
RESEARCH Open Access

Optimizing the genetic prediction of the
eye and hair color for North Eurasian
populations
Elena Balanovska1,2†, Elena Lukianova3†, Janet Kagazezheva1,3,4, Andrey Maurer5, Natalia Leybova6,
Anastasiya Agdzhoyan1,3, Igor Gorin3,7, Valeria Petrushenko3,7, Maxat Zhabagin8, Vladimir Pylev1,
Elena Kostryukova9 and Oleg Balanovsky1,2,3*

From 11th International Young Scientists School “Systems Biology and Bioinformatics” – SBB-2019
Novosibirsk, Russia. 24-28 June 2019

Abstract

Background: Predicting the eye and hair color from genotype became an established and widely used tool in
forensic genetics, as well as in studies of ancient human populations. However, the accuracy of this tool has been
verified on the West and Central Europeans only, while populations from border regions between Europe and Asia
(like Caucasus and Ural) also carry the light pigmentation phenotypes.

Results: We phenotyped 286 samples collected across North Eurasia, genotyped them by the standard HIrisPlex-S
markers and found that predictive power in Caucasus/Ural/West Siberian populations is reasonable but lower than
that in West Europeans. As these populations have genetic ancestries different from that of West Europeans, we
hypothesized they may carry a somewhat different allele spectrum. Thus, for all samples we performed the exome
sequencing additionally enriched with the 53 genes and intergenic regions known to be associated with the eye/
hair color. Our association analysis replicated the importance of the key previously known SNPs but also identified
five new markers whose eye color prediction power for the studied populations is compatible with the two major
previously well-known SNPs. Four out of these five SNPs lie within the HERС2 gene and the fifth in the intergenic
region. These SNPs are found at high frequencies in most studied populations. The released dataset of exomes
from Russian populations can be further used for population genetic and medical genetic studies.

Conclusions: This study demonstrated that precision of the established systems for eye/hair color prediction from
a genotype is slightly lower for the populations from the border regions between Europe and Asia that for the
West Europeans. However, this precision can be improved if some newly revealed predictive SNPs are added into
the panel. We discuss that the replication of these pigmentation-associated SNPs on the independent North
Eurasian sample is needed in the future studies.

Keywords: Population genetics, Exome sequencing, Gene pools, Pigmentation, DNA markers, Eye color, Hair color,
Appearance
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Background
Predicting the eye and hair color from DNA became an
important part of forensic genetic investigation. The
genome-wide association studies [1–3] identified some
key genes and sites within these genes which influence
the pigmentation of the eye and hair color, as well as
skin color [4, 5] phenotypes. These genes have been
widely used for predicting pigmentation from genotype,
mainly in the forensic context [6–8]. The most import-
ant sites have been included into HIrisPlex-S system [9–
12]. Genotyping the 24 markers (SNPs and indel) [10]
allows the rapid and reliable prediction of the eye and
hair color (HIrisPlex system); additional 17 markers pre-
dict the skin color as well (HIrisPlex-S system).
The prediction has been shown to be reliable for popu-

lations of European descent and the system itself has been
developed on European populations (mainly on Dutch).
Its precision for populations from other regions of the
world has not been tested extensively. Most non-
European populations have brown eyes and dark hair only.
However, some populations from border regions between
Europe and Asia populations (for example, groups from
Altai region in Siberia, some populations from the Cauca-
sus) are also known to carry lighter eye/hair phenotypes
and these populations do not exhibit close relation with
West Europeans on the genome level [13]. Even popula-
tions from Ural region, being more related to West Euro-
peans, than Caucasus and West Siberians, are nevertheless
much more genetically distant from Dutch than popula-
tions of Ireland, Poland, and Greece, used for verification
of the HirisPlexSystem [10, 11]. It is therefore possible
that some Asian populations carry alleles of the
pigmentation-related genes which are not included in
HirisPlex-S but affects the appearance phenotypes in these
populations. If this is a case, such additional alleles might
be useful for eye/color prediction in these populations and
have therefore practical importance for genetic forensic
investigations in Russia, or when investigating individuals
of Russian ancestry in Europe.
We aimed to estimate the precision of HirisPlex-S on

different populations from North Eurasia, to search for
new alleles within known pigmentation genes, and to es-
timate the impact of these alleles on the eye and hair
color. To do so, we collected the DNA samples and pho-
tos from 300 individuals from indigenous communities
from Russia and neighboring countries. The sampling
covered European part of Russia, Caucasus region,
Kazakhstan, and some populations from various parts of
Siberia. We performed exome sequencing rather than
genotyping to be able identify alleles which were not re-
ported previously and therefore have not been included
into the GWAS panels. As many key SNPs are known to
be located in intronic regions, we developed the custom
exome panel which includes both, exonic and intronic

regions of the 53 genes and intergenic regions known to
be involved in the pigmentation traits.

