
Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741
https://doi.org/10.1186/s12864-020-07132-6

METHODOLOGY ARTICLE Open Access

Progress in quickly finding orthologs as
reciprocal best hits: comparing blast, last,
diamond and MMseqs2
Julie E. Hernández-Salmerón and Gabriel Moreno-Hagelsieb*

Abstract

Background: Finding orthologs remains an important bottleneck in comparative genomics analyses. While the
authors of software for the quick comparison of protein sequences evaluate the speed of their software and compare
their results against the most usual software for the task, it is not common for them to evaluate their software for
more particular uses, such as finding orthologs as reciprocal best hits (RBH). Here we compared RBH results obtained
using software that runs faster than blastp. Namely, lastal, diamond, and MMseqs2.

Results: We found that lastal required the least time to produce results. However, it yielded fewer results than any
other program when comparing the proteins encoded by evolutionarily distant genomes. The program producing
the most similar number of RBH to blastp was diamond ran with the “ultra-sensitive” option. However, this option was
diamond’s slowest, with the “very-sensitive” option offering the best balance between speed and RBH results. The
speeding up of the programs was much more evident when dealing with eukaryotic genomes, which code for more
numerous proteins. For example, lastal took a median of approx. 1.5% of the blastp time to run with bacterial
proteomes and 0.6% with eukaryotic ones, while diamond with the very-sensitive option took 7.4% and 5.2%,
respectively. Though estimated error rates were very similar among the RBH obtained with all programs, RBH
obtained with MMseqs2 had the lowest error rates among the programs tested.

Conclusions: The fast algorithms for pairwise protein comparison produced results very similar to blast in a fraction
of the time, with diamond offering the best compromise in speed, sensitivity and quality, as long as a sensitivity
option, other than the default, was chosen.

Keywords: Orthologs, Reciprocal best hits, Fast algorithms, Sequence comparison

Background
Finding orthologs is an important step in comparative
genomics and represents a central concept in evolution.
Orthologs are defined as characters that diverge after a
speciation event [1]. This normally means that, if the char-
acters are genes, then they can be thought of as the same
genes in different species. Because of their relationship,
orthologs are expected to typically conserve their original

*Correspondence: gmorenohagelsieb@wlu.ca
Wilfrid Laurier University, Department of Biology, 75 University Ave W, N2L 3C5
Waterloo ON, Canada

function, an inference that has been supported by several
lines of evidence [2–5].
Efforts in standardizing methods for the inference of

orthology remain in constant evaluation, with over forty
web services available to the community [6, 7]. Few
of these methods are based on phylogenetic analyses
(tree-based approach), which, despite expected to be the
most accurate, tend to be computationally intensive and
impractical for big databases [8, 9]. Somemethods employ
pairwise sequence similarity comparisons (graph-based
methods) that have been successfully implemented, such
as the clusters of orthologous groups (COG) database

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-07132-6&domain=pdf
http://orcid.org/0000-0002-2457-4450
mailto: gmorenohagelsieb@wlu.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 2 of 9

[10, 11]. However, researchers have an increasing need to
produce their own sets of orthologs, as genome sequenc-
ing has become a much more commonly available tech-
nology.
Perhaps the most common approach, or operational

definition, of orthology, is Reciprocal Best Hits (RBH),
which is a simple method that has shown low false-
positive rates and ease of implementation [9, 12, 13].
Essentially, the complete set of proteins encoded by the
annotated genes of a genome, its proteome, is compared
to other proteomes. If two proteins, each encoded in a dif-
ferent genome, find each other as the best/highest-scoring
matches among the proteome of the opposite genome,
they are RBH and thus inferred to be orthologs. The most
common program for comparing proteomes is blastp [14].
This program was chosen for being the fastest available at
the time when comparative genomics began (v.g. [15, 16]).
However, the amount of sequences to analyze continues
to grow exponentially, making the speed of blastp com-
parisons too slow for the increasing demand for sequence
analysis.
When authors introduce a software suite for sequence

