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Abstract

Background: Inference of biological pathway activity via gene set enrichment analysis is frequently used in the
interpretation of clinical and other omics data. With the proliferation of new omics profiling approaches and ever-
growing size of data sets generated, there is a lack of tools available to perform and visualise gene set enrichments
in analyses involving multiple contrasts.

Results: To address this, we developed mitch, an R package for multi-contrast gene set enrichment analysis. It uses
a rank-MANOVA statistical approach to identify sets of genes that exhibit joint enrichment across multiple contrasts.
Its unique visualisation features enable the exploration of enrichments in up to 20 contrasts. We demonstrate the
utility of mitch with case studies spanning multi-contrast RNA expression profiling, integrative multi-omics, tool
benchmarking and single-cell RNA sequencing. Using simulated data we show that mitch has similar accuracy to
state of the art tools for single-contrast enrichment analysis, and superior accuracy in identifying multi-contrast
enrichments.

Conclusion: mitch is a versatile tool for rapidly and accurately identifying and visualising gene set enrichments in
multi-contrast omics data. Mitch is available from Bioconductor (https://bioconductor.org/packages/mitch).

Keywords: Bioconductor package, Differential expression, Gene regulation, Multi-omics, Single-cell profiling, Pathway
analysis, Gene set enrichment analysis, Multivariate statistics
Background
Functional enrichment analysis describes the various
ways that summarised omics data can be used to infer
differential expression (DE) of molecular pathways, or
more broadly sets of genes that are functionally linked
[1]. Enrichment analysis is increasingly being applied to
understand patterns of regulation in diseases and may
be useful in better classification of patients into sub-
groups that could benefit from more specific treatments
[2]. Indeed, it is reported that measurement of sets of
genes rather than individual genes provides a better ratio
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of signal to noise and more accurate patient classifica-
tion [3]. Commonly, gene sets are curated to have simi-
lar molecular or biological function, or be part of the
same biochemical or signaling pathway; but can also be
derived from empirical omics and in silico studies.
Most commonly used pathway enrichment analysis

methods fall into three categories; over-representation
analysis (ORA), functional class sorting (FCS) and path-
way topology (PT) methods [1, 4, 5]. Over-representation
analysis involved the intersection of genes meeting a pre-
specified significance and/or fold change threshold with a
library of gene sets. Statistically higher or lower enrich-
ment is determined with hypergeometric, Fisher exact or
other test. Functional class scoring is different because it
uses all detected genes in the calculation of pathway
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regulation, as it does not involve a significance cutoff.
There are several valid approaches to this, but all involve
scoring of genes by their differential expression, followed
by a statistical test to detect enrichment at the upper and
lower extremes of the range. PT methods are similar to
FCS methods except they take into consideration add-
itional information about how the genes within a set relate
to one another. For example taking into account that bio-
logical pathways contain both activators and inhibitors, or
that genes in a set are correlated or anticorrelated. PT
methods are limited in some cases by a lack of fine-
grained pathway knowledge as well as differences in path-
way mechanisms in cell types under study [4]. Although
PT methods are extremely useful, they are not a focus of
this study.
One of the first FCS tools to be described was Gene

Set Enrichment Analysis (GSEA). In “preranked” mode,
this method summarises DE findings (eg: fold change
and/or p-value) into a single value and then detects en-
richment of gene set members at the extremes of this
profile. Statistical significance is established by permut-
ing the profile, quantifying how frequent the detected
enrichment is in a randomised profile [6]. Pathway ana-
lysis research has since been focused on improving the
usability, accuracy and efficiency of tools that analyse
single omics data sets. For example, FCS tools (geneSet-
Test, Roast, CAMERA) have been added to the Limma
package, providing a GSEA-like functionality entirely in
the R/Bioconductor environment [7]. CAMERA is able
to estimate and correct for inter-gene correlation that
biases enrichment tests [8]. SetRank adjusts for false
positives that arise from overlaps in gene sets [9]. Algo-
rithmic advances included in the FGSEA package have
allowed a ~ 50 fold increase in permutation calculation
speed in pre-ranked enrichment detection in contrast to
GSEA [10] which will be important as gene set databases
continue to grow. It has also been shown that ensemble
methods of enrichment analysis yield higher accuracy
than any individual method alone [11]. Furthermore,
there is an emerging interest in tools that calculate path-
way expression in individual samples, allowing for
granular analysis of variability between samples in large
groups (eg: PLAGE, GSVA and ssGSEA) [12–14].
Databases such as Gene Expression Omnibus (GEO)

are expanding rapidly [15], enabling comparison of
many omics studies at the same time given the ap-
propriate analysis tools. As omics profiling techniques
continue to diversify and become more widely used,
multi-omics studies are becoming more common. For
example, the share of multi-omics data sets, called
“Superseries” in GEO has increased, from only 4.6%
of series in 2005–2009 to 8.1% in Jan 2016 to Aug
2019. In addition, single-cell profiling has grown ex-
plosively in the past 5 years thanks to developments
in droplet and nanowell technology, facilitating the
deconvolution of cell identities in development and in
response to stimuli and disease. These trends high-
light a need for tools capable of analysing high-
dimensional omics data involving many contrasts,
profiling technologies and cell types.
The first approach described for multi-contrast FCS