Results and discussion
Assembling the dataset
We phenotyped 300 individuals from 48 populations of
Russia and neighboring countries by identifying their eye
and hair colors. Independent phenotyping by three ex-
perts and availability of photos for revisiting made the
phenotyping reliable and reproducible. Populations were
grouped into four regional datasets: European Russia,
West Siberia, Caucasus, and North Asia; Fig. 1a presents
the sampling locations and grouping into the regional
datasets. In correspondence with the large area sampled,
the regional metapopulations have contrasting genetic
background. We performed the PC analysis of the popu-
lations included into this study to illustrate these find-
ings (Fig. 1b). We note, that the populations on which
the HIris-plex-S has been developed and validated
(Dutch, Polish, Irish, and Greek) occupy the narrow
zone on the “western” extreme of the PC plot, while
populations present in our study, particularly North
Asian, Caucasus and West Siberia are pronouncedly dif-
ferent from West Europeans and from one another.
Thus, all downstream analyses were performed for each
regional dataset and for the pooled dataset.
DNA samples from these 300 individuals were se-

quenced using the specially designed exome capture
which included, in addition to the standard Roche ex-
ome capture, the intronic and intergenic regions known
to carry pigmentation-related polymorphic sites (see
Methods for details).
The combined dataset included phenotypic calls and

genotypic calls for all individuals. Phenotypic calls in-
cluded five categories of the hair darkness, three categor-
ies of the hair redness, and five categories of the eye
darkness. Genotypic calls included genotypes of all poly-
morphic sites identified within the 53 genes and inter-
genic regions known to be involved in eye/hair
pigmentation. The downstream analyses were performed
on the subsets of this combined dataset.

Validating the precision of HIrisPlex on north Eurasian
populations
We started with estimating the precision of standard
eye/hair prediction system in the newly phenotyped pop-
ulations. From the combined dataset we extracted the
phenotypic and genotypic calls for 24 SNPs included in
the HIrisPlex-S. Then we predicted the eye and hair
color from genotypes using the online HIrisPlex-S tool
and compared the predicted phenotypes with the real
phenotypes (Table 1). Table 2 presents the results for
eye color prediction in different metapopulations (ex-
cluding the North Asia where the frequency of light eyes

Balanovska et al. BMC Genomics 2020, 21(Suppl 7):527 Page 2 of 13



Fig. 1 The studied populations. Panel a: The map of the studied populations. Numbers on the map refers to the following studied populations: 1
- Chuvashes, 2 - Komi Permyaks, 3 - Komi Zyrians, 4 - Mari Meadow, 5 - Mari Mountain, 6 - Mordvins Erzya, 7 - Mordvins Moksha, 8 - Russians, 9 -
Russians Nekrasov’s Cossacs, 10 - Russians of Nizhny Novgorod region, 11 - Russians of Tver region, 12 - Russians of Yaroslavlsky region, 13 -
Udmurts, 14 - Volga Tatars, 15 - Adyghe, 16 - Avars, 17 - Azeri, 18 - Dargins, 19 - Kabardinians, 20 - Karachays, 21 - Kumyks, 22 - Lezgins, 23 -
Ossets, 24 - Rutuls, 25 - Talysh, 26 - Tsakhur, 27 - Turks Meskhetian, 28 - Bashkirs, 29 - Forest Nenets, 30 - Khanty, 31 - Mansi, 32 - Shors, 33 -
Siberian Tatars, 34 - Buryats, 35 - Chukchis, 36 - Dungans, 37 - Evenks of Far East, 38 - Evens of Kamchatka, 39 - Evens of Okhotsk coast, 40 -
Kazakhs, 41 - Kirghiz, 42 - Koryaks, 43 - Nanais, 44 - Tajiks, 45 - Turkmens, 46 - Uyghurs, 47 - Uzbeks, 48 - Yakuts of Far East. Panel b: The principal
components plot for this study populations and for the populations used for HIris-plex-S developing/validation. HIris-plex populations are in
black. Colors refers to the regional datasets present on the Panel A

Balanovska et al. BMC Genomics 2020, 21(Suppl 7):527 Page 3 of 13



is low). We found (Table 1, Additional file 1) that the AUC
value in the pooled North Eurasian dataset is only slightly
lower than in the West/Central Europeans (particularly for
the brown and red hair). However, when we analyzed the
results for each region separately (Table 2), we found that
performance of HIrisPlex-S panel for predicting eye color is
lower for individuals from Caucasus region (AUC values
are 0.83 and 0.78, for blue and dark eyes). Especially, the re-
call for blue eyes in Caucasus is significantly lower in com-
parison with the other North Eurasian regions - only 47%
(Additional file 2). It might indicate that genes of the pig-
mentation metabolic pathways in the Caucasus populations
carry allele spectrum somewhat different from that in
Europe. When partitioning the dataset according to the
phenotypic class (Table 1 and Table 2) we found that pre-
dicting the both, blue and brown eyes in Russian popula-
tion is much less effective. In particular, the HirisPlex-S
systems tends to misclassify blue eyes as brown.

