, SMRT sequencing requires a high bio-
mass for library preparation, hindering its ability to gen-
erate complete genomes for low-biomass microbiomes
like those of the skin. Additionally, the Hierarchical
Genome Assembly Process, an assembler for SMRT data
in solo, has inherent technical limitations, requiring high
sequence coverage and read overlap for consensus call-
ing and preassembly [34], making it difficult to generate
finished genomes. Similarly, single-cell genomics usually
generates draft genomes [42, 43] due to its intrinsic
technological challenges including cell isolation,
chimeric DNA-molecules, and amplification bias [44,
45]. Besides, the majority of available genomes in public
databases are unfinished. In the NCBI database, only
7.5% (6230/83075) of the genomes are complete. There-
fore, developing a completeness-independent approach
like FRAGTE is indispensable.

Comparison of FRAGTE and FastANI
Similar to TETRA, FastANI is also an alignment-free ap-
proach. It estimates ANI based on Jaccard similarity of
genomic k-mers to greatly speed up the calculation of
ANI [46]. Accordingly, FastANI is not directly compar-
able with FRAGTE, as FastANI is just another variation
of the ANI calculation algorithm, not tailored specially
for sieving according to Additional file 1: Figure S1. One
another reason why FRAGTE is incomparable with Fas-
tANI is that FastANI acheives lower sensitivities than
FRAGTE in some condtions. Taking the 3032 MAGs as
an example, we run FastANI with its default parameter
settings and found that FastANI sieved only about
22.80% of intraspecies pairs (Additional file 1: Figure
S7A), indicating that FastANI is also completeness-
dependent. Thus, we cannot compare FastANI with
FRAGTE in terms of specificity, total number of sieved
pairs and runtime (Additional file 1: Figure S7B-D), as
they sievied different numbers of intraspecies pairs.
However, we still compared FRAGTE with FastANI for
the 1779 queries against 264 references. Our results
showed that FastANI sieved 100% of intraspecies pairs
only when at least one genome of a pair is > 30%
complete (Additional file 1: Figure S8A), again indicating
that FastANI is completeness-dependent. Then, we com-
pared their specificities, total numbers of sieved pairs
and execution times when FastANI achieved the same
sensitivities as FRAGTE. We found that FRAGTE cor-
rectly filtered more interspecies pairs than FastANI
(Additional file 1: Figure S8B and Fig. 5a), showing that
FRAGTE achieves higher specificity than FastANI. With
respect to total number of sieved pairs, our results
showed that FastANI sieved a larger total number of
pairs than FRAGTE (Additional file 1: Figure S8C and
Fig. 5c). Regarding runtime, we found that FRAGTE run
faster than FastANI (Additional file 1: Figure S8D and
Fig. 6). Overall, FRAGTE is superior to FastANI as the
sieving algorithm to decide closely related genomes for
species delineation.