analysis is based upon Hotelling’s T2 statistic with two
contrasts, and more generally Multiple Analysis of Vari-
ance (MANOVA) when considering more than two con-
trasts. With simulated data, MANOVA test compares
favourably with respect to sensitivity and specificity in
contrast to other multivariate tests available at the time
[16]. An alternative approach, Multi Dimensional Gene
Set Analysis (MD-GSA) was later devised, and proposes
the use of logistic regression for bidimensional FCS ana-
lysis [17]. Although originally intended to analyse mul-
tiple contrasts on the same experimental platform, the
MANOVA test is equally applicable to pathway level in-
tegrative analysis of multi-omics data. For example, joint
FCS analysis of ranked proteome and transcriptome data
[18]. A MANOVA based FCS test was implemented in
the MAVTgsa R package, however it is slow due to the
use of a computationally intensive permutation proced-
ure, and lacks visualisation features key to interpreting
high-dimensional data [19].
To overcome these limitations, we developed mitch,

an R/Bioconductor package that facilitates multi-
contrast FCS analysis using a rank-MANOVA approach.
We demonstrate the utility of mitch in a variety of use
cases including enrichment analysis of multi-omics and
single cell transcriptomics. Using simulated data, we
benchmark accuracy and execution time of mitch.
Implementation
Overview
We provide a schematic diagram and example code to
demonstrate a typical mitch workflow from DE tables
through to enrichment results (Fig. 1). mitch consists of
five functions; mitch_import, gmt_import, mitch_calc,
mitch_plots and mitch_report, which are described in
the sections below.
DE scoring and import
To facilitate rank based FCS analysis, DE results for each
gene need to be summarised into a single score. mitch_
import has the ability to import data from a range of up-
stream DE packages used in transcriptomics, epigenetics
and proteomics (Table 1) [7, 20–43]. Where available,
mitch uses the DE test statistic for each gene/protein if
available, otherwise calculating the directional signifi-
cance score (D) defined as:



Fig. 1 Overview of the mitch workflow. The mitch package consists of five functions (left). The mitch_import function recognises the format of commonly
used differential omics tools such as DESeq2, edgeR and limma and performs ranking of each contrast, to create a multi contrast rank table. If user’s would like
to use a different ranking scheme, mitch_import can be bypassed in favour of a custom ranking approach. The gmt_import function reads gene matrix
transposed files (GMT). The mitch_calc function determines the degree of enrichment of each gene set in the multi contrast table, yielding a mitch result
object. The mitch_report function produces a single HTML format report of results containing several tables and charts. The mitch_plots function generates
high resolution PDF containing charts derived from the mitch results. Example minimal mitch analysis code (right) to determine the enrichment of gene sets
obtained from a GMT file in two dimensions, represented as two edgeR top tables
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D ¼ − log10 nominalp−valueð Þ � sign log2FCð Þ

If a different upstream tool is used or if users prefer to
use a different DE scoring approach, mitch allows im-
port of “prescored” data. By default, only the genes that
are detected in all contrasts are included, but this behav-
iour can be modified to accommodate sparse datasets
such as single cell transcriptomics. During import, users
may specify a two-column table that relates gene identi-
fiers in the DE analysis to those in the gene sets. Genes
are then ranked from most up-regulated to most down-
regulated in each contrast. Gene ranks are centred
around the midpoint for each contrast, where the test
statistic/directional significance score is zero.

Gene set definition
A gene set library for use with this implementation must
be a named list of character vectors. The gmt_import
function reads gene matrix transposed (GMT) system
files and is based upon a function originally written for
the clusterProfiler package [44] that is interoperable with
FGSEA [10].

Multi-contrast enrichment analysis
The mitch_calc function performs the calculation of
multidimensional enrichment and post-hoc univariate
enrichments. Only gene sets with 10 or more mem-
bers present in all contrasts are included by default
although the minimum set size threshold can be al-
tered as desired. The base R manova() and
summary.manova() functions are used to calculate
and report the probability that genes in a set show a
multidimensional enrichment as compared to genes
not in the set using the Pillai–Bartlett test statistic
[45]. The maximum number of contrasts (dimensions)
handled by this function is 69. If only one DE profile
is provided, then mitch will perform an ANOVA test
using the aov() function. The p-values are adjusted
for multiple comparisons using the false discovery
rate (FDR) method of Benjamini and Hochberg [46].
Separately, the enrichment score (s) of each gene set
is calculated in each contrast as described previously
[18].

s ¼ 2 R1−R2ð Þ=n

Where R1 is the mean rank of genes in the set, R2 is
the mean rank of genes not in the set and n is the num-
ber of genes overall. With two or more contrasts, S is
defined as the higher dimensional but non-directional
enrichment score and is calculated as the Pythagorean
distance from the origin.
On Unix based systems, these calculations are distrib-

uted on multiple cores to take advantage of multi-
threaded computers and save time. End users can priori-
tise results in three ways; (i) based on statistical signifi-
cance (low p-value), (ii) effect size (large S) or (iii)
standard deviation (SD) of s values across contrasts. SD
prioritisation may be of use when searching for gene sets
with discordant regulation. End users may also select the