comparison, they often compare the speed and over-
all performance of their software to blastp. Since speed
tends to come at a cost in sensitivity and accuracy,
the reports might include differences in performance in
overall sequence comparison and number of detected
sequences. However, more specialized usages, like finding
orthologs as RBH, which do not often require the finding
of every sequence that would be found by blastp, might
be affected differently. Thus, it becomes necessary to test
the adequacy of the software in particular tasks. Accord-
ingly, prior work compared the performance of three fast
programs against blastp [17]. The programs tested were
blat [18], ublast [19] and lastal [20], with lastal producing
the most-similar-to-blastp results. Since then, two more
recent programs for fast sequence comparison have been
developed: diamond [21] and MMseqs2 [22] (from now
onmmseqs). Here we use lastal as a reference to the previ-
ous report [17] and test the performance of these two new
programs, diamond and mmseqs, for obtaining RBH.

Results
Runtimes
The computing speeds for finding homologs were plotted
for each program relative to blastp. Of all the programs
tested, lastal was the fastest (Fig. 1), obtaining results in
a median of approximately 1.5% of the blastp time to
run with bacterial proteomes (Fig. 1, left) and 0.6% with
eukaryotic ones (Fig. 1, right). The proportion of time
saved running any of the fast programs was much more
evident when running comparisons between eukaryotic
proteomes, which contain larger numbers of proteins than
bacterial ones.

Both diamond and mmseqs offer different sensitiv-
ity options. The sensitivity modes offered by diamond
are “fast”, “sensitive”, “more-sensitive”, “very-sensitive” and
“ultra-sensitive”. The fast mode was the closest in run-
time to lastal. The other options took increasingly longer
to run, mostly according to their level of sensitivity
(Fig. 1, left).
The sensitivity options for mmseqs tested were 1, 4,

and 5.7. 1 and 4 were chosen because both were used
in the article presenting the software [22], while 5.7 is
the default option. As expected, the 5.7 option saved
the least time in most cases, except in S. cerevisiae,
where diamond with the ultra-sensitive setting was slower
(Fig. 1, top-right).

Reciprocal best hits
The proportion of reciprocal best hits found using the
fast programs was also evaluated with respect to blastp
(Figs. 2, 3 and 4, Supplementary Figures S1–S3). Our
results showed a very similar proportion of RBH to those
obtained with blastp when the compared proteomes were
more similar to each other (higher values of genomic sim-
ilarity or GSS). In all cases, as the GSS decreased, so did
the proportion of RBH found.

Sensitivity options
The different sensitivity options resulted in different pro-
portions of RBH found by either diamond or mmseqs
(Fig. 2, Supplementary Figures S1–S3). The differences
in results become more obvious as the genomic sim-
ilarity drops. The results below refer to the figures
obtained with the E. coli reference genome (Fig. 2), though
the results with other reference genomes were similar
(Supplementary Figures S1–S3).
The proportions of RBH found using diamond’s fast

setting, which is the program’s default, dropped notice-
ably compared to those detected with the other options
(Fig. 2, top-left). The rest of the options found increasing
proportions of RBH in accordance to the level of sensitiv-
ity, albeit with small differences. All options other than the
default foundmore than 0.90 of the results found by blastp
at the lowest end of genomic similarity, with the very-
sensitive and ultra-sensitivemodes findingmore than 0.96
of the RBH found by blastp.
The UpSet plot showed that the sensitive to ultra-

sensitive settings had the highest RBH in common with
blastp for a total of 87.6% (66.9%+ 20.7%) (Fig. 2, bottom-
left).
In the case ofmmseqs, the sensitivity options tested pro-

duced noticeably different results (Fig. 2, right). Again, the
top options, 4 and 5.7, shared the most results with blastp
(Fig. 2), though only amounting to a combined 73.6%
(45.7%+27.9%). The 5.7 option produced the best results,
with 9.5% more RBH shared with blastp.