Eye and hair color prediction in north Eurasian
populations: searching for new informative alleles. The
general workflow
Our genetic data on the phenotyped individuals included
the full sequencing of the pigmentation-associated genes

and relevant intergenic regions rather than previously
known SNPs only. Thus, we were potentially able to re-
veal the new informative alleles in the known genes. In
total, we called 117,012 SNPs in the 53 genes and inter-
genic regions.
For eye color prediction we performed feature selec-

tion algorithms in order to obtain new informative al-
leles for North Eurasian populations for 4 datasets:

1. Pooled North Eurasian dataset
2. European Russia
3. Caucasus
4. West Siberia

For hair color prediction we used 5 datasets:

1. Pooled North Eurasian dataset
2. European Russia
3. Caucasus
4. West Siberia
5. North Asia

North Asian dataset was analyzed only for hair color
prediction due to the fact for this region there is an

Table 2 The AUC and accuracy of the eye color prediction using HirisPlex-S set of SNPs for the regional North Eurasian datasets

AUC Accuracy

Caucasus region West Siberia European Russia Caucasus region West Siberia European Russia

Blue eye 0,83 (15) 0,9 (17) 0,85 (60) 0,74 (15) 0,86 (17) 0,77 (60)

Intermediate eye N/A (2) N/A (1) N/A (2) N/A (2) N/A (1) N/A (2)

Brown eye 0,78 (38) 0,87 (26) 0,87 (32) 0,69 (38) 0,84 (26) 0,79 (32)

Red hair N/A (0) N/A (0) 0,81 (18) N/A (0) N/A (0) 0,88 (18)

Blond hair 0,77 (5) 0,58 (6) 0,75 (27) 0,84 (5) 0,79 (6) 0,72 (27)

Brown hair 0,41 (20) 0,55 (10) 0,6 (32) 0,41 (20) 0,65 (10) 0,61 (32)

Dark hair 0,77 (25) 0,81 (28) 0,76 (17) 0,53 (25) 0,77 (28) 0,79 (17)

Note: number of samples in each phenotypic class is indicated in the parentheses

Table 1 The AUC and accuracy of the eye color prediction using HirisPlex-S system and North Eurasian set of SNPs for the pooled
North Eurasian dataset

AUC Accuracy

HIrisPlex-S on
West/Central
European
populations

HIrisPlex-S on
North
Eurasian
populations

North Eurasian
SNPs (7 SNPs for
eye and 11 SNPs
for hair)

North Eurasian
SNPs (36 SNPs for
eye and 33 SNPs
for hair)

HirisPlex-S on
North
Eurasian
populations

North Eurasian
SNPs (7 SNPs for
eye and 11 SNPs
for hair)

North Eurasian
SNPs (36 SNPs for
eye and 33 SNPs
for hair)

Blue eye 0,94 0,93 (93) 0,96 (93) 0,9 (93) 0,86 (93) 0,83 (93) 0,97 (93)

Intermediate
eye

0,74 N/A (6) N/A (6) N/A (6) N/A (6) N/A (6) N/A (6)

Brown eye 0,95 0,93 (190) 0,86 (190) 0,97 (190) 0,86 (190) 0,79 (190) 0,98 (190)

Red hair 0,93 0,84 (18) 0,91 (18) 0,92 (18) 0,95 (18) 0,97 (18) 0,97 (18)

Blond hair 0,81 0,81 (40) 0,79 (40) 0,8 (40) 0,84 (40) 0,85 (40) 0,94 (40)

Brown hair 0,74 0,65 (70) 0,76 (70) 0,74 (70) 0,66 (70) 0,74 (70) 0,8 (70)

Dark hair 0,86 0,88 (156) 0,92 (156) 0,89 (156) 0,75 (156) 0,86 (156) 0,92 (156)

Note: number of samples in each phenotypic class is indicated in the parentheses
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observed variation in hair color while for eye color there
is no such variation.
Each dataset has been divided in 60:40 ratio into train-

ing and test samples with preserving the percentage of
samples for each class. For the pooled dataset we con-
trolled that samples from different regions included in
pooled dataset were split in the same proportion (60:40)
to avoid region-related bias.
Feature selection procedure has been performed on

the training dataset (Figure S2). Feature selection pro-
cedure consisted of applying three algorithms:

1) f_regression
2) mutual_info_regression
3) Lasso feature selection with different alphas (0.7,

0.5, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005)

When analyzing the distribution of F score (from f_
regression) and MI (from mutual_info_regression) the
thresholds for the most effective features with highest
scores were set for each dataset individually. When
performing the Lasso feature selection we tested dif-
ferent choices of the alpha parameter. For each value
of alpha we calculated r2 scores on training dataset
for corresponding subset of SNPs that have non-zero
coefficients.
Among these subsets we selected the most important

ones according to obtained r2 scores for each dataset
individually.
Based on results from three algorithms of feature se-

lection all selected SNPs were combined in the top SNPs
lists for each dataset.
In each top SNPs list, we selected SNPs which have

the best predictive power. These SNPs formed best SNPs
lists which we used to build a classifier. To select the
best SNPs, we used the same scale as HIrisPlex-S
classificator:

1. blue, intermediate and brown for eye color
2. red, blond, brown and dark for hair color

We considered these classes independent from each
other and tried to build the classifier with the best power
and the smallest SNPs set.
We used separate ranking systems for eye and hair

color prediction to estimate the importance and predic-
tion power of each SNP in order to narrow down the
SNPs lists.
The performance of the best selected features was vali-

dated on the test dataset. To evaluate the quality of the
model we calculated R2 score (coefficient of determin-
ation regression score function) (https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.r2_score.html),
AUC score, precision, recall and accuracy metrics.