Table 1 mitch can import profiling data generated by a wide
range of upstream tools

Target
application

Tool Reference Function Ranking
metric

RNA-seq (and
other
applications
of count
based
quantification)

edgeR [20] topTable() “logFC” and
“PValue”

DESeq2 [21] results() “stat”

ABSSeq [22] results() “foldChange”
and “pvalue”

topConfects [23] edger_confects()
limma_confects()

“confect”

fishpond/
Swish

[24] swish() “stat”

NOIseq [25] noiseq() “ranking”

Ballgown [26] stattest() “fc” and
“pval”

TCC [27] getResult() “m.value” and
“p.value”

Sleuth [28] sleuth_results() “b” and “pval”

Cufflinks [29] cuffdiff “test_stat”

Expression
microarray

limma [8] topTable() “t”

DEDS [30] topgenes() “t”

scRNA-seq
(and other
applications
of barcoded
cell based
count
quantification)

Seurat [31] FindMarkers() “avg_logFC”
and “p_val”

Muscat [32] pbDS() “logFC” and
“p_val”

scde [33] scde.expression.
difference()

“Z”

MAST [34] zlm() “Coef” and
“Pr(>Chisq)”

DEsingle [35] DEtype() “foldchange”
and “pvalue”

Methylation
array

missMethyl [36] topTable() “t”

DMRcate [37] extractRanges() “meanbetafc”
and “Stouffer”

Differential
proteomics

DEP [38] get_results() “ratio” and
“p.val”

msmsTests [39] msms.glm.pois(),
msms.glm.qlll()
or msms.edgeR()

“LogFC” and
“p.value”

plgem [40] plgem.deg() “PLGEM.STN”
and “p.value”

SDAMS [41] SDA() “beta” and
“pv_2part”

DEqMS [42] DEqMS “t”

Differential
binding

DiffBind [43] dba.report() “Fold” and
“p.value”
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number of gene sets for which detailed reports are to be
generated downstream; with a default of 50.

Visualisation of results
The mitch_plots function generates several plots in high
resolution PDF. The mitch_report function generates an
HTML report with the same outputs, but in a lower
resolution to facilitate easy sharing of results. These
visualisation functions are limited to 20 or fewer con-
trasts. Outputs contain scatterplots of DE scores derived
from the directional p-value method, filled contour plots
of ranked profiles, histogram of gene set sizes, scatter
plot of effect size measured by S distance and statistical
significance measured as -log10(FDR MANOVA), and a
pairs plot of s values for all gene sets. In addition, de-
tailed plots are generated for a specified number of gene
sets according to the prioritisation approach selected.
These include pairwise filled contour plots, pairwise
scatter plots and violin plots of enrichments in each con-
trast. These plots are generated with base R tools or
ggplot2 [45, 47]. The HTML output is a self contained
report with results tables and charts. Some of these are
interactive charts and are generated using the echarts4r
package [48].

Methods
Case study 1: multi-contrast enrichment analysis of RNA-
seq data
RNA-seq data from a previous study with GEO acces-
sion GSE109140 [49] were obtained via DEE2 [50].
Transcript-level counts were aggregated to gene level
counts using the Tx2gene function of the getDEE2 R
package (obtained 2019-10-25). Genes with fewer than
10 reads per sample were excluded from analysis. Two
DE contrasts were performed. In contrast 1, normal (5.5
mM) and high (20 mM) glucose were compared. In con-
trast 2, the effect of 1.0 mM valproic acid (VPA) was
assessed in the high glucose condition. DE analysis was
performed with DESeq2 v1.22.2 and profiles were
imported with mitch. Gene sets used in this study were
obtained from Reactome [51]. These and all subsequent
numerical analyses were performed in R (v3.6.1) [45].
In order to test whether mitch controls type I errors

(false positives) appropriately, three types of randomisa-
tion were performed. (i) Shuffle the names of genes in
the profile. This retains the correlation structure of the
profile dataset. (ii) Shuffle the profile data values. This
doesn’t preserve profile correlation structure. (iii) Create
random gene sets by sampling gene names from the pro-
file. Gene sets sizes are equal to those obtained from
Reactome. The above were repeated 1000 times with the
set seed varied between 1 and 1000.

Case study 2: multi-omics enrichment analysis
Datasets corresponding to A549 (adenocarcinomic hu-
man alveolar basal epithelial cell) with and without ex-
posure to 1 h 100 nM dexamethasone were selected to
showcase the application of mitch to multi-omics data
(listed in Supplementary Table 1) [52]. ChIP-seq and
ATAC-seq alignment files in BAM format were
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downloaded from the ENCODE website. FeatureCounts
v1.6.4 [53] was used to count reads mapped to regions
within 1 kbp of transcriptional start sites. These coordi-
nates were generated using GTFtools [54] from GEN-
CODE v29 annotations [55]. RNA-seq gene expression
counts were downloaded from the ENCODE web site.
ChIP-seq, ATAC-seq and RNA-seq underwent differen-
tial analysis with DESeq2 v1.22.2 after excluding genes
with fewer than 10 reads per sample on average across
each experiment. Data were imported with mitch and
enrichment analysis was performed with Reactome gene
sets as above.