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 3 of 9

Fig. 1 Difference in speed obtaining pairwise alignments. The times plotted are the “real” times, as measured by the time UNIX command, relative to
blastp. The fastest of the three programs we tested was lastal. Both diamond and mmseqs were tested with different sensitivity options

Programs
Both diamond with the very-sensitive option and mmseqs
ran with the 5.7 setting detected a higher proportion of
RBH than lastal (Figs. 3 and 4). This was true even at
the lowest GSS values, meaning that even in the worst
cases, neither diamond, nor mmseqs, would miss more
than 10% of the RBH that would be produced by blastp.
The diamond results were the best in this sense.
With bacterial proteomes, close to 70% of all RBH were

detected by all programs (Fig. 3, bottom). The second
most important intersections, for both E. coli and B. sub-
tilis, shows that diamond andmmseqs shared the majority
of RBH with blastp (making up a total of 73.2 + 9.7 =
82.9% and 69.9 + 10.7 = 80.6%, respectively). Unlike our
previous analysis [17], which showed evidently higher per-
centages of RBH detected solely by blastp, the proportion
of RBHs exclusive to each program were somewhat sim-
ilar. These exclusive RBH seem to represent differences
in sensitivity, which might correspond to a mixture of
differentially detected true and false positives.
In contrast to the results in bacteria, both diamond and

mmseqs produced a higher proportion of RBH than blastp
in eukaryotes (Fig. 4, top). The proportion of RBH found
by mmseqs was the highest.
The UpSet plots showed a lower proportion of shared

RBH in comparisons involving eukaryotic proteomes than
in those involving prokaryotic ones. The intersection of

all programs covered close to 62% of the RBH detected
(Fig. 4, bottom). Again, diamond and mmseqs shared the
most RBHwith blastp (57.4+17.7 = 75.1% in S. cerevisiae
and 66.6 + 12.1 = 78.7% inM. musculus).

Error estimates
Error rates increased with proteome divergence (Fig. 5).
The error rates were very similar among all programs.
The mmseqs results consistently showed the lowest error
rate estimates. Overall, eukaryotes error rates were higher
than those estimated for prokaryotes (Fig. 5, right).

Discussion
The fastest programwas lastal
The highest sensitivity options offered by diamond, very-
sensitive and ultra-sensitive, were introduced with ver-
sion 2.0.0 of the program, which was released while
this report was under review. Thus, this might be the
first article showing results using them. As mentioned
in the “Results” section, the fast mode, which is the
default, was the closest in runtime to lastal. The other
options took increasingly longer to run. However, with
bacterial proteomes the very-sensitive mode ran in a
time between that taken by the fast and sensitive modes
(Fig. 1, left). The ultra-sensitive mode was the slowest to
run, breaking the “staircase-step” length by a large gap
(Fig. 1, overall).

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 4 of 9

Fig. 2 Reciprocal best hits found by diamond and mmseqs. The figure shows results using the E. coli proteome as reference. Results with the other
reference proteomes showed similar tendencies (see supplementary document). The proportion of RBH found is comparable to those found by
blastp when the proteomes involved are very similar (high Genomic Similarity Scores, GSS). This proportion reduces with the GSS. As expected, low
sensitivities reduced the proportion of RBH found. Note that the improvement between diamond’s very-sensitive and ultra-sensitive settings is
modest compared to their relative runtimes (Fig. 1)