Comparison of FRAGTE and alignment-based approaches
Genome-wide delineation approaches require pairwise
alignment and calculation at the genome level. In theory,
alignment-based approaches on the basis of a single or
several marker genes can also be used for sieving, as they
greatly reduce the computing cost from the genome level
to the gene level. In principle, any housekeeping gene
such as 16S rRNA, dnaJ, dnaK, gyrB, recA, or rpoB can
be used in single-gene-based sieving or multiple-gene-
based sieving such as multilocus sequence typing [13]
and multilocus sequence analysis [14]. Among them, 16S
rRNA, one of the most widely-used marker genes used
as the first-line tool for species delineation, has been pro-
posed as an indicator for species delineation [47]. Goris
et al. [5] used > 94% 16S rRNA gene sequence identity to
sieve closely related pairs for subsequent alignment and
calculation. However, our results indicate that FRAGTE
is superior to alignment-based approaches due to several
reasons. First, some maker genes may have multiple cop-
ies in a single genome, which may cause complexity for
inferring species relationship especially when the intrage-
nomic diversity is large. For example, Desulfitobacterium
hafniense carries multiple copies for 16S rDNA gene
with intragenomic diversity of up to ~ 5% [12]. Second,
the alignment-based approaches are dependent on gen-
omic completeness to identify marker genes, causing
the alignment-based approaches to be completeness-
dependent. Our testing from the 1779 queries and 264
references showed that 16S rRNA predication depended
on genomic completeness (Additional file 1: Figure S9A).
Third, some marker genes are lost or challenging to be
identified if their sequences are atypical, even when their
genomes are complete. For example, the complete gen-
ome of Legionella pneumophila subsp. pneumophila str.
Thunder Bay has only one partial (~ 59%) 16S rRNA
identified by the software Barrnap. Fourth, the
alignment-based approaches on the basis of sequence
identity at the gene level have lower resolutions than our
FRAGTE approach. Our testing showed that the 16S
rRNA-based approach only sieved the maximal total of
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1778 intraspecies pairs even when the cutoff for 16S rRNA
identity was set at 84%, as the 16S rRNA identity for Bifi-
dobacterium longum subsp. longum strain JCM 1217 and
strain CCUG30698 was ~ 84% (Additional file 1: Table
S1). The number of intraspecies pairs sieved by the 16S
rRNA approach was even lower when the cutoff for 16S
rRNA identity is set at > 84% (Additional file 1: Figure
S9B). In contrast, FRAGTE sieved all 1779 intraspecies
pairs. In addition, FRAGTE sieved a total of 7239 pairs
(Fig. 5a), while 16S rRNA-based approach needed to sieve
a total of 63,024 pairs to achieve the sensitivity similar to
FRAGTE (Additional file 1: Figure S9C). Taken together,
FRAGTE has higher resolution than the 16S rRNA-based
method. Fifth, the relationship indicated by a single or
multiple genes may be distorted by HGT, which has litter
or almost no effect on FRAGTE, because FRAGTE uses
genome-level information instead. Therefore, FRAGTE is
more reliable than the alignment-based approaches. Fi-
nally, species relationship inferred by multiple marker
genes may be inconsistent as they might be under differ-
ent evolutionary stresses. Also, species relationship in-
ferred by maker gene(s) may be inconsistent to the true
species relationship. In contrast, FRAGTE reflects the spe-
cies relatedness more precisely, as FRAGTE uses the
genome-level information to cover a multitude of genes,
whose different evolutionary forces are thereby approxi-
mately cancelled out.

FRAGTE cannot completely substitute AF to guarantee high
accuracy for species delineation by the ANI approach
Bacteria can take up foreign DNA from the environment
though horizontal gene transfer (HGT). Thus, even dis-
tantly related species may show a high ANI of > 96%. In
this context, delineating such species based only on the
ANI criterion may lead to incorrect conclusions. To guar-
antee high accuracy, AF is usually used together with ANI.
For example, MiSI uses a combination of AF and ANI for
species delineation [10]. As composition are species spe-
cific [15–19], the recipient genome of HGTs may show
distinct composition from its donor genome [23]. Thus,
we reasoned that FRAGTE could substitute AF to guaran-
tee the high accuracy for the ANI approach by selecting
only closely related genomes with similar composition. To
explore this hypothesis, we calculated pairwise ANIs and
AFs for all pairs from the 1779 queries against 264 refer-
ences using the MUMmer algorithm (version 3.23) [48].
We found that most pairs with > 96% of ANIs had > 70%
of AFs (Additional file 1: Figure S10A). As intraspecies
strains have > 70% of AFs [7], there is no problem to de-
lineate them as from the same species. However, around
0.33% (1540/469,656) of pairs with > 96% ANIs had pre-
cisely <~ 25% of AFs (Additional file 4). Among them,
95.19% (1466/1540) had < 1% of AFs, possibly owing to
the occurred HGT events between them (Additional file 1:
Figure S10A). When we used FRAGTE to sieve closely re-
lated genomes, we found that FRAGTE pruned all 1447
pairs with putative HGTs (Additional file 1: Figure S10B).
Besides, 74 other distantly related pairs with > 96% ANI
but <~ 25% AF, possibly owing to contaminations, were
also excluded by FRAGTE. It seemed that FRAGTE can
substitute AF to guarantee high accuracy for species delin-
eation. However, FRAGTE cannot always guarantee to ex-
clude all distantly related pairs with HGTs or
contaminations, especially when the recipient and donor
genomes have a similar composition. For example, Strepto-
coccus pneumoniae 46 and Megamonas rupellensis DSM
19944, which are from different classes (Bacilli and Negati-
vicutes respectively) to have 99.29% ANI but ~ 0% AF,
were sieved by FRAGTE, indicating that FRAGTE cannot
completely substitute AF. Therefore, AF must be taken
into account to guarantee high species-delineation accur-
acy even for pairs sieved by FRAGTE.