Eye color prediction
Identifying the top SNPs in the pooled north Eurasian
dataset
To identify the top SNPs associated with the eye color in
our sample we applied three algorithms: f_regression (F
score), mutual_info_regression (MI), and Lasso feature
selection with different alphas (0.7, 0.5, 0.2, 0.1, 0.05,
0.01, 0.005, 0.001, 0.0005).
We analyzed F (f_regression) and MI (mutual_info_re-

gression) scores distributions across the samples and se-
lected the top 30 SNPs with the highest scores.
According to results from Lasso feature selection we

decided to include in top SNPs list the most crucial ones
- the ones having non zero coefficients for alpha = 0.5 (2
SNPs for ‘eye color’ dataset and 2 SNPs for ‘hair color’
dataset) and alpha = 0.2 (8 SNPs for ‘eye color’ dataset
and 8 SNPs for ‘hair color’ dataset) - these SNPs carry
the most prediction power according to r2 score values
distribution over different alphas. We also included SNP
sets for alphas 0.1, 0.01 and 0.005.
The final top SNPs list consisted of 256 SNPs

(Additional file 3).

Narrowing the list of SNPs and building classifier for eye
color based on it
We assigned to each SNP a score from 0 to 3. The score
3 is assigned only for SNPs from the pooled dataset top
SNPs list because of the results made for that dataset are
much more robust than for regional datasets (sample
sizes for the regional datasets are present in the Add-
itional file 4). The score 3 is assigned to SNPs that are in
top 5 with highest F score or have coefficients more or
equal to 0.1 in absolute value in Lasso models for alpha
0.2 or have non-zero coefficients in Lasso models for
alpha 0.5. For the pooled sample the score 2 is assigned
to SNPs that are in top 10 with highest F or MI scores
or have non-zero coefficients in Lasso model for alpha
0.2. The score 1 is assigned to SNPs that have coeffi-
cients greater or equal 0.1 in Lasso model for alpha
0.005. To all other SNPs we assigned the score 0. All 36
SNPs with non-zero scores formed the best SNPs list
and were used for the classifier.
The five SNPs had the highest score 3. Two of them

were well-known eye color-causing SNPs (rs1129038 and
rs12913832) while the remaining three have not been re-
ported previously as powerful eye color predictive alleles.

Variation of the best SNPs list across geographic regions
The entire analysis performed for the pooled North Eur-
asian dataset has been repeated for the populations from
the three following regions separately: European Russia,
Caucasus, and West Siberia. For regional datasets the
score 2 was assigned to SNPs that were in top 5 with
highest F and MI scores or had coefficients more or
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Table 3 The list of 36 best North Eurasian SNPs for eye color prediction