With mmseqs, the 5.7 option saved the least time in
most cases, except in S. cerevisiae, where diamond with
the ultra-sensitive setting was slower (Fig. 1, top-right).
Note that we ran mmseqs with the “easy-search” func-

tion. This function produces any output format desired
withoutmuch user intervention. The easy-search function
accepts the target either in plain fasta format, or as a for-
matted database, but the query has to remain in plain fasta
format. Another way to produce pairwise alignments with
mmseqs would use the “search” function instead of easy-
search. The search function requires databases built for
both, query and target. The results of the search function
is also in database format. This database can then be used
to extract results into other output formats as necessary.
Also note that the mmseqs software can also precom-

pute indexes for its databases. We decided not to build
indexes because they take very long to be built and use
too much space. For example, the database for the largest
bacterial proteome (12,103 annotated proteins) used 5.7M
of space, which increased to 898M when building the

index. Runtimes might vary if the user preferred to build a
database index and use the search function instead of the
easy-search one.
Finally, note that mmseqs has a “rbh” function, with

a future version offering an “easy-rbh” function, which
should take care of producing a table without much user
intervention (Martin Steinegger, personal communica-
tion). However, we decided not to use the “rbh” function
because we preferred to keep control of the parameters
used to produce RBH.

The best compromise for obtaining reciprocal best hits was
diamond with the very-sensitive option
As mentioned under results, both diamond and mmseqs
were run with different sensitivity options, which, as
expected, resulted in different proportions of RBH found
(Fig. 2, Supplementary Figures S1–S3). At the lower end
of genomic similarity, the differences in results among
the tested sensitivity options became more apparent. The
results discussed below refer to those obtained with the

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 5 of 9

Fig. 3 Reciprocal best hits found by all programs with bacterial proteomes. The proportion of RBH obtained with the fast programs is very similar to
those obtained with blastp when genomes are very similar to each other (high Genomic Similarity Scores, GSS). As GSS decreases, the proportion
falls. Both diamond and mmseqs showed improved proportions at low GSS compared to lastal. Close to 70% of the RBH detected are shared by all
programs. Both diamond and mmseqs share the most RBH with blastp

E. coli reference genome (Fig. 2). However, the results
with other reference genomes showed similar tendencies
(Supplementary Figures S1–S3).
In the case of diamond, the lower proportions found

using the fast setting, the program’s default, was apparent
even when comparing very similar proteomes (Fig. 2, top-
left). The rest of the options behaved noticeably better,
which suggests that diamond with the sensitive mode
would already be a good substitute for blastp. The increase
in RBH between the sensitive and the more-sensitive
options was small, with a somewhat larger gap between
the more-sensitive and the very-sensitive modes and,
finally, another slight increase from the very-sensitive to
the ultra-sensitive mode. These tendencies are more obvi-
ous at the lowestGSS, where the proportion of RBH found
by diamond with the very-sensitive and ultra-sensitive
modes were above 0.96 (Fig. 2, top-left).
The UpSet plots showed that the sensitive to ultra-

sensitive settings had the highest RBH in common with
blastp for a total of 87.6% (66.9% + 20.7%) (Fig. 2, bottom-
left), with 20.7% representing the difference in results

compared to the fast option. Thus, diamond with the fast
option would perform very poorly compared to blastp. It
also appears that the ultra-sensitive mode had very little
advantage over the very-sensitive option, considering the
much longer time it took to run (Fig. 1). This setting took
a median of 7.4% of the blastp time to run with bacte-
rial proteomes (Fig. 1, left) and 5.2% with eukaryotic ones
(Fig. 1, right). These results are the reason why we selected
this option to represent diamond in the overall software
comparison.
The top options tested for mmseqs, 4 and 5.7, shared

the most results with blastp (Fig. 2), with The 5.7 option
producing the best results, with 9.5% more RBH shared
with blastp than the other options. We thus chose the 5.7
setting, which is the program’s default, for comparisons
against results obtained with the other fast programs.
At the sensitivity levels selected above, both diamond

and mmseqs detected a higher proportion of RBH than
lastal (Figs. 3 and 4). This was true even at the lowest
GSS values, meaning that even in the worst cases, neither
diamond, nor mmseqs, would miss more than 10% of the

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 6 of 9

Fig. 4 Reciprocal best hits found by all programs with eukaryotic proteomes. The proportion of RBH obtained with the fast programs, relative to the
number obtained with blastp, is more similar when genomes are in the same taxonomic group as the reference genome (Ascomycota for S.
cerevisiae, Chordata forM.musculus). Both diamond and mmseqs showed improved proportions compared to lastal. Bottom: most of the RBH
detected are shared by all programs. Both diamond and mmseqs share the most RBH with blastp