Possible application of the FRAGTE approach
Due to its high sensitivity, high specificity, highly re-
duced number of sieved genomes and highly improved
runtime for sieving closely related genomic pairs, all
genome-based species-delineation approaches, including
ANI [4–6], average amino-acid identity [8, 9] and MiSI
[10], and even some multiple-gene-based approaches
such as the species identification tool using 40 universal,
single-copy phylogenetic marker genes [12], may benefit
from FRAGTE to improve their efficiencies. Notably, our
FRAGTE approach is modular and can be easily inte-
grated into these species-delineation tools. We anticipant
that it will replace TETRA to improve computational
efficiency.
Besides, it should be stressed that although FRAGTE

was devised to sieve closely related pairs for species de-
lineation, its methodology is general and could readily
employed to other bioinformatical tasks. For example, as
fragment composition is widely used to classify metage-
nomic assemblies into species-related units, FRAGTE
may be useful for binning, especially when merging sub-
bins. Thus, we plan to integrate FRAGTE into binning
approaches in the future.

Conclusion
Here, we present a novel sieving approach termed
FRAGTE. We demonstrate that FRAGTE is
completeness-independent and is able to sieve closely re-
lated pairs with high sensitivity (~ 100%) as well as high
specificity. In addition, we demonstrate that our method
runs faster than TETRA to reduce computing cost for
the sieving process and sieves a lower total number of
genomes for subsequent alignment and calculation to re-
duce computing cost for the process after sieving,
thereby together reducing the computing cost for species
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delineation. Besides, we demonstrate that FRAGTE is
unable to completely substitute AF to guarantee high
species-delineation accuracy for the ANI approach.
Therefore, we anticipant that FRAGTE will be coupled
with modern tools to facilitate taxonomic studies at the
species level and also further developed for other appli-
cation for prokaryotes.

Methods
Genome selection
All 6230 complete genomes were downloaded from the
NCBI database (on 20 January 2017). To evaluate and
compare the sieving performance, we chose genomes
with unambiguous species affiliation. Based on the List
of Prokaryotic names with Standing in Nomenclature
(LPSN) database [49], 5139 genomes with validated spe-
cies taxa were selected. Then, genomes belonging to spe-
cies with only one sequenced strain were discarded. We
obtained 3953 genomes belonging to 458 species. For
each species, we selected a representative genome as the
reference. Genomes belonging to type strains, which
were recognized using the Straininfo bioportal [50] and
the LPSN database, were selected as references. How-
ever, in the absence of a type strain, the genome with the
largest genome size was selected as the reference. The
remaining genomes were used as queries. Finally, 1779
queries and 264 references listed in https://github.com/
Yizhuangzhou/FRAGTE were selected for this study.

MAG download and selection
All 10,445 MAGs were downloaded from the NCBI data-
base specialized for metagenomes (ftp://ftp.ncbi.nlm.nih.
gov/genomes/genbank/metagenomes/) on 20 November
2019. Then we filtered MAGs by three steps. First, 194
MAGs with genome size < 10 kb were filtered, as only in-
ter- or intra-species genomes with size > 10 kb can be well
separated (Fig. 3a). Second, as most of genomes are < 10
Megabase pair (Mb) (Additional file 1: Figure S11), 6895
MAGs with size > 10Mb, which may have some contam-
ination, were filtered. Finally, 334 genomes were filtered
due to having no counterparts (TETRA > 0.8), as intraspe-
cies genomes with only ~ 10% completeness have a
TETRA > 0.8 (Fig. 1). After filtering, 3032 MAGs were
remained and compared in a pairwise manner by using
the MUMmer algorithm (version 3.23) according to the
method in [4]. 94,618 pairs with an ANI > 96% and an AF
> 60% were considered as intraspecies, according to the
MiSI method [10].

The calculation of TETRA
Ambiguous nucleotides (that is not A, T, C, or G) within
any genome were discarded. The processed genomes were
then concatenated with their reverse complements and the
tetranucleotide frequencies were computed. These
frequencies were subsequently transformed into z-scores
following the method of Teeling et al. [19]. The TETRA
(similarity) between two genomes was calculated as the
PCCD for their tetranucleotide frequency-derived z-scores.