Case study 3: comparing enrichment results downstream
of different DE tools
RNA-seq data from a previous study with GEO accession
GSE93236 [56] were obtained via DEE2. Transcript-level
counts were aggregated to gene level counts as above.
Non-target control and Set7 knock down datasets were
compared using different DE tools; DESeq2 (v1.22.2),
edgeR glmLRT and QL (v3.24.3), voom-limma (v3.38.3)
and ABSSeq (v1.36.0). mitch was used for enrichment
analysis using Reactome gene sets. UpSetR package v1.3.3
was used to intersect gene sets that were FDR < 0.05 in
each DE tool profile [57]. Pairwise correlation, heatmap,
violin and bar charts were generated in R.

Case study 4: enrichment analysis of single cell
sequencing data
Single cell RNA-seq expression data derived from per-
ipheral blood mononuclear cells exposed to interferon
beta or vehicle control [58] were obtained, preprocessed
and underwent differential state analysis using the “pseu-
dobulk” method as described in the Muscat v0.99.9 vi-
gnette [32]. Spearman correlation (ρ) of DE values are
presented as a heatmap. Mitch was performed with
Reactome gene sets and sets with FDR MANOVA < 0.05
were prioritized based on significance, magnitude of S
and SD of s.

Accuracy of single and dual contrast enrichment
detection
In order to establish the accuracy of mitch in compari-
son to other tools for enrichment analysis, we used a
simulated RNA-seq data approach. A human RNA-seq
data set with accession number ERR2539161 with 367M
reads assigned to genes was downloaded from DEE2.
We simulated a typical RNA-seq experiment with a con-
trol/case design with 3 replicates. The starting dataset
was downsampled repeatedly to 10M, 40M and 100M
reads followed by multiplication by a random noise fac-
tor. Noise factors were randomly generated by sampling
with the rnorm function with a mean of 2 and a set SD
between 0 and 0.6 followed by log2 transformation. For
enrichment analysis testing, 1000 gene sets were created
by randomly sampling 50 gene names. In each simula-
tion 25 randomly selected gene sets were set to be up-
regulated, and another 25 were set to be downregulated.
Fold changes of 2 and − 0.5 were incorporated into the
‘case’ profiles by multiplication of the fold change with
the gene counts. If a gene was selected to be both up
and downregulated, then no fold change was incorpo-
rated. Count matrices then underwent differential ana-
lysis with DESeq2 and downstream enrichment analysis
with hypergeometric test (phyper, base R v3.6.1), FGSEA
(v1.11.1) and mitch. For hypergeometric test, genes with
DESeq2 FDR values < 0.05 were included in over-
representation analysis. For FGSEA and mitch, the
DESeq2 test statistic was used for ranking. In FGSEA,
1000 permutations were performed. Gene sets with FDR
values < 0.05 were considered significant and contrib-
uted to the calculation of precision, recall and F1 score.
Mean results are shown after 500 simulations.
For dual contrast enrichment, data were simulated as

above, one control group and two case groups were cre-
ated to generate two contrasts. FGSEA, mitch and MD-
GSA (v1.18.0) were compared.

Accuracy in detecting multi-contrast enrichment
A random differential expression profile in five dimen-
sions (contrasts) was simulated by repeatedly shuffling
ranks for the hyperglycemia data. A library of 1000 gene
sets, each with 50 members was created as above and 20
of these gene sets were selected for differential expres-
sion. The ranks of the gene set members were shifted
based upon a prespecified s value using the equation.

R2−R1 ¼ n� s=2

Values for s in the five contrasts were generated from
a normal distribution with a mean of zero and SD varied
between 0 and 0.25. This equates to mean absolute
values of s between 0 and 0.2. After mitch analysis, a 5%
FDR threshold was applied to calculate precision, recall
and F1 score. The simulation was repeated 1000 times
for each value of SD.

Execution time
A typical mitch analysis was defined as consisting of a
profiling of 20,000 genes with a gene set library of 1000
sets, and each set consisting of 50 members. Gene
names, data points and gene sets were randomly gener-
ated. Execution time was measured on a 3.8 GHz AMD
Ryzen Threadripper 1900 × 8-core (16 thread) processor
with 64 GB RAM running Ubuntu 18.04 and R v3.6.1.
For comparison, FGSEA was run with 1000 or 2000
permutations. MAVTgsa v1.3 was run with 1000 permu-
tations and MD-GSA using default parameters.
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Parameters including number of contrasts, number of
genes in the profile, number of gene sets and size of
gene sets were also varied to determine impact on mitch
execution time.