SNP_ID Caucasus
Score

European Russia
Score

West Siberia
Score

Pooled Dataset
Score

HIrisPlex-S dbSNP RSID Gene

chr15:28356859_C_T 2 2 2 3 rs1129038 rs1129038 HERC2

chr15:28365618_A_
G

2 2 2 3 rs12913832 rs12913832;
4745

HERC2

chr15:28392261_G_
A

2 2 3 rs12898729 HERC2

chr15:28410491_C_T 2 2 3 rs12916300 HERC2

chr15:28495956_A_
G

2 2 3 rs12912427 HERC2

chr15:28562998_T_C 1 2 rs1614575 HERC2

chr20:39272620_A_
G

1 2 rs4812447 Intergene
spacer

chr1:119406130_C_T 2 rs1779446 Intergene
spacer

chr1:3331899_A_G 2 rs1999528 PRDM16

chr15:28145024_T_C 2 rs2871886 OCA2

chr15:28364059_A_G 2 rs7494942 HERC2

chr15:28380518_T_A 2 rs4778249 HERC2

chr15:28383565_T_C 2 rs7403279 HERC2

chr15:28513364_T_C 2 rs916977;4744 HERC2

chr15:28530182_C_T 2 rs1667394 rs1667394;4743 HERC2

chr15:28566122_A_G 2 rs751089833 HERC2

chr19:7570978_T_C 2 rs685034 C19orf45

chr3:189429301_G_T 2 rs6804480 TP63

chr6:45136347_G_A 2 rs1324530 SUPT3H

chrX:66405249_C_T 2 rs34191540 Intergene
spacer

chr10:87576467_C_T 1 rs7923503 GRID1

chr14:92909309_T_C 1 rs12588868 SLC24A4

chr15:28419048_T_G 1 rs35946704 HERC2

chr17:9107969_G_A 1 rs17742781 NTN1

chr19:7578733_A_T 1 rs586243 ZNF358

chr3:189552236_T_C 1 rs7653443 MIR944

chr3:33035542_T_C 1 rs4586761 GLB1

chr3:33111182_T_G 1 rs72856153 GLB1

chr3:54251172_G_A 1 rs11283625 CACNA2D3

chr3:54636061_G_A 1 rs34983676 CACNA2D3

chr4:87847613_T_G 1 1 rs10022539 LOC100506746

chr4:87851083_C_T 1 rs72667724 LOC100506746

chr5:60947483_A_G 1 rs1501841 C5orf64

chr5:73959526_A_G 1 rs2454846 HEXB

chr6:45419110_C_G 1 rs2820339 RUNX2

chr7:42032565_C_T 1 rs2237427 GLI3

Indicated in bold - new SNPs which demonstrated the high prediction power for the eye color
Columns: SNP_ID – SNP ID in format: chromosome:position in GRCh37_allele 1_allele 2. Caucasus score, European Russia Score, West Siberia Score,
Pooled Dataset Score – scores as described in section “Eye color prediction” for corresponding datasets
HIrisPlex-S – RS ID if used in HIrisPlex-S. Otherwise empty
dbSNP RSID – RS ID in dbSNP database
Gene – Nearest gene for this SNP
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equal to 0.1 in absolute value in Lasso model for alpha
0.5 or non-zero coefficients in Lasso model for alpha 0.7.
The score 1 was assigned to SNPs that were in top 6
with highest F and MI scores or have coefficients non-
zero coefficients in Lasso models for alpha 0.7 and 0.5.
Additional file 5 presents the resulting best SNPs sets
for all three regions. The comparison of the regional lists
and the list for the pooled sample is present in the Add-
itional file 6. In general, the set of best SNPs is stable
across the regions: the SNPs with the highest scores are
included in the most lists, while among the other SNPs
there are both, identified within every region and region-
specific. Further study on the additional phenotyped
samples is necessary to replicate the significance of the
region-specific SNPs.
The merged SNPs list was ranked by total score (as

sum of all scores for 4 samples: Caucasus, West Si-
beria, European Russia, and pooled) (Additional file
6). Top 7 SNPs have the highest total score and

occurred in more than one dataset, which is an add-
itional confirmation that these SNPs have a strong
predictive power (Table 3). Two of those SNPs
(rs1129038 and rs12913832) are already included in
HIrisPlex-S panel, while other five SNPs are new can-
didates for eye color predicting in the North Eurasian
populations. We estimated the frequencies of these
five SNPs in North Eurasian populations (Add-
itional file 7). Each SNP was detected with poly-
morphic frequencies in every regional population, so
these SNPs are common rather than rare ones.

The north Eurasian SNPs set performance
We estimated the performance of the SNPs which dem-
onstrated the highest predictive power in our North Eur-
asian sample. The minimal set included 7 SNPs, two of
which were previously included into the HIrisPlex-S
panel. The optimal set included 36 SNPs which received
the highest scores on the pooled North Eurasian dataset.
We tested the classification performance of both sets of
North Eurasian SNPs. Figure 2 presents the ROC curves
and AUC scores for the prediction of three eye colors.
The accuracy of 7 SNPs set is almost as effective as pre-
diction based on the 41 HIrisPlex-S SNPs, while the set
of 36 North Eurasian SNPs slightly outperforms 41
HIrisPlex-S SNPs on our sample (Fig. 2, Table 1).

Hair color prediction
We performed the same feature selection analysis to find
and evaluate top SNPs list for hair color prediction for
pooled North Eurasian sample, which includes popula-
tions from the following regions: Caucasus, European
Russia, West Siberia and North Asia.
We selected top 322 SNPs and narrowed the list to 33

best SNPs that have the strongest performance for 4-
grade classification: red, blond, brown and dark hair
color, the same scale as HIrisPlex-S (Additional file 8).
We assigned significance scores to select the minimum

set of SNPs in following way:

1) The score 3 has been assigned to SNPs that are in
top 5 with highest F or MI scores or have
coefficients more than 0.05 in absolute value in
Lasso models for alpha 0.2 or have non-zero coeffi-
cients in Lasso models for alpha 0.5

2) The score 2 has been assigned to SNPs in top 10
with highest F or MI scores

3) The rest SNPs of 33 best SNPs list have the score 1

We were able to detect the most powerful 11 SNPs
that have the highest score (3), three of them are in-
cluded in HIrisPlex-S panel (rs16891982, rs12913832,
and rs1129038).