Fragmenting phase in FRAGTE
Genomes (> 10 kb) were remained for further processing.
For each genome, all contigs/scaffolds were concatenated.
Next, the concatenated genomes were divided using a slid-
ing window of l kb (with 0.5 l kb overlap). A genome was
required to divide into ≥8 fragments with length in the
range of 10–200 kb by setting l as L/4, given that the total
size of the concatenated genome was denoted L. As 4 is
the minimal number for calculating a creditable GSC, set-
ting l as L/4 ensures that fragments are as long as possible
to increase their specificity. If L is < 40 kb, no fragmenting
was performed for this genome and LSC with length of
the entire genome was used as GSC (Additional file 1: Fig-
ure S5). If L was within the range of 40 kb to 800 kb, the
genome was divided into 8 fragments by setting l to L/4
and a GSC can be calculated based on the divided frag-
ments. If L was > 800 kb, the genome was divided into ≥8
fragments by compelling FRAGTE to set l to the max-
imally allowed 200 kb, which increased the sampling num-
ber (fragment number) to possibly generate a small GSC
to avoid missing some intraspecies pairs. This design is
very rational and useful, as the GSCs increased with frag-
ment size due to increased mean intragenomic PCCD but
decreased SD (Fig. 3b). A GSC can also be calculated
based on its divided fragments.
After genome fragmenting, all fragments were subject to

calculation of z-scores according to the method of Teeling
et al. [19] (Fig. 4a). Subsequently, for each fragment,
PCCDs were calculated with all non-overlapped intrage-
nomic fragments (see section on “The calculation of
TETRA”). The fragment with the maximal accumulated
PCCD was selected to represent its genome. In addition, a
fourfold longer fragment consisting of 4 fragments with
top 4 largest accumulated PCCDs was were also subject to
calculation of z-scores according to the method of Teeling
et al. [19]. Finally, FRAGTE calculated the mean (Mean)
and SD of all PCCDs for the representative fragments to
compute a GSC for its genome as follows:

GSC ¼ Mean−2�SD
Then, if the LSC corrosponding to the size (kb) of the

representative fragment was denoted LSCkb, we re-
stricted the GSC as follows:

GSC ¼ fLSCkb; if GSC < LSCkb

0:92; if GSC > 0:92

As GSCs are used for genome filtering, GSCs should
be equal to or larger than LSCkb. Besides, we found that

https://github.com/Yizhuangzhou/FRAGTE
https://github.com/Yizhuangzhou/FRAGTE
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/metagenomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/metagenomes/
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the cutoff, which is calculated as the mean intragenomic
PCCD minus one SD, increases with fragment size to
obtain a maixmal value of 0.92 (Additional file 1: Figure
S12A). Using 0.92 as GSC filters ~ 100% of interspecies
pairs (Additional file 1: Figure S12B), according to the
empirically-determined PCCD distributions (Fig. 3b and
Additional file 3). This indicates that using a > 0.92 GSC
may not greatly increase FRAGTE specificity. Thus, to
avioid to filter some intraspecies pairs due to the larger
GSCs, we restricted the maximally allowed GSC as 0.92.
Through the fragmenting phase, FRAGTE obtained

256 z-scores for the representative fragment (ZRF) and
the fourfold longer fragment (ZLF) as well as one GSC
for each genome. Selecting by LSC requires that the
fragment within the range of 10–200 kb. If L is ≤200 kb,
FRAGTE considers ZLF as ZRF to improve selecting
sensitivity, since selecting sensitivity increases with frag-
ment size (Additional file 1: Figure S5).

Determining phase in FRAGTE
For a given pair, FRAGTE obtains a couple of ZRFs,
ZLFs and GSCs for its query and reference in its frag-
menting phase. In the determining phase, FRAGTE cal-
culates two PCCDs for each pair, one for a pair of ZRFs
(termed P1) and the other for a pair of ZLFs (termed
P2) (Fig. 4b). If P1 is ≥ LSC, FRAGTE selects this pair.
Then the selected pair is subject to filtering by GSC.
The smaller GSC between the query’s GSC and the ref-
erence’s GSC is taken as the GSC of this pair (term
GSCp). If P1 is ≥GSCp, this pair is finally sieved as a
closely related pair. Otherwise, this pair is subject to
comparing with P2. If P2 is ≥GSCp, the pair is also fi-
nally sieved as a closely related pair.

16S rRNA analysis
16S rRNA genes were predicted by the software Barrnap
(BAsic Rapid Ribosomal RNA Predictor, version 0.7,
https://github.com/tseemann/barrnap/releases/). Pair-
wise identities between 16S rRNA genes were calculated
based on global alignment tool CLUSTAL W (version
2.0.12) [51]. To ensure the reproducibility of the similar-
ity calculation, we used CLUSTAL W to align only two
sequences at a time. Pairwise similarities were then cal-
culated without considering alignment gaps, following
the suggestion of Chun et al. [52].
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