Results
Case study 1: multi-contrast enrichment analysis of RNA-
seq data
A common use case for mitch is the multi-contrast gene
set enrichment analysis of transcriptome data. To dem-
onstrate this, we applied mitch to RNA-seq data initially
described by Felisbino et al. [49], consisting of two con-
trasts; (i) low glucose (LG) versus high glucose (HG);
and (ii) HG versus HG with valproic acid (HGVPA). The
goal of this study was to identify individual genes and
Reactome gene sets dysregulated due to high glucose
stimulation in hepatocytes and attenuated with VPA, a
clinically prescribed histone deacetylase inhibitor.
There were 15,240 genes with detectable expression

in both contrasts. DE scoring with the Wald test stat-
istic provided by DESeq revealed gene expression dif-
ferences were larger in response to VPA (y-axis) as
compared to HG (x-axis) (Fig. 2a), although genes
were evenly distributed in all four quadrants (Fig. 2b)
and the contrasts were not strongly correlated (Spear-
man’s ρ = 0.010). After exclusion of 967 gene sets
with fewer than 10 detected members, 1296 gene sets
underwent multi-contrast enrichment analysis with
mitch. From the 1296 Reactome gene sets considered,
561 gene sets received FDR MANOVA< 0.05 (Fig. 2c).
There were 372 sets with FDR MANOVA< 0.01. A
plot of effect size versus statistical significance for
each gene set (Fig. 2d) demonstrates the three gene
sets with the greatest effect size, while satisfying FDR
MANOVA< 0.05, are not highly ranked when priori-
tising solely on statistical significance. Bidimensional
enrichment plots for the top three gene sets based on
statistical significance and effect size further show dif-
ferences in types of associations identified (Fig. 2e).
When prioritising by statistical significance, top gene
sets are likely to be larger (contain more genes) but
more dispersed; while prioritisation by effect size em-
phasizes smaller gene sets with larger magnitude
changes.
To demonstrate appropriate control of false posi-

tives, three randomisation procedures were performed
on bidimensional profiling data shown in Fig. 2. Shuf-
fling gene names 1000 times resulted in an average of
0.141 and 0.024 false positives per run at FDR < 0.05
and FDR < 0.01 respectively (Fig. 3a and b). Shuffling
the profile data resulted in an average of 0.213 and
0.038 false positives per run at FDR < 0.05 and FDR <
0.01 respectively (Fig. 3c and d). Randomisation of
gene sets resulted in an average of 0.028 and 0.007
false positives per run at FDR < 0.05 and FDR < 0.01
respectively (Fig. 3e and f). Randomisation shows
mitch appropriately controls for false positives.

Case study 2: multi-omic enrichment analysis
Another common use case for mitch is in enrichment
analysis of multi-omics data. Previously, the ENCODE
consortium have performed multi-omics profiling of
dexamethasone (an anti-inflammatory corticosteroid
drug) on adenocarcinomic human alveolar basal epithe-
lial cell line A549 [52]. We obtained RNA-seq, ATAC-
seq and promoter based ChIP-seq for CTCF, H3K4me3,
NR3C1 and POL2RA profiling data for dexamethasone
treated and control samples (datasets listed in Supple-
mentary Table 1), followed by differential analysis and
then mitch. We found that overall, promoter based
NR3C1 occupancy was most positively correlated with
POL2RA and negatively correlated with CTCF occu-
pancy. As expected, RNA expression differences were
positively correlated with NR3C1, H3K4me3, POL2RA
and ATAC-seq signal (Fig. 4a). Selected gene sets with
the largest effect size (S) include peptide chain elong-
ation, adenylate cyclase inhibition and common pathway
of clot formation, while the gene sets with the smallest
FDR adjusted p-values included metabolism of RNA,
translation and infectious disease (Fig. 4b). Adenylate cy-
clase inhibition genes were associated with increased oc-
cupancy of CTCF and chromatin accessibility (inferred
from ATAC-seq), but lower RNA expression, H3K4me3
and NR3C1 occupancy (Fig. 4c). Common pathway of fi-
brin clot formation genes were elevated in H3K4me3,
NR3C1, and to a lesser extent in RNA expression. Me-
tabolism of RNA and translation were elevated in
POL2RA occupancy and RNA expression (Fig. 4d). Dys-
regulation of the adenylate cyclase, clot formation path-
way and effect on protein synthesis are consistent with
the known effects of glucocorticoids [59–62]. This high-
lights the ability of mitch to identify enrichments in
multi-omics datasets, and recover known biology.

Case study 3: comparing enrichment results downstream
of different DE tools
When benchmarking an RNA-seq bioinformatic pipeline
it is useful to compare the gene set level results of a sin-
gle RNA-seq contrast analysed with different DE tools,
to determine what effect tool selection has on final re-
sults. To demonstrate this, bulk RNA-seq data corre-
sponding to Set7 knock-down and non-target control
samples [56] was processed using DESeq2, edgeR
glmLRT, edgeR QL, ABSSeq and voom-limma followed
by mitch analysis with Reactome gene sets. After DE
analysis, there were variable numbers of DE genes at the
5% FDR cutoff (DESeq2: 5150, edgeR glmLRT: 5721,
edgeR QL: 5910, voom-limma: 5903 and ABSSeq: 2253).



Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Multi-contrast enrichment analysis of RNA-seq with mitch. a The scoring metric, D, of every gene in the two contrasts, LG vs HG and HG vs
HGVPA. b A filled contour plot of all genes after ranking. c Enrichment of Reactome gene sets in the two dimensional space. d Plot of gene set
effect size (S) and significance. S is defined as the Pythagorean distance from the origin to each point in (c). Significance is measured as the
-log10(FDR MANOVA). e Density plots for the three top significant gene sets (blue box) and three gene sets with largest effect size (red box)
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After mitch analysis also with a 5% FDR cutoff, there
were variable numbers of differentially regulated gene
sets, with ABSseq showing the fewest (Fig. 5a). Only 56
gene sets were common to all DE tools, but the majority
(108) were common to all except ABSSeq. A pairs plot
of gene set s values comparing data from each tool
Fig. 3 Data randomisation demonstrates robust control of false positives. Dat
Results of shuffling of gene names in the profile followed by mitch analysis w
data points, two contrasts shuffled independently. e and f Randomisation of g
repeated 1000 times
shows the results of DESeq2, edgeR glmLRT, edgeR QL
and voom-limma are virtually identical (Pearson r >
0.99), while results from ABSSeq are somewhat different
(Pearson r ~ 0.95) (Fig. 5b). Sorting gene sets by SD of s
values reveals several gene sets that exhibit stronger
downregulation in DESeq2, edgeR glmLRT, edgeR QL
a shown in Fig. 2 underwent three types of randomisation. (a and b)
ith an FDR threshold of 0.05 and 0.01. c and d Results of shuffling profile
ene sets by sampling gene names from the profile. All procedures were



Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 Multi-omics analysis of A549 cells treated with dexamethasone. a Pairwise filled contour plots of ranked profiles shows underlying correlations.
b Plot of gene set effect size and significance. c Example gene sets that have large effect sizes. d Example gene sets with small FDR values. For c and
d, grey areas denote the distribution of ranks of all detected genes, with median and quartiles depicted by the wide boxplot. Distribution of gene set
members is shown by the black violin, with median and interquartile ranges given by the narrow boxplot
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and voom-limma as compared to ABSSeq (Fig. 5c). The
peptide chain elongation gene set is a prime example,
where the majority of genes are downregulated when
analysed with DESeq2, edgeR glmLRT, edgeR QL and
voom-limma, but appear unchanged when analysed with
ABSSeq (Fig. 5d). This difference in collective regulation
Fig. 5 Comparison of gene set enrichment enrichment results downstream o
sets produced by different DE tools FDR < 0.05, as calculated by unidimension
different DE tools. Upper triangle shows Pearson’s r. c A heatmap of 10 gene
row. d Heatmap of individual gene members of the peptide chain elongation
chain elongation gene set. f Observed nominal ANOVA p-value of the peptid
by ABSSeq is clear when the gene set is visualised as a
violin plot (Fig. 5e). As a consequence, the statistical sig-
nificance of this gene set is lower for ABSSeq compared
to the other DE tools (Fig. 5f). These results are gener-
ally consistent with previous findings that show ABSSeq
is more conservative than other differential RNA-seq
f different DE tools on the same RNA-seq dataset. a UpSet plot of gene
al mitch. b Pairs plot of mitch s values for each gene set as processed by
sets with the highest SD of s values across different DE tools, scaled by
gene set, scaled by row. e Violin plot of enrichments of the peptide

e chain elongation gene set after analysis with different DE tools
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tools [22]. This result highlights that choice of DE tools
subtly impacts enrichment results and these can be ex-
plored using mitch.

Case study 4: enrichment analysis of single cell
sequencing data
Single cell RNA sequencing (scRNA-seq) allows the par-
allel profiling of hundreds to thousands of individual
cells in a sample. As in standard bulk RNA-seq, con-
trasts between experimental conditions can be made,
with the major difference that scRNA-seq provides in-
formation on cell identity (also known as “cell type”).
Generally, scRNA-seq DE tools provide either test statis-
tic or fold change and p-value information for each gene
of each cell identity. Here, mitch can be applied to per-
form enrichment analysis by considering the DE profiles
of each cell identity as an independent contrast. In order
to demonstrate this, scRNA-seq data derived from per-
ipheral blood mononuclear cells exposed to interferon
Fig. 6 Applying mitch to perform enrichment analysis of scRNA-seq data. a
identity. b Heatmaps of mitch s scores for top 25 Reactome gene sets afte
sets shown are FDR MANOVA < 0.05. c Example enrichment plots for three
beta or vehicle control as described by Kang et al [58]
underwent clustering and differential analysis with
Muscat [30] to yield “pseudobulk” DE tables for each cell
identity. After scoring DE values, correlation analysis
identified Spearman’s ρ between 0.23 and 0.57 between
cell identities, with lymphocytes grouped together, den-
dritic cells grouped with monocytes, and megakaryocytes
appearing as an outgroup (Fig. 6a).
Again, mitch analysis was performed with Reactome