Fig. 2 ROC-AUC curves for eye color prediction on North Eurasian
dataset for three-grades scale. Panel a: results on the 7 SNPs set.
Panel b: Results on the 36 SNPs
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We checked the performance of the classifier based on
11 SNPs set and tried to estimate its ability to distin-
guish between 4 independent classes (the same as for
HIrisPlex-S): red, blond, brown and dark hair
(Additional file 9).
Additionally, we tried to merge 2 classes of hair color

- blond and brown - because algorithm does not have
enough power to distinguish them, and checked the per-
formance of selected SNPs for 3 grade scale. As we can
see from the results (Fig. 3) the classifier performance
improved significantly for both sets of SNPs: the most
powerful 11 SNPs and 33 best SNPs.

The new potentially informative SNPs
Our analysis identified five new SNPs which demon-
strated the high prediction power for the eye color.
These SNPs were revealed on the pooled North Eurasian
sample and were replicated on the most regional

subsamples. Four of these SNPs are located in HERC2
gene, and one (rs4812447) is in intergenic region.
HERC2 (HECT And RLD Domain Containing E3 Ubi-
quitin Protein Ligase 2) gene belongs to the HERC gene
family that encodes a group of unusually large proteins,
which contain multiple structural domains. Genetic vari-
ations in this gene are associated with skin/hair/eye pig-
mentation variability [1, 14, 15].

Limitations of the used approach
We analyzed the performance of the known pigmenta-
tion predictive SNPs and looked for the new SNPs in
previously unstudied populations from different geo-
graphic areas. This regional-based approach allowed
identify SNPs which are informative for the particular
populations but made the sample sizes from each region
quite limited. Therefore, we were not able to subdivide
our sample into the training dataset and validation data-
set – this would result in reducing sample sizes to num-
bers not allowing the statistically significant analysis.
Therefore, our approach forced us to use the same data-
set for SNPs discovery, building the classification model,
and also for the validation, which might result in predic-
tion overestimation. Therefore, the performance of our
SNPs should be considered as an upper estimate, and
the identified SNPs as candidate ones until verification
on the independent sample in the future studies. Though
stability of the top eye color predictive SNPs across geo-
graphic regions partly verifies the effectiveness of the
newly identified predictive SNPs.

Conclusion
We analyzed the gene-phenotype correlation in the pop-
ulations from the border regions between Europe and
Asia which carry light pigmentation phenotypes but have
the contrasting genetic ancestries with the West Euro-
peans. We replicated the effectiveness of the classical
HIrisPlex-S panel for these previously unstudied popula-
tions, though the accuracy is slightly lower than for the
West European groups the classifier has been developed
on. Such decrease in accuracy might result from the
population-specific SNPs which are present in North
Eurasian populations but are rare in West Europeans
and thus have not been included in the HIrisPlex-S
panel. We analyzed the pigmentation genes and relevant
intergenic regions in the phenotyped individuals and
performed the association analysis between all identified
polymorphic sites and pigmentation phenotypes. Note,
that our target sequencing included not only the stand-
ard exome, but also intronic regions of the 53
pigmentation-related genes. Thus, the released dataset
can be used for further population genetics or medical
genetics studies, because it presents the exome variation
in many indigenous groups which were previously

Fig. 3 A. ROC-AUC curves for hair color prediction on North
Eurasian dataset for the three-grades scale. Panel a: results on the 11
SNPs set. Panel b: results on the 33 SNPs set
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studied by SNPs arrays only but not by the sequencing ap-
proach. As an additional by-product, the dataset allows to
estimate the frequencies of the mutations with uncertain
pathogenicity in the North Eurasian populations.
Our analysis of the pigmentation replicated the im-

portance of the key previously known SNPs but also
identified five new markers whose eye color prediction
power on our North Eurasian dataset is compatible with
the two major previously known SNPs. We note, that
HIRisPlex-S recall for the blue eye phenotype is lowest
in the Caucasus region, and our analysis identified a set
of SNPs with prediction power specific for the Caucasus.
We note, that all the SNPs revealed are candidate ones,
as the same dataset (North Eurasian sample) has been
used for both procedures: the feature selection and the
classification. To avoid the overtraining effect, the repli-
cation of the new SNPs on the independent North Eur-
asian sample is needed in the future studies.

Methods
Populations studied
The dataset consisted of 300 samples from 48 local pop-
ulations. Additional file 10 presents linguistic affiliation
of these populations, while Fig. 1a indicates their geo-
graphic locations. The populations were geographically
grouped into 4 major regions of North Eurasia (Fig. 1a,
Additional file 10, Additional file 11).
To illustrate the genetic relations of these populations,

we used the genome-wide datasets on the same ethnic
groups available in the GG-base (www.gg-base.org) and
run the principal components analysis using PLINK soft-
ware (Fig. 1b). We also added into the analysis the popu-
lations used for developing and validating the HIris-
plex-S system: Dutch, Irish, Polish, and Greek. As there
were no data on Dutch populations in the GG-base, we
used Northwest French and West Germans as a suitable
proxy; this has had a minor impact on the plot, as PC has
not identified much differentiation among the HIris-plex
populations, as expected for West/Central Europeans.