RBH produced by blastp. The diamond results were the
best in this regard.
With bacterial proteomes, close to 70% of all RBH

were detected by all programs (Fig. 3, bottom). The
second most important intersections, for both E. coli
and B. subtilis, shows that diamond and mmseqs shared
the majority of RBH with blastp (see “Results” section).
Unlike our previous analysis [17], which showed evi-
dently higher percentages of RBH detected solely by
blastp, the proportion of RBHs exclusive to each pro-
gram were somewhat similar. These exclusive RBH seem
to represent differences in sensitivity, which might corre-
spond to a mixture of differentially detected true and false
positives.
In contrast to what we observed in bacteria, both dia-

mond and mmseqs produced a higher proportion of RBH
than blastp in eukaryotes (Fig. 4, top). The proportion
of RBH found by mmseqs was the highest. Since these
proportions are above the RBH found by blastp, it is dif-
ficult to decide if these results are an improvement or a

problem. The error rate estimates did not help deciding
(see section below and Fig. 5, right).
The results of all programs shared a lower proportion

of RBH in the eukaryotic results than in the prokaryotic
ones, with the intersection of all programs covering close
to 62% of the RBH detected (Fig. 4, bottom).

Error rate estimates were very similar among all programs
Despite genomic rearrangements and horizontal gene
transfer result in divergence of gene order, a few regions
are preserved even between the genomes of evolution-
arily distant organisms [23–25]. Thus, despite conserva-
tion of adjacency is a very limited source for correction
of misidentified orthologs, pairs of adjacently conserved
genes can still be used to estimate error rates [12].
As expected, error rates increased with proteome diver-

gence (Fig. 5). The error rates were very similar among
all programs. Themmseqs results consistently showed the
lowest error rate estimates. These results suggest that the
quality of orthologs remains as high, if not better, when

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 7 of 9

Fig. 5 Error rate estimates. All error rate estimates are very close between programs, indicating that using any of the fast programs would not add
errors beyond what would be obtained with blastp. As expected, error rate estimates increase with genome divergence. The error rate estimates are
higher in eukaryotes (note that the scale is different to that for bacteria), presumably due to the complex dynamics of eukaryotic chromosomes

using software that produces results faster than blastp.
The reason why mmseqs showed the best quality could
be that this program uses a very efficient implementa-
tion of the Smith-Waterman algorithm to produce its final
alignments.
The contrast between bacterial and eukaryotic RBH

results might due to the complex dynamics of eukaryotic
chromosomes, resulting in complex homology relation-
ships (e.g. [26, 27]). Such complexity might result in differ-
ences in paralog/ortholog resolutions. Problems resolving
ortholog/paralog relationships might also result in dif-
ferences in error rates. Accordingly, the error rate esti-
mates were higher for eukaryotes (Fig. 5, right). Besides
difficulties for such a simple method as RBH for solv-
ing ortholog/paralog relationships, the simple concepts
of orthology and paralogy might not be easily applicable
to complex situations, where gene conversions, duplica-
tions, and loses, complicate the picture [26, 27]. Thus,
though we expected to find higher error estimates in
eukaryotes, these estimates might reflect both, authentic
mistakes, as well as the complexity of eukaryotic genome
dynamics.

Conclusions
The results above suggest that diamond, ran with the very-
sensitive option, might be the best alternative to obtain
RBH in terms of speed, sensitivity and quality. Our results
also showed that the faster programs produced results
with very similar error rate estimates as blastp. Improve-
ments in speed were much more evident for the large
databases involving eukaryotic proteomes.