gene sets. Of the 2263 gene sets present, 1629 were ex-
cluded due to the detection of fewer than 10 members.
Of the 607 sets remaining, 77 were differentially regu-
lated (FDR MANOVA< 0.05). Next, we prioritised the
results three ways; (i) significance, (ii) magnitude of S,
and (iii) SD of s values (Fig. 6b). When prioritising by
significance, interferon signaling was observed to be up-
regulated as expected, but there were many housekeep-
ing gene sets that were observed to be downregulated,
including TCA cycle, rRNA processing and translation.
Heatmap of Spearman correlation values for DE scores for each cell
r prioritisation by significance, magnitude of S and SD of s. All gene
gene sets with high SD of s values
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When prioritising by magnitude of S, there was a larger
number of upregulated gene sets involved in immune re-
sponses observed. In general, these gene sets demon-
strated coordinated regulation in response to interferon
beta stimulation that was consistent between cell iden-
tities. The value of scRNA-seq over bulk is the ability to
detect cell identities responding differently to a stimulus,
so it may be useful to prioritise by the observed SD of s
across cell identities. Using this approach, we identified
several gene sets with discordant cell identity responses
to interferon beta, that would be impossible to detect
with bulk sequencing (Fig. 6c). For example “RNA poly-
merase III chain elongation” was downregulated in
monocytes specifically, “Attenuation phase” was upregu-
lated in monocytes and B cells but not in megakaryo-
cytes, and “Sema4D in semaphorin signaling” was
downregulated in megakaryocytes specifically. This re-
sult highlights the utility of mitch in analysing single cell
profiling data and the impact of different prioritisation
schemes.
Fig. 7 Precision, recall and F1 values for enrichment analysis of simulated R
replicates with different sequencing depth (10, 40 and 100 million reads) a
simulations is shown. a Evaluation of single contrast enrichment. b Evaluat
Accuracy of single and dual contrast enrichment
detection
To test the accuracy of mitch to detect single-contrast
enrichments, we undertook a simulation study. Our goal
was to determine the performance of mitch and other
enrichment tests (FGSEA and hypergeometric test) over
a range of typical RNA-seq conditions by varying the se-
quencing depth and degree of inter-sample variation.
We simulated DE to 5% of randomly generated gene sets
with equal numbers of sets up and down-regulated (see
Methods). Members of those gene sets were given log2
fold changes of 1 and − 1 to simulate expression changes.
Count matrices underwent DE analysis and gene set en-
richment testing with a 5% FDR threshold to calculate
precision and recall of these tools, calculated by compar-
ing ground truth values to the observed results (Fig. 7a).
As expected, DE results from DESeq2 yielded smaller p-
values when sequencing depth was greater and inter-
sample variation was smaller. This resulted in overall
better precision and recall of gene set enrichment results
NA-seq datasets. Simulations are based on n = 3 control and case
nd different degrees of added variation (SD). The mean of 500
ion of dual contrast enrichment
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in simulations involving greater sequencing depth and
smaller inter-sample variation. In tests with low vari-
ance, the hypergeometric test was the most precise,
however higher variance caused a severe reduction in re-
call. In contrast, FGSEA and mitch were more robust to
higher variance especially with higher sequencing depth.
When variance was low, the accuracy of mitch was simi-
lar to FGSEA, but with higher variance, mitch showed
superior recall. Potentially, FGSEA’s recall could be im-
proved by using a greater number of permutations.
Next, we applied this approach to the problem of iden-

tifying enrichments in two contrasts. We planned to
compare the accuracy of FGSEA (run twice), with mitch,
mdgsa and MAVTgsa, but thoroughly evaluating
MAVTgsa was impractical due to the long computa-
tional time (Fig. 9b). We found that FGSEA recall was
lower than expected, but this was improved by increas-
ing the number of permutations to 2000. Averaged over
the 9 different conditions, mitch demonstrated the high-
est precision (0.956), recall (0.994) and F1 score (0.974)
as compared to the other tools (Fig. 7b). These results
demonstrate that mitch has slightly better accuracy than
existing tools for single and dual contrast enrichment
analysis.

Accuracy of multi-contrast gene set enrichment detection
Next, we sought to quantify the accuracy of mitch in dis-
tinguishing DE gene sets in a simulated five-contrast
dataset. Member genes of 20 gene sets were shifted by
precomputed s values sampled from a range of values
Fig. 8 mitch accuracy in distinguishing DE gene sets in a simulated five-co
each gene set for each contrast. x-axis can be interpreted as increasing enr
with a mean of zero and SD varied from 0 to 0.25
(Methods). After mitch analysis with a 5 and 1% FDR
cutoff, precision, recall and F1-score were calculated
(Fig. 8). When SD = 0, ie in completely random data, no
false positive DE gene sets were found after 1000 replica-
tions. As expected, recall increased with larger SD
values. False positives showed a non linear relationship
with SD. In the 5% FDR trial, precision showed a mini-
mum of 86% when SD values were set to 0.05, however
at a more strict 1% FDR cutoff, the minimum precision
value was 95%. F1 scores indicated high accuracy with
SD values above 0.15, which corresponds to mean abso-
lute s values of 0.08 or higher. To put this into context
of a real dataset, from the 318 gene sets in case study 2
with FDR < 0.05, there were 12.6% with mean absolute s
values lower than 0.08 (Supplementary Figure 1). For tri-
als with SD set to ≥0.15, F1 scores were 0.9991 or
higher. These findings support the accuracy of mitch in
identifying DE gene sets in multidimensional data.