Phenotyping
The high-quality photos of members of indigenous
North Eurasian communities were obtained during the
field trips coordinated by the Biobank of North Eurasia
[16]. The eye and hair color phenotypes were called
based on these photos by three experts: two were phys-
ical anthropologists with deep experience in phenotyp-
ing, and the third was the specially trained geneticist. All
the experts performed the phenotyping independently,
and the cases when the calls were different became a
subject of a thorough investigation until the consensus
calls were achieved. We identified 99 individuals with
light eyes and 187 with dark eyes, 128 individuals with
light hair and 156 with dark hair, 76 individuals with red

hair and 209 with not red hair. Additional file 11 pre-
sents the individual phenotyping calls including inter-
mediate values.

Library preparation and sequencing
Genomic DNA from both blood or saliva was extracted
using an organic extraction method. List of genes and
intergenic regions which can have potential polymor-
phisms associated with hair color and eye color traits was
created based on detailed literature analysis [1, 14, 15, 17–
25] including genome-wide association studies (GWAS)
catalog (https://www.ebi.ac.uk/gwas/). For example, not
exones only, but also introns of HERC2 and CACNA2D3
have been included into the sequencing capture. As a re-
sult, we developed the custom target sequencing panel
which includes the 53 genes or intergenic regions. Frag-
mentation was performed by the Hydrodynamic Shearing
System (Covaris). DNA fragments with ligated adapter
molecules were selectively enriched by PCR, and then
exons of genes were captured. The exome DNA enrich-
ment was performed with custom SeqCap EZ Exome Plus
Library Kit (Roche) with SeqCap Adapter Kit (Roche) and
SeqCap HE-Oligo Kit (Roche) and sequencing libraries
were generated using KAPA HyperPlus Library Prepar-
ation Kit (Roche), according to the manufacturer’s recom-
mendations. Products were purified using the AMPure XP
system (Beckman Coulter) and quantified using the Agi-
lent high sensitivity DNA assay on the Agilent Bioanalyzer
2100 system. Sequencing was performed on an HiSeq
2500 sequencer (Illumina) with HiSeq SBS v4 250 Kit
(Illumina) following the manufacturer’s recommendations
and yielded 125-bp paired-end reads.

Bioinformatics analysis
Raw data from high-throughput sequencing in fastq.gz
format were aligned to hg19 reference human genome
using bwa mem software. The resulting files in bam for-
mat were sorted and deduplicated using the SAMtools
program package. Mutation calling was performed using
freebayes software with filtration (quality (QUAL) > 40 &
read depth (DP) > 5) of identified variants with vcffilter
of vcflib program package. Annotation of variants was
performed using SnpSift of snpEff program package. Da-
tabases dbSNP [26], dbNSFP [27, 28], ClinVar [29], 1000
Genomes Project [30], and ExAC [31] were used as in-
formation resources for identified variants. Samples with
low genotyping rate have been excluded from further
analyses (minimal genotyping rate is 90%), resulting in
286 samples dataset. Then polymorphisms in selected
genes were analyzed and characterized for 286 samples.

Prediction from Hiris-Plex-S SNPs
We called 41 polymorphic sites from HIris-Plex-S foren-
sic panel in all 286 analyzed samples and calculated hair
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and eye color predictions for all samples using online
tool of the Department of Genetic Identification of Eras-
mus MC (https://hirisplex.erasmusmc.nl). The predicted
phenotypes were then compared with the true pheno-
types, and the performance statistics were calculated for
the pooled North Eurasian dataset and the regional data-
sets. Our five-grades scales have been converted into
three-grades scales to make phenotypic call fully com-
parable with the HIrisPlex-S calls.

Identifying the potentially informative SNPs for north
Eurasian populations
Our dataset included 48 populations from North Eur-
asia. For eye color prediction we omitted the populations
that are less polymorphic in eye color phenotypes (Add-
itional file 11). This allowed us to achieve the better bal-
ance between different phenotypic classes. Populations
which don’t have at least 4 grades of the our five-grades
scale were eliminated from further analyses.
We ran feature selection algorithms in order to find

most informative SNPs correlated with eye and hair
color according to our 5-grade scales used for quantita-
tive estimate of dark pigment in eyes (the highest value
corresponds to the highest concentration of pigment)
and hair (where ‘0’ is a red hair, ‘1’ is blond hair, and ‘4’
is the dark hair).
We considered our 5-grade scales (both for eye and

hair color) continuous as they reflect the concentration
of dark pigment and those classes are not independent.
Three feature selection methods were applied to select

the most informative features associated with pigmenta-
tion traits for the pooled North Eurasian dataset and for
each region separately.
Each dataset has been divided in 60:40 ratio into train-

ing and test samples using stratified K folds cross-
validator that preserves the percentage of samples for
each class.
Feature selection methods were applied to training data-

set while the quality metrics for selected features were cal-
culated using test dataset. The minimum set of SNPs with
the most predictive power has been identified on test
dataset. Also, we built classifier based on these final SNPs.
To evaluate the quality of the model we calculated r2

score (https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.r2_score.html), AUC, accuracy, precision
and recall metrics using scikit-learn package [32].