Methods
For these tests we used the sets of annotated protein
sequences, or proteomes, from four reference genomes:
the bacteria Escherichia coli K-12 MG1655 (RefSeq
assembly id: GCF_000005845), and Bacillus subtilis 168
(GCF_000009045); as well as the eukaryotes Saccha-
romyces cerevisiae S288C (GCF_000146045) and Mus
musculus (GCF_000001635).
To compare against bacterial references, we used the

annotated protein sequences of 3,312 non-redundant
prokaryotic genomes. These non-redundant representa-
tives were selected from approximately 16,000 complete
prokaryotic genomes available at NCBI’s refSeq genome

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 8 of 9

database [28] by January 2020. To select these genomes,
we clustered them using a trinucleotide DNA signature
[29], with a δ-distance cutoff of 0.04 as described pre-
viously [30], resulting in 3,312 clusters. A distance that
roughly corresponds to a “species” level. We took one
genome per cluster, selecting the genome with the largest
number of annotated proteins.
For the comparisons involving eukaryotes, we chose 78

genomes, each selected to represent the members of each
eukaryotic taxonomic class with genomes available at the
RefSeq database by July 2020. Since eukaryotic genomes
often have more than one protein annotated per gene,
mostly to account for alternative splicing, we cleaned up
the eukaryotic proteomes by writing an ad hoc program
to leave only one protein per gene. This way, for example,
the mouse, Mus musculus, proteome was reduced from
84,985 to 21,905 representative proteins.
Four programs were used to perform protein sequence

comparisons: (1) blastp version 2.10.0+ [14], (2) lastal ver-
sion 1045 [20], (3) diamond version 2.0.2 [21], and (4)
mmseqs version 11-e1a1c [22].
To compare times, each pairwise comparisons was run

in the same computer, with no other programs running
at the same time. Times were obtained by using the unix
“time” command. This command reports user, cpu and
real times. The plotted times were the real times. The
computer was a six-core 2019 Mac mini with 64 GB
of RAM. All programs were run to use four of the six
available cpu threads in the machine.
To find Reciprocal Best Hits (RBH), we wrote a wrap-

up program, getRBH.pl [31], to standardize the options
and outputs from the different sequence comparison
programs. The options followed the work previously
described by Ward and Moreno-Hagelsieb [17]. Namely,
the e-value threshold was 1×10−6 (1e-6), coverage of 60%
of the shortest protein in the alignment, as well as soft-
masking and Smith-Waterman alignment, when available
(diamond does not have soft masking, thus it was run
with no masking). The latter two options were previously
found to improve the finding and quality of RBH with
blastp [12].
All four programs can work with their own tar-

get databases (also called subject databases). These
databases make the sequences easier to access and ana-
lyze, for example, by reducing the sequence alphabet,
indexing for quick retrieval, sometimes precomputing
“seeds” (sequence fragments used for a quick selec-
tion of sequences that might produce good scores when
fully aligned), or any other formatting for the efficient
use of the respective sequence comparison programs.
These databases are built using a program within the
suite: “makeblastdb” for blastp, “lastdb” for lastal; or
by a command within the program: “diamond makedb”
for diamond, “mmseqs createdb” for mmseqs. We built

databases for all programs (automatically implemented in
our getRBH.pl wrap-up).
Genomic Similarity Scores (GSS) were calculated from

blastp results as the sum of the bit scores of all recipro-
cal best hits (compScore) divided by the bit scores of the
respective orthologs against themselves (selfScore). This
calculation corresponds to the GSSa described in [30].
The estimate of error rates relied on conservation of

gene order. Ideally, if two adjacent genes, a and b are
homologs each to two corresponding genes a′ and b′ in a
different genome, then if one of the pairs a − a′ or b − b′
consists of orthologs, then the other pair should also con-
sist of orthologs [12]. In such cases, both pairs are counted
as correct inferences. If the program finds instead that the
other pair consists of paralogs, the paralog pair is counted
as a mistake. The error estimate is thus: E = P/(P + O),
where P is the number of paralog pairs found where an
orthologous one was expected [12].
To show the intersection sizes between compared

RBH datasets, in lieu of Venn/Euler diagrams, which
are hard to draw and interpret when more than three
sets are involved, we built matrix-based layouts using
UpSetR v1.4.0 [32] for R v. 4.0.2 [33]. Other graphs were
also drawn with R.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-020-07132-6.