Execution time
As execution time is a consideration in big data applica-
tions, we measured the execution times of mitch in typical
applications. Initially, single-contrast enrichment analysis
was tested. A random profile consisting of 20,000 genes
and queried with a gene set library of 1000 sets, and each
set consisting of 50 members. On a single CPU thread,
single-contrast mitch analysis was completed in 10 s; but
using 8 threads this was reduced to 2.5 s. Using an
additional 8 threads did not speed up execution further
ntrast dataset. The x-axis shows the set SD for sampling s values for
ichment strength. Values shown are the mean of 1000 replications
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(Fig. 9a). FGSEA which is known for its speed, completed
the analysis in 0.51 s using the default 1000 permutations
with a single thread. Next, the speed of mitch was com-
pared to MAVTgsa, MD-GSA and FGSEA for dual contrast
enrichment. We found mitch was 16–22 times faster than
MD-GSA and 2000–2500 times faster than MAVTgsa, al-
though not as fast as running FGSEA twice (Fig. 9b). Next,
the effect of increasing the number of genes profiled and
the number of contrasts on mitch execution time was
assessed. The number of genes in the profiling data had a
linear effect on mitch execution time, but adding extra con-
trasts gave a sub-linear increase in execution time (Fig. 9c).
When the number and size of gene sets was manipulated,
we found the number of gene sets gave a linear increase in
mitch execution time whereas an increase in the size of
gene sets gave a sub-linear increase in execution time (Fig.
9d). This result indicates that although mitch is slower than
FGSEA for single contrast analysis, mitch enables large-
scale enrichment analyses within a reasonable time.
Fig. 9 Benchmarking mitch execution time. a single-contrast enrichment a
threads. b Comparison of mitch, MAVTgsa, MD-GSA and FGSEA execution t
genes in the profiling data. (D) Effect of gene set size and number of sets
Discussion
Previously, we have used the concept of rank MANOVA
enrichment and visualisation in several studies of cardio-
vascular disease, pharmacology, aging and neurological
disease (eg: [63, 64]), but only recently has the software
become available as a package for wider use. In the
process of packaging the software, we have added add-
itional features that will enhance its utility. We have
made mitch interoperable with many popular upstream
analysis tools, especially those from the Bioconductor
community [65]. We have made use of the many and
varied visualisation features available in the R environ-
ment including filled contour plots, heatmaps, violin
plots and taken advantage of interactive charts made
possible with HTML embedded JavaScript bindings pro-
vided by the echarts4r package [48].
Although mitch was initially developed to compare

gene expression signatures in a multi-contrast RNA-seq
experiment, it has applications beyond this. Mitch is
nalysis with mitch and FGSEA (1000 permutations) on up to 16 CPU
imes with two to five contrasts. c Effect of number of contrasts and
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ideally suited to multi-omics data, as demonstrated in
case study 2 above that takes advantage of ENCODE
profiling data to identify pathway-level regulatory events
associated with dexamethasone exposure. In case study
3, we evaluated the impact of DE tool selection on en-
richment results, but this approach could equally be ap-
plied to choices of other upstream data processing steps
such as choice of mapping, quality control and normal-
isation methods.
Perhaps the most exciting application for mitch is

in the burgeoning field of single cell biology as in
case study 4. After data clustering by cell identity and
differential state analysis, this type of data can
undergo set enrichment analysis. Although unidimen-
sional enrichment tools such as GSEA are already be-
ing applied to scRNA-seq data, there are some
limitations. The MANOVA approach of mitch is bet-
ter able to detect enrichments that are subtle but
consistent across profiles. Moreover mitch natively
summarises the results of its multi-contrast analysis,
which means less work for the end user. The different
prioritisation modes allows users to focus on findings
that are statistically robust, associated with large ef-
fect sizes or discordant among cell identities.
Single contrast enrichment simulations show that

mitch is as accurate as FGSEA, and that both these
methods have better performance over a wider range of
input data than the hypergeometric over-representation
test (Fig. 7a); similar findings have been noted previously
[66]. Randomisation analysis of dual-contrast data
shows that mitch yields very few false positives (Fig. 3).
In dual-contrast analysis, mitch accuracy is superior to
MD-GSA and FGSEA, although FGSEA accuracy could
potentially be improved by using more permutations
(Fig. 7b).
While in this paper we have limited our analyses here

to human biological pathways curated by Reactome,
mitch is capable of using gene sets from any source and
organism for which such sets are available (eg: [67]). In
summary, the functionality provided by mitch makes it a
versatile and powerful tool for rapidly distilling pathway
level information from large omics datasets.
Availability and requirements
Project name: mitch.
Project home page: http://bioconductor.org/packages/

mitch
Operating system(s): Linux, MacOS and Windows.
Programming language: R.
Other requirements: R v4.0, Bioconductor 3.11.
License: Creative Commons Attribution-ShareAlike
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Any restrictions to use by non-academics: None.
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Additional file 1: Supplementary Figure 1. Mean absolute s scores in
case study 2. Results of the multi-omics analysis shown in Fig. 4 under-
went filtering based on a 5% FDR threshold before calculating the mean
absolute s values in the six-dimensional analysis (left). Next, the number
of gene sets with mean absolute s values greater or lower than 0.08 was
counted (right) as below this level, mitch precision is lower than
expected.

Additional file 2: Supplementary Table 1. Multi-omics data derived
from control and dexamethasone treated A549 cells obtained from the
ENCODE Project web page.
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