Feature selection algorithms
We used the three following algorithms for feature selec-
tion which are suitable for regression tasks
(Additional file 12):

1) f_regression (https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.f_regression.

html#sklearn.feature_selection.f_regression) -
univariate regression test. Univariate feature
selection works by selecting the best features based
on univariate statistical tests. It uses linear model
for testing the individual effect of each of many
regressors. This is a scoring function to be used in a
feature selection procedure.

This was done in 2 steps:

1. The correlation between each regressor and the
target is computed, that is, ((X[:, i] - mean(X[:, i])) *
(y - mean_y)) / (std(X[:, i]) * std.(y)).

2. It is converted to an F score then to a p-value

We selected only those features that has p-value< 0.01.
Then we sorted them in F-score descending order. Fea-
tures that have the highest F score values are considered
the most promising and potentially informative features.

1) mutual_info_regression (https://scikit-learn.org/
stable/modules/generated/sklearn.feature_selection.
mutual_info_regression.html#sklearn.feature_
selection.mutual_info_regression). It estimates
mutual information (MI) for a continuous target
variable. Mutual information between two random
variables is a non-negative value, which measures the
dependency between the variables. It is equal to zero
if and only if two random variables are independent,
and higher values mean higher dependency. The
function relies on nonparametric methods based on
entropy estimation from k-nearest neighbors’ dis-
tances as described in [33, 34]. Both methods are
based on the idea originally proposed in [35].

2) L1- based feature selection -- Lasso technique
(https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.Lasso.html#sklearn.linear_
model.Lasso). Linear models penalized with the L1
norm have sparse solutions: many of their
estimated coefficients are zero. The Lasso is a linear
model that estimates sparse coefficients. It is useful
in some contexts due to its tendency to prefer
solutions with fewer parameter values, effectively
reducing the number of variables upon which the
given solution is dependent.

It consists of a linear model trained with L1 prior as
regularizer. The objective function to minimize is:

min
w

1
2nsamples

Xw − yj jj j22 þ α wj jj j1 ð1Þ

The lasso estimate thus solves the minimization of the
least-squares penalty with α||w||1 added, where α (alpha)
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is a constant, ||w||1 is the L1-norm of the parameter
vector, X is training data and y is target values.
The parameter alpha controls the sparsity: the

higher the alpha parameter, the fewer features se-
lected. For our purposes we tested a range of alphas:
0.7, 0.5, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005. The
best features were found using the biggest alphas: 0.7,
0.5 and 0.2.

Parameters for selecting the most significant features
(SNPs)
The pooled dataset
To avoid the situation of finding SNPs associated with
particular population of North Eurasia rather than with
a phenotypic trait we excluded from analyses those geo-
graphic regions in which we didn’t find the variation in
phenotype. Hence, for eye color prediction the final
dataset included Caucasus, European Russia and West
Siberia regions (Additional file 11), while the dataset for
hair color prediction consisted of populations from all
four regions - Caucasus, European Russia, North Asia,
and West Siberia.

Identifying the top SNPs lists
Top of a few hundred SNPs most significantly associated
with phenotypic traits has been chosen using the follow-
ing thresholds (Additional file 12):

1) top 30 SNPs with highest F scores for f_regression
2) top 30 SNPs with highest MI scores for

mutial_info_regression
3) SNPs with non-zero coefficients for Lasso models

with alphas 0.5, 0.2, 0.1 0.01 and 0.005

Selecting the best SNPs from the top lists
The top lists included hundreds of SNPs, and to narrow
down the lists we selected the best SNPs from each top-
SNPs list (Additional file 12). We used corresponding
thresholds to obtain these lists for both, eye and hair
color prediction:

1) top 10 SNPs with highest F scores for f_regression
2) top 10 SNPs with highest MI scores for

mutial_info_regression
3) SNPs with non-zero coefficients for Lasso models

with alphas 0.5 and 0.2
4) SNPs with coefficients more or equal to 0.1 in

absolute value for Lasso model with alpha 0.005

Regional datasets
To select best SNPs for each region we also performed 3
types of feature selection analyses and looking at the dis-
tribution of scores and considering the sample size for
each region we set the following thresholds:

1) top 6 SNPs with highest F scores for f_regression
2) top 6 SNPs with highest MI scores for

mutual_info_regression
3) SNPs with non-zero coefficients for Lasso feature

selection with parameters alpha 0.7 and 0.5.

Building the classifier
For building the classifier we used a linear regression al-
gorithm. We used genotypes for SNPs from best SNPs
lists converted to values 0, 1 or 2 (2 for genotype ‘1/1’, 1
for genotypes ‘1/0’ or ‘0/1’ and 0 for ‘0/0’). Model was
trained on the training dataset. For quality estimation
we calculated r2 score, AUC, accuracy, precision and re-
call metrics on the test dataset.
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