Additional file 1: Supplementary Figures.

Acknowledgments
This work was supported by a Discovery Grant to GM-H from The Natural
Sciences and Engineering Research Council of Canada (NSERC). JEH-S was
supported by a fellowship from Mexico’s Consejo Nacional de Ciencia y
Tecnología (CONACYT).

Authors’ contributions
JHE-S ran most tests and analyses, modified procedures, produced figures,
contributed to the writing of the manuscript. GM-H designed the study, ran
some analyses, contributed to the writing of the manuscript. The author(s)
read and approved the final manuscript.

Funding
This work was supported by a Discovery Grant to GM-H from The Natural
Sciences and Engineering Research Council of Canada (NSERC). JEH-S was
supported by a fellowship from Mexico’s Consejo Nacional de Ciencia y
Tecnología (CONACYT).

Availability of data andmaterials
A wrap-up program for obtaining reciprocal best hits with the software and
options tested is available at github: https://github.com/Computational-
conSequences/SequenceTools.

Ethics approval and consent to participate
Not applicable.

Consent for publication
The authors consent to the publication of this manuscript.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s12864-020-07132-6
https://github.com/Computational-conSequences/SequenceTools
https://github.com/Computational-conSequences/SequenceTools

Hernández-Salmerón and Moreno-Hagelsieb BMCGenomics (2020) 21:741 Page 9 of 9

Received: 26 May 2020 Accepted: 9 October 2020

References
1. Fitch WM. Homology a personal view on some of the problems. Trends

Genet. 2000;16(5):227–31.
2. Chen X, Zhang J. The ortholog conjecture is untestable by the current

gene ontology but is supported by RNA sequencing data. PLoS Comput
Biol. 2012;8(11):e1002784.

3. Altenhoff AM, Studer RA, Robinson-Rechavi M, Dessimoz C. Resolving the
ortholog conjecture: orthologs tend to be weakly, but significantly, more
similar in function than paralogs. PLoS Comput Biol. 2012;8(5):1002514.

4. Gabaldón T, Koonin EV. Functional and evolutionary implications of gene
orthology. Nat Rev Genet. 2013;14(5):360–6.

5. Escorcia-Rodríguez JM, Esposito M, Freyre-González JA, Moreno-
Hagelsieb G. Non-synonymous to synonymous substitutions suggest that
orthologs tend to keep their functions, while paralogs are a source of
functional novelty. bioRxiv. 2020;12. https://doi.org/10.1101/354704.

6. Dessimoz C, Gabaldón T, Roos DS, Sonnhammer ELL, Herrero J, the
Quest for Orthologs Consortium. Toward community standards in the
quest for orthologs. Bioinformatics. 2012;28(6):900–4.

7. Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T,
Huerta-Cepas J, Linard B, Pereira C, da Silva AS, Train C-M, Bork P,
Lecompte O, von Mering C, Sjölander K, Jensen LJ, Quest for Orthologs
consortium, Altenhoff AM, Gabaldón T, Thomas PD, Forslund K,
Sonnhammer E, Pryszcz LP, Schreiber F, Szklarczyk D, Xenarios I, Martin
MJ, Muffato M, Lewis SE, Dessimoz C. Standardized benchmarking in the
quest for orthologs. Nat Methods. 2016;13(5):425–30.

8. Kuzniar A, van Ham RCHJ, Pongor S, Leunissen JAM. The quest for
orthologs: finding the corresponding gene across genomes. Trends
Genet. 2008;24(11):539–51.

9. Kristensen DM, Wolf YI, Mushegian AR, Koonin EV. Computational
methods for Gene Orthology inference. Brief Bioinform. 2011;12(5):
379–91.

10. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a
tool for genome-scale analysis of protein functions and evolution. Nucleic
Acids Res. 2000;28(1):33–6.

11. Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV. Microbiala
genome analysis: the COG approach. Brief Bioinform. 2017;20(4):1063–70.

12. Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better
detection of orthologs as reciprocal best hits. Bioinformatics. 2008;24(3):
319–24.

13. Wolf YI, Koonin EV. A tight link between orthologs and bidirectional best
hits in bacterial and archaeal genomes. Genome Biol Evol. 2012;4(12):
1286–94.

14. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. BLAST+: architecture and applications. BMC Bioinformatics.
2009;10:421.

15. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein
families. Science. 1997;278(5338):631–7.

16. Huynen MA, Bork P. Measuring genome evolution. Proc Natl Acad Sci
USA. 1998;95(11):5849–56.

17. Ward N, Moreno-Hagelsieb G. Quickly finding orthologs as reciprocal
best hits with BLAT, LAST, and UBLAST: How much do we miss? PLoS
ONE. 2014;9(7):101850.

18. Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res. 2002;12(4):
656–64.

19. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460–1.

20. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21(3):487–93.

21. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12(1):59–60.

22. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat Biotechnol.
2017;35(11):1026–8.

23. Dandekar T, Snel B, Huynen M, Bork P. Conservation of gene order: a
fingerprint of proteins that physically interact. Trends Biochem Sci.
1998;23(9):324–8.

24. Tamames J. Evolution of gene order conservation in prokaryotes.
Genome Biol. 2001;2(6):0020.

25. Moreno-Hagelsieb G, Treviño V, Pérez-Rueda E, Smith TF, Collado-Vides
J. Transcription unit conservation in the three domains of life: a
perspective from Escherichia coli. Trends Genet. 2001;17(4):175–7.

26. Gogarten JP, Olendzenski L. Orthologs, paralogs and genome
comparisons. Curr Opin Genet Dev. 1999;9(6):630–6.

27. Forslund K, Pereira C, Capella-Gutierrez S, da Silva AS, Altenhoff A,
Huerta-Cepas J, Muffato M, Patricio M, Vandepoele K, Ebersberger I,
Blake J, Fernández Breis JT, Quest for Orthologs consortium, Boeckmann
B, Gabaldón T, Sonnhammer E, Dessimoz C, Lewis S. Gearing up to
handle the mosaic nature of life in the quest for orthologs. Bioinformatics.
2018;34(2):323–9.

28. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, Li
W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH,
Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY,
Marchler-Bauer A, Pruitt KD. RefSeq: an update on prokaryotic genome
annotation and curation. Nucleic Acids Res. 2018;46(D1):851–60.

29. Campbell A, Mrázek J, Karlin S. Genome signature comparisons among
prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA.
1999;96(16):9184–9.

30. Moreno-Hagelsieb G, Wang Z, Walsh S, ElSherbiny A. Phylogenomic
clustering for selecting non-redundant genomes for comparative
genomics. Bioinformatics. 2013;29(7):947–9.

31. Moreno-Hagelsieb G. SequenceTools: getRBH.pl. 2020. https://github.
com/Computational-conSequences/SequenceTools. Accessed 10 Oct
2020.

32. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the
visualization of intersecting sets and their properties. Bioinformatics.
2017;33(18):2938–40.

33. R Core Team. R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing; 2020. https://
www.R-project.org/. R Foundation for Statistical Computing.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1101/354704
https://github.com/Computational-conSequences/SequenceTools
https://github.com/Computational-conSequences/SequenceTools
https://www.R-project.org/
https://www.R-project.org/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Runtimes
	Reciprocal best hits
	Sensitivity options
	Programs

	Error estimates

	Discussion
	The fastest program was lastal
	The best compromise for obtaining reciprocal best hits was diamond with the very-sensitive option
	Error rate estimates were very similar among all programs

	Conclusions
	Methods
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-07132-6.
	Additional file 1

